# The global electroweak fit in a new era of precision



Roman Kogler (Universität Hamburg)

Seminar Graduiertenkolleg GRK 2044 Universität Freiburg May 6, 2015



- Prerequisites and ingredients
- Results and status of the EW fit
- ▶ BSM constraints
- Future prospects



$$\begin{split} &-\left[\partial_{t}\phi_{t}^{2}\partial_{t}\phi_{t}^{2}-\phi_{t}f^{2}\partial_{t}\phi_{t}^{2}\phi_{t}^{2}\right]-\left[\partial_{t}^{2}f^{2}f^{2}f^{2}h^{2}\phi_{t}^{2}\phi_{t}^{2}\phi_{t}^{2}\phi_{t}^{2}\right]\\ &-\left[\partial_{t}^{2}(h^{2})^{2}\phi_{t}^{2}(h^{2})^{2}+G^{2}h^{2}G^{2}\phi_{t}^{2}+\phi_{t}h^{2}\partial_{t}h^{2}\phi_{t}^{2}\phi_{t}^{2}\right]-\frac{1}{2}(h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\phi_{t}^{2})+\frac{1}{2}(h^{2}\partial_{t}h^{2}\partial_{t}h^{2}-\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}-\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}-\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}-\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}-\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}-\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}-\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}-\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}-\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}-\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}-\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}-\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_{t}h^{2}\partial_$$

### Electroweak interactions described by $SU(2)\times U(1)$

- ▶ 4 gauge bosons: 3 massive ( $Z,W^{\pm}$ ), I massless ( $\gamma$ )
- ▶ I scalar (H)
  - extremely successful theory
  - taught in each particle physics course

# Electroweak interactions described by SU(2)×U(1)

- ▶ 4 gauge bosons: 3 massive ( $Z,W^{\pm}$ ), I massless ( $\gamma$ )
- ▶ I scalar (H)
  - extremely successful theory
  - taught in each particle physics course

# Let's take one step back...

- it's a complicated, highly non-trivial theory
  - massive gauge bosons
  - parity (and CP) violation
  - Higgs field, results in a scalar particle

### Why do we believe it?

- we physicists always had a hard time believing anything... [Philip Tanedo, quantum diaries.org]
- we want to test the theory to ultimate precision!

### Electroweak sector given by 3 parameters

- g, g': coupling constants of  $SU(2)_L$  and  $U(1)_Y$
- v: vacuum expectation value
- weak mixing angle : fixed by the massless photon

### Use the three most precise parameters

- $\alpha : \Delta \alpha / \alpha = 3 \times 10^{-10}$
- $G_F : \Delta G_F / G_F = 5 \times 10^{-7}$
- $M_Z : \Delta M_Z / M_Z = 2 \times 10^{-5}$
- measure more than the minimal set of parameters to test the theory!

$$M_W = \frac{v|g|}{2}$$

$$M_Z = \frac{v\sqrt{g^2 + g'^2}}{2}$$

$$\cos \theta_W = \frac{M_W}{M_Z}$$

$$M_W^2 = \frac{M_Z^2}{2} \left( 1 + \sqrt{1 - \frac{\sqrt{8\pi\alpha}}{G_F M_Z^2}} \right)$$

### Electroweak sector given by 3 parameters

- g, g': coupling constants of  $SU(2)_L$  and  $U(1)_Y$
- v: vacuum expectation value
- weak mixing angle : fixed by the massless photon

# Use the three most precise parameters

- $\alpha : \Delta \alpha / \alpha = 3 \times 10^{-10}$
- $G_F : \Delta G_F/G_F = 5 \times 10^{-7}$
- $M_Z : \Delta M_Z / M_Z = 2 \times 10^{-5}$
- measure more than the minimal set of parameters to test the theory!

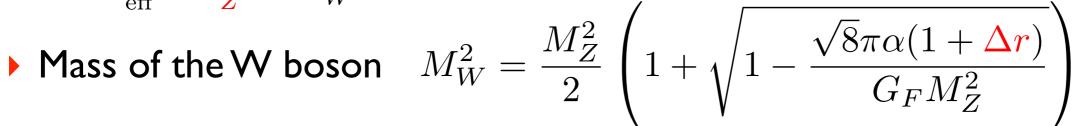
$$M_W = \frac{v|g|}{2}$$

$$M_Z = \frac{v\sqrt{g^2 + g'^2}}{2}$$

$$\cos \theta_W = \frac{M_W}{M_Z}$$

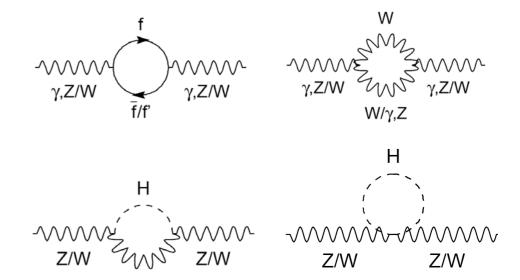
$$M_W^2 = \frac{M_Z^2}{2} \left( 1 + \sqrt{1 - \frac{\sqrt{8\pi\alpha}}{G_F M_Z^2}} \right)$$

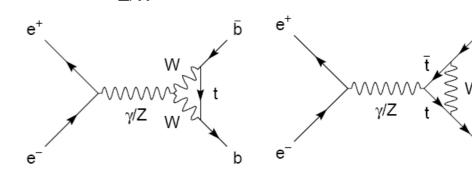
# Calculate Mw and compare with experiment


- $M_W(theo) = 80.939 \pm 0.003 \text{ GeV}$
- $M_W(exp) = 80.385 \pm 0.015 \text{ GeV}$
- difference =  $0.554 \text{ GeV} \sim 35\sigma !! \text{ new physics?}$

# **Radiative Corrections**

# Modification of propagators and vertices


- Parametrisation of radiative corrections: electroweak form factors  $\rho$ ,  $\kappa$ ,  $\Delta r$
- Effective couplings at the Z-pole:


$$g_{V,f} = \sqrt{\rho_Z^f} \left( I_3^f - 2Q^f \sin^2 \theta_{\text{eff}}^f \right)$$
$$g_{A,f} = \sqrt{\rho_Z^f} I_3^f$$
$$\sin^2 \theta_{\text{eff}}^f = \kappa_Z^f \sin^2 \theta_W$$





$$\Delta r = -\frac{3\alpha c_W^2}{16\pi s_W^4} \underbrace{\frac{m_t^2}{M_W^2}}_{M_W^2} + \frac{11\alpha}{48\pi s_W^2} \ln \underbrace{\frac{M_H^2}{M_W^2}}_{M_W^2} + \dots$$





# Free Parameters

#### EW sector

- $G_F : \Delta G_F/G_F = 5 \times 10^{-7}$
- $M_Z : \Delta M_Z / M_Z = 2 \times 10^{-5}$
- evolution of fine structure constant ( $\Delta \alpha / \alpha = 3 \times 10^{-10}$ ) to scale s

$$\Delta\alpha(s) = \Delta\alpha_{\rm lep}(s) + \Delta\alpha_{\rm had}^{(5)}(s) + \Delta\alpha_{\rm top}(s)$$
 relative precision =  $1\times10^{-6}$   $2\times10^{-4}$   $1\times10^{-7}$ 

#### Fermion masses

- m<sub>c</sub>, m<sub>b</sub>: precision of about 7% and 1%, sufficient (see later)
- m<sub>t</sub> crucial parameter, experimental precision of 0.5% (more later)

### Strong sector

 $\alpha_s$ : can be constrained using Z-pole measurements

### Higgs sector

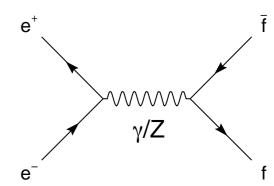
M<sub>H</sub>: precision of LHC measurements is 0.3%

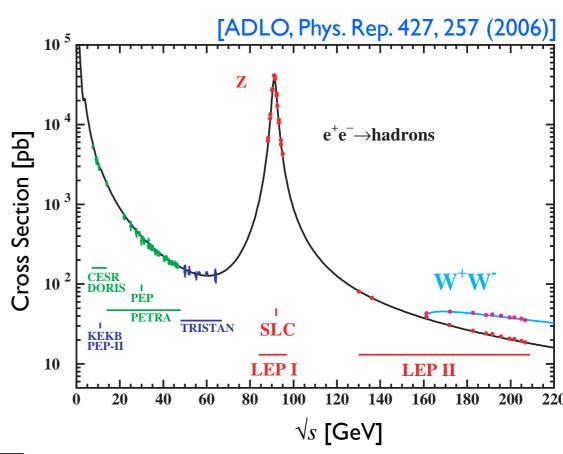
Measure more than minimal set to constrain the theory

# Measurements at e<sup>+</sup>e<sup>-</sup> Colliders

# Z-pole measurements at LEP-I and SLC

- LEP: running near the Z-pole, four experiments, 4×10<sup>6</sup> Zs / experiment
- SLC : one experiment, 500.000 Zs, polarized beams


#### Precision measurements


- exactly known initial state
- precise beam energy,  $\Delta E_{beam} = \pm 0.2 \text{ MeV}$

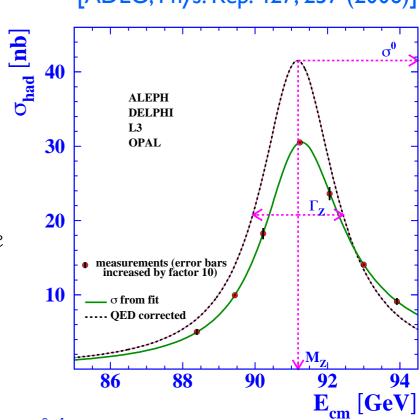
#### **Cross section**

$$\sigma_{f\bar{f}}^{Z} = \sigma_{f\bar{f}}^{0} \frac{s\Gamma_{Z}^{2}}{(s - M_{Z}^{2})^{2} + s^{2}\Gamma_{Z}^{2}/M_{Z}^{2}} \frac{1}{R_{\text{QED}}}$$

$$\text{with}\quad \sigma_{f\bar{f}}^0 = \frac{12\pi}{M_Z^2} \frac{\Gamma_{ee} \Gamma_{f\bar{f}}}{\Gamma_Z^2} \quad \text{and} \quad \Gamma_Z = \Gamma_{ee} + \Gamma_{\mu\mu} + \Gamma_{\tau\tau} + \Gamma_{\rm had} + \Gamma_{\rm inv}$$






# **Observables**

#### [ADLO, Phys. Rep. 427, 257 (2006)]

# Minimal correlated set of parameters

- $M_Z, \Gamma_Z$ ▶ mass and total width of Z<sup>0</sup>
- hadronic pole cross section
- leptonic decay ratios
- hadronic width ratios

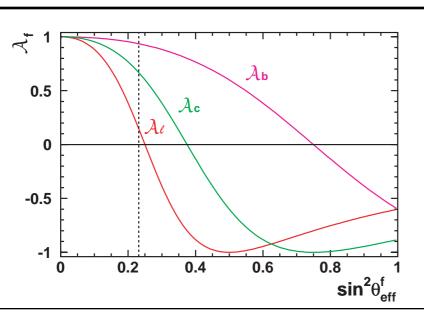
- $R_{\ell}^0 = R_e^0 = \Gamma_{\rm had}/\Gamma_{ee}$
- $R_{c,b}^0 = \Gamma_{c\bar{c},b\bar{b}}/\Gamma_{\rm had}$

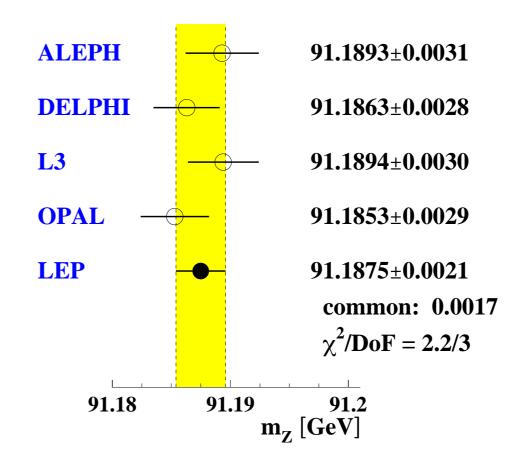


# **Asymmetries**

$$A_f = rac{g_{L,f}^2 - g_{R,f}^2}{g_{L,f}^2 + g_{R,f}^2} = 2 rac{g_{V,f}/g_{A,f}}{1 + (g_{V,f}/g_{A,f})^2}$$
 directly related to  $\sin^2 \theta_{ ext{eff}}^{f\bar{f}}$ 

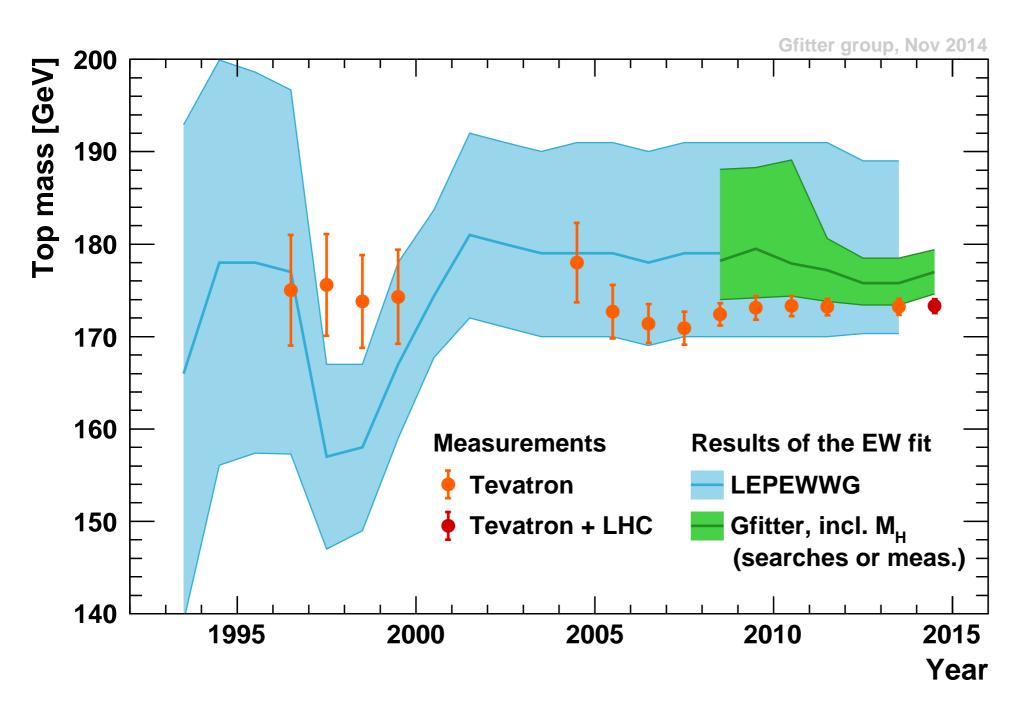
- left/right asymmetry


Forward/backward asymmetry 
$$A_{FB}^f=rac{N_F^f-N_B^f}{N_F^f+N_B^f}$$
 ,  $A_{FB}^{0,f}=rac{3}{4}A_eA_f$ 


$$A_{LR}^f = \frac{N_L^f - N_R^f}{N_L^f + N_R^f} \frac{1}{\langle |P|_e \rangle}$$

# Measurements at the Z-Pole

[ADLO, Phys. Rep. 427, 257 (2006)]


| $M_Z$ [GeV]                              | $91.1875 \pm 0.0021$  |
|------------------------------------------|-----------------------|
| $\Gamma_Z$ [GeV]                         | $2.4952 \pm 0.0023$   |
| $\sigma_{ m had}^0 \ [ m nb]$            | $41.540 \pm 0.037$    |
| $R_\ell^0$                               | $20.767 \pm 0.025$    |
| $A_{ m FB}^{0,\ell}$                     | $0.0171 \pm 0.0010$   |
| $A_{\ell}$ $^{(\star)}$                  | $0.1499 \pm 0.0018$   |
| $\sin^2\!	heta_{ m eff}^\ell(Q_{ m FB})$ | $0.2324 \pm 0.0012$   |
| $A_c$                                    | $0.670 \pm 0.027$     |
| $A_b$                                    | $0.923 \pm 0.020$     |
| $A_{ m FB}^{0,c}$                        | $0.0707 \pm 0.0035$   |
| $A_{ m FB}^{0,b}$                        | $0.0992 \pm 0.0016$   |
| $R_c^0$                                  | $0.1721 \pm 0.0030$   |
| $R_b^0$                                  | $0.21629 \pm 0.00066$ |
|                                          |                       |



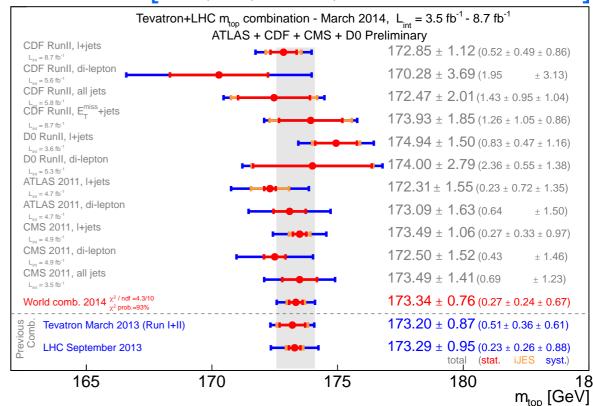


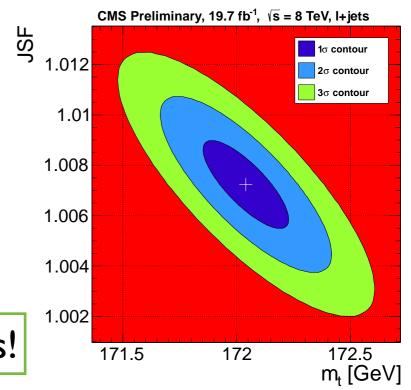
- precision of up to 0.002%!
- LEP/SLD measurements will stay the most precise for quite some time
- allow for precision tests of the SM and constrain new physics

# Prediction of top quark mass



- m<sub>t</sub> predictions from loop effects since 1990
- official LEPEWWG fit since 1993
- the fits have always been able to predict m<sub>t</sub> correctly!

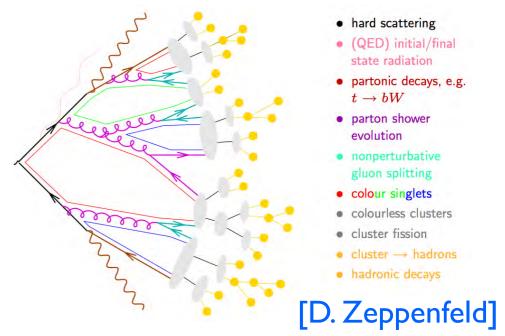

9

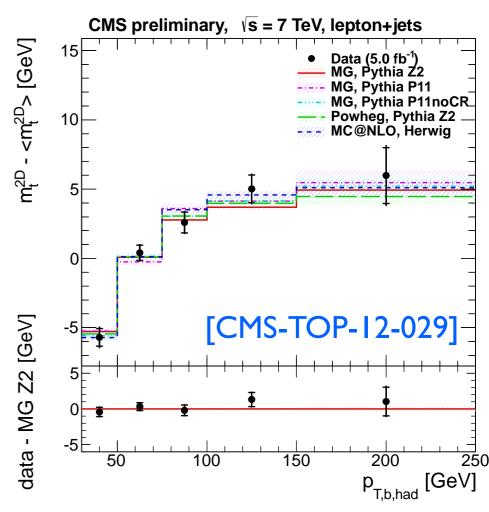

# Measurements of mt

- Tevatron pioneered measurements of a "kinematic" mass in t decays
- ▶ Tevatron
  - exceeding all expectations (expected precision: 2-3 GeV)
- LHC collaborations taking over
  - re-use of methods, high statistics
- world average:  $m_t = 173.34 \pm 0.76$  GeV
  - single best measurement in WA from CMS in I+jets channel
  - recently updated [CMS-PAS-TOP-14-001]  $m_t = 172.04 \pm 0.19 \text{ (stat.+JES)} \pm 0.75 \text{ (syst.) GeV}$ 
    - crucial: JER, pile-up, flavour dependence of JES
- ► Tevatron 2014:  $\Delta m_t = 0.64$  GeV [D0, CDF, arXiv:1407.2682]

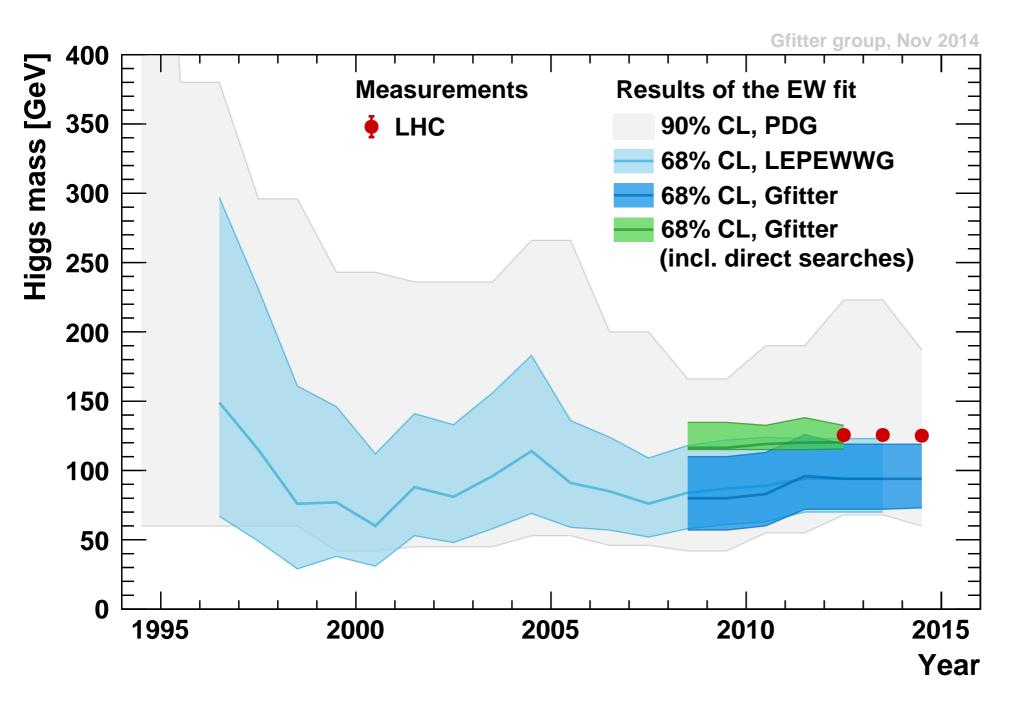
welcome to the community of precision measurements!

#### [CDF, D0, ATLAS, CMS: arXiv: I 403.4427]




# Interpreteation of mt measurements

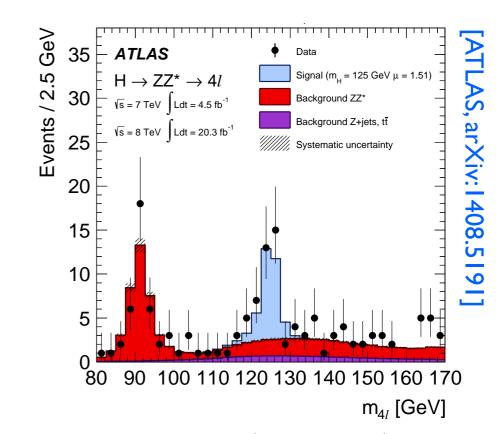

### What about accuracy?

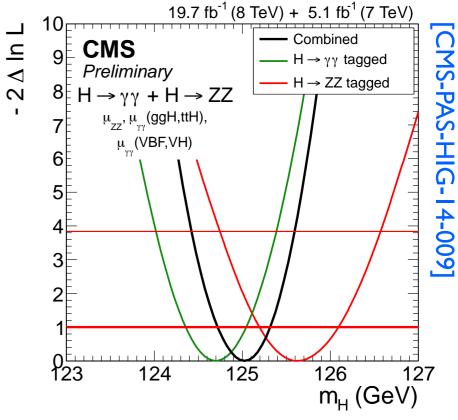
- top mass definition
  - EFT, factorization: hard function, universal jet-function, non-pert. soft function [Moch et al, arXiv:1405.4781]
  - MC mass is (may be) related to the low scale short-distance mass in the jet function [Hoang, arXiv:1412.3649]
  - but: no quantitative statement available
  - relating  $m_t^{kin}$  to  $m_t^{pole}: \Delta m_t \geq \Lambda_{QCD}$
- colour structure and hadronisation
  - partly included in experimental uncertainties
  - study on kinematic dependencies of mt
- calculating m<sub>t</sub>(m<sub>t</sub>) from m<sub>t</sub><sup>pole</sup>
  - QCD (three-loop):  $\Delta m_t \approx 0.02 \text{ GeV}$
  - EW (two-loop):  $\Delta m_t \approx 0.1$  GeV [Kniehl et al., arXiv:1401.1844]





# Prediction of Higgs mass





- M<sub>H</sub> predictions from loop effects since the discovery of the top quark 1995
- weaker
   constraints than
   for m<sub>t</sub> because
   of logarithmic
   dependence
- still, the fits have always predicted M<sub>H</sub> correctly!

# Measurements of M<sub>H</sub>

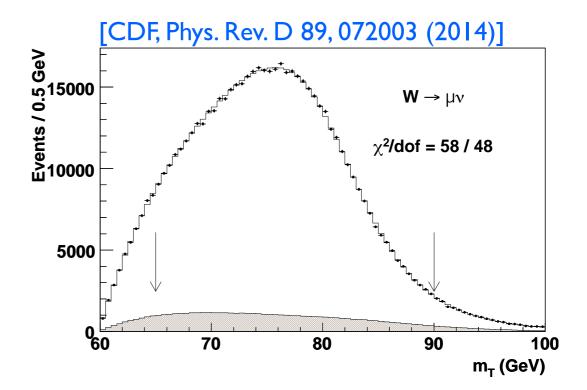
### Discovery of a Higgs boson

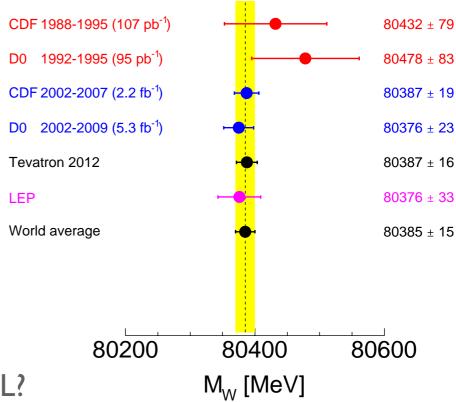
- cross section times branching ratios, spin, parity: compatible with SM Higgs boson
  - assume it's the SM Higgs boson
    - (or a BSM Higgs boson h in the decoupling region)
  - test the consistency of the SM including it
- ▶ best mass measurements:  $H \rightarrow \gamma \gamma$ ,  $H \rightarrow 4I$ 
  - ATLAS: 125.4 ± 0.4 GeV [ATLAS, 1406.3827]
  - CMS:  $125.0 \pm 0.3$  GeV [CMS-PAS-HIG-14-009]
  - weighted average: I25.I4 ± 0.24 GeV
    - change between fully uncorrelated and fully correlated systematic uncertainties is minor:  $\delta M_H: 0.24 \rightarrow 0.32 \text{ GeV}$
  - accuracy: 0.2%!
    - sufficient for electroweak fit (more later)





# Measurements of Mw


# Mw: key parameter in the SM


$$\Delta r = -\frac{3\alpha c_W^2}{16\pi s_W^4} \frac{m_t^2}{M_W^2} + \frac{11\alpha}{48\pi s_W^2} \ln \frac{M_H^2}{M_W^2} + \dots$$

- final LEP-2 measurement (2013):
  - $\Delta M_W = 33 \text{ MeV}$  [ADLO, Phys. Rept. 532:119,2013]
- ▶ Tevatron : most precise result so far
  - Jacobean peak in  $M_T$  and  $p_{T,l}$  in  $W \rightarrow lv$
  - $\Delta M = 16$  MeV, accuracy: 0.02%!!
  - crucial: lepton energy and resolution, PDFs
- LHC: no result so far
  - (optimistic) scenarios: [arXiv:1310.6708]

| $\Delta M_W \; [{ m MeV}]$      | LHC |     |      |
|---------------------------------|-----|-----|------|
| $\sqrt{s}$ [TeV]                | 8   | 14  | 14   |
| $\mathcal{L}[\mathrm{fb}^{-1}]$ | 20  | 300 | 3000 |
| Total                           | 15  | 8   | 5    |

- very challenging
  - PDFs, momentum scale, hadronic recoil, pile-up at high L?

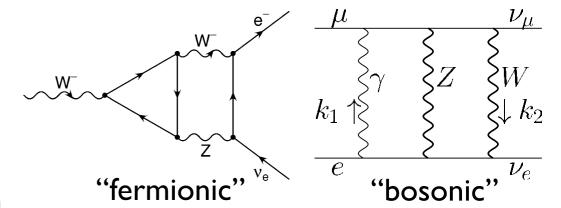




[CDF, D0, Phys. Rev. D 88, 052018 (2013)]

# **Experimental Input**

#### Fit is overconstrained


- > all free parameters measured
  - most input from e<sup>+</sup>e<sup>-</sup> colliders
  - but crucial input from hadron colliders:
    - $m_t : 0.4\%$
    - Mw: 0.02%
    - M<sub>H</sub>: 0.2%
  - remarkable experimental precision (<1%)</li>
- require precision calculations!

| $M_H [\mathrm{GeV}]^{(\circ)}$                         | $125.14 \pm 0.24$      | LHC               |
|--------------------------------------------------------|------------------------|-------------------|
| $\overline{M_W \text{ [GeV]}}$                         | $80.385 \pm 0.015$     | ll <sub>Tov</sub> |
| $\Gamma_W \; [{ m GeV}]$                               | $2.085 \pm 0.042$      | Tev.              |
| $\overline{M_Z \text{ [GeV]}}$                         | $91.1875 \pm 0.0021$   |                   |
| $\Gamma_Z$ [GeV]                                       | $2.4952 \pm 0.0023$    |                   |
| $\sigma_{ m had}^0 \ [{ m nb}]$                        | $41.540 \pm 0.037$     | LEP               |
| $R_\ell^0$                                             | $20.767 \pm 0.025$     |                   |
| $A_{ m FB}^{0,\ell}$                                   | $0.0171 \pm 0.0010$    | _                 |
| $A_{\ell}$ (*)                                         | $0.1499 \pm 0.0018$    | SLD               |
| $\sin^2 \theta_{\mathrm{eff}}^{\ell}(Q_{\mathrm{FB}})$ | $0.2324 \pm 0.0012$    |                   |
| $A_c$                                                  | $0.670 \pm 0.027$      | ISID              |
| $A_b$                                                  | $0.923 \pm 0.020$      |                   |
| $A_{\mathrm{FB}}^{0,c}$                                | $0.0707 \pm 0.0035$    |                   |
| $A_{ m FB}^{0,b}$                                      | $0.0992 \pm 0.0016$    | LIFP              |
| $R_c^0$                                                | $0.1721 \pm 0.0030$    | '                 |
| $R_b^0$                                                | $0.21629 \pm 0.00066$  | H                 |
| $\overline{m}_c$ [GeV]                                 | $1.27^{+0.07}_{-0.11}$ |                   |
| $\overline{m}_b \; [\mathrm{GeV}]$                     | $4.20^{+0.17}_{-0.07}$ |                   |
| $m_t$ [GeV]                                            | $173.34 \pm 0.76$      | Tev.+LHC          |
| $\Delta \alpha_{ m had}^{(5)}(M_Z^2)$                  | $2757 \pm 10$          | •                 |

# **Calculations**

### All observables calculated at 2-loop level

► M<sub>W</sub>: full EW one- and two-loop calculation of fermionic and bosonic contributions [M Awramik et al., PRD 69, 053006 (2004), PRL 89, 241801 (2002)]



- + 4-loop QCD correction [Chetyrkin et al., PRL 97, 102003 (2006)]
- ▶ sin<sup>2</sup>θ eff: same order as M<sub>W</sub>, calculations for leptons and all quark flavours [M Awramik et al, PRL 93, 201805 (2004), JHEP 11, 048 (2006), Nucl. Phys. B813, 174 (2009)]
- partial widths  $\Gamma_f$ : fermionic corrections known to two-loop level for all flavours (includes predictions for  $\sigma^0_{had}$ ) [A. Freitas, JHEP04, 070 (2014)]
- ▶ Radiator functions: QCD corrections at N³LO [Baikov et al., PRL 108, 222003 (2012)]
- ▶  $\Gamma_W$ : only one-loop EW corrections available, negligible impact on fit [Cho et al, JHEP IIII, 068 (2011)]
- all calculations include one- and two-loop QCD corrections and leading terms of higher order corrections

All EWPOs calculated at two-loop level or better

# Theoretical Uncertainties

#### **Estimation**

▶ assume that perturbative expansion follows a geometric series  $(a_n = a r^n)$ :

for example: 
$$\mathcal{O}(\alpha^2 \alpha_{\rm s}) = \frac{\mathcal{O}(\alpha^2)}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha \alpha_{\rm s})$$

- other methods (e.g. scale variation) not always feasible
  - but give similar results
- theoretical uncertainties smaller by a factor of 3-6 than measurements
  - for the first time, reasonable estimate for all observables

|                                                                 | important          |                     |  |
|-----------------------------------------------------------------|--------------------|---------------------|--|
| Observable                                                      | Exp. error         | Theo. error         |  |
| $M_W$                                                           | 15 MeV             | 4 MeV               |  |
| $\sin^2 \theta_{ m eff}^l$                                      | $1.6\cdot 10^{-4}$ | $0.5 \cdot 10^{-4}$ |  |
| $\Gamma_Z$                                                      | 2.3 MeV            | 0.5 MeV             |  |
| $\sigma_{\rm had}^0 = \sigma[e^+e^- \to Z \to {\rm had.}]$      | 37 pb              | 6 pb                |  |
| $R_b^0 = \Gamma[Z \to b\overline{b}]/\Gamma[Z \to \text{had.}]$ | $6.6\cdot 10^{-4}$ | $1.5 \cdot 10^{-4}$ |  |
| $m_t$                                                           | 0.76 GeV           | 0.5 GeV             |  |
|                                                                 |                    | <u></u>             |  |

important

new in fit

- important missing higher order terms:
  - $O(\alpha^3)$ ,  $O(\alpha^2\alpha_s)$ ,  $O(\alpha\alpha_s^2)$ ,  $O(\alpha^2_{bos})$  (in some cases),  $O(\alpha_s^5)$  (rad. functions)

# Fit method

#### Free parameters

- $\blacktriangleright$  M<sub>Z</sub>,  $\Delta \alpha_{had}$ , M<sub>H</sub>, m<sub>c</sub>, m<sub>b</sub>, m<sub>t</sub>,  $\alpha_{s}$ 
  - G<sub>F</sub> is fixed to world average (PDG)
  - $\alpha_s$  is unconstrained  $\rightarrow$  independent measurement

#### Treatment of theory uncertainties

- included as additional free parameters (10 parameters)
- different ways on how to treat their effect on the likelihood
  - Rfit: flat likelihood within uncertainties (box potential), corresponds to linear addition of uncertainties
  - Gaussian likelihood: corresponds to quadratic sum of uncertainties

#### **Minimization**

- pre-fitter: genetic algorithm (useful for many parameter fits)
- Minuit (standard, others are used as well)
- test of results using MC toy data



# The global electroweak fit

#### disclaimer:

- there are several groups who routinely perform the electroweak fit
- there are small differences in the methodology, the results agree very well
- ▶ I will focus on results from the Gfitter group (<u>www.cern.ch/gfitter</u>)

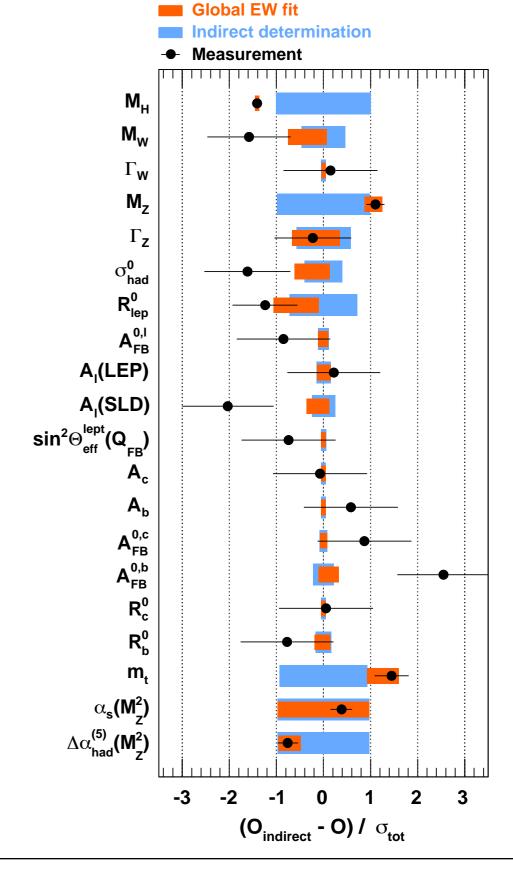


| Parameter                                                   | Input value            | Free in fit | Fit Result                      | w/o exp. input<br>in line         | w/o exp. input in line, no theo. unc |
|-------------------------------------------------------------|------------------------|-------------|---------------------------------|-----------------------------------|--------------------------------------|
| $\overline{M_H [{ m GeV}]^{(\circ)}}$                       | $125.14 \pm 0.24$      | yes         | $125.14 \pm 0.24$               | $93^{+25}_{-21}$                  | $93^{+24}_{-20}$                     |
| $M_W$ [GeV]                                                 | $80.385 \pm 0.015$     | _           | $80.364 \pm 0.007$              | $80.358 \pm 0.008$                | $80.358 \pm 0.006$                   |
| $\Gamma_W \; [{ m GeV}]$                                    | $2.085 \pm 0.042$      | _           | $2.091 \pm 0.001$               | $2.091 \pm 0.001$                 | $2.091 \pm 0.001$                    |
| $\overline{M_Z \; [{ m GeV}]}$                              | $91.1875 \pm 0.0021$   | yes         | $91.1880 \pm 0.0021$            | $91.200 \pm 0.011$                | $91.2000 \pm 0.010$                  |
| $\Gamma_Z$ [GeV]                                            | $2.4952 \pm 0.0023$    | _           | $2.4950 \pm 0.0014$             | $2.4946 \pm 0.0016$               | $2.4945 \pm 0.0016$                  |
| $\sigma_{ m had}^0 \; [ m nb]$                              | $41.540 \pm 0.037$     | _           | $41.484 \pm 0.015$              | $41.475 \pm 0.016$                | $41.474 \pm 0.015$                   |
| $R_\ell^0$                                                  | $20.767 \pm 0.025$     | _           | $20.743 \pm 0.017$              | $20.722 \pm 0.026$                | $20.721 \pm 0.026$                   |
| $A_{ m FB}^{0,\ell}$                                        | $0.0171 \pm 0.0010$    | _           | $0.01626 \pm 0.0001$            | $0.01625 \pm 0.0001$              | $0.01625 \pm 0.0001$                 |
| $A_\ell^{-(\star)}$                                         | $0.1499 \pm 0.0018$    | _           | $0.1472 \pm 0.0005$             | $0.1472 \pm 0.0005$               | $0.1472 \pm 0.0004$                  |
| $\sin^2\!	heta_{ m eff}^\ell(Q_{ m FB})$                    | $0.2324 \pm 0.0012$    | _           | $0.23150 \pm 0.00006$           | $0.23149 \pm 0.00007$             | $0.23150 \pm 0.00005$                |
| $A_c$                                                       | $0.670 \pm 0.027$      | _           | $0.6680 \pm 0.00022$            | $0.6680 \pm 0.00022$              | $0.6680 \pm 0.00016$                 |
| $A_b$                                                       | $0.923 \pm 0.020$      | _           | $0.93463 \pm 0.00004$           | $0.93463 \pm 0.00004$             | $0.93463 \pm 0.00003$                |
| $A_{ m FB}^{0,c}$                                           | $0.0707 \pm 0.0035$    | _           | $0.0738 \pm 0.0003$             | $0.0738 \pm 0.0003$               | $0.0738 \pm 0.0002$                  |
| $A_{ m FB}^{0,b}$                                           | $0.0992 \pm 0.0016$    | _           | $0.1032 \pm 0.0004$             | $0.1034 \pm 0.0004$               | $0.1033 \pm 0.0003$                  |
| $R_c^0$                                                     | $0.1721 \pm 0.0030$    | _           | $0.17226^{+0.00009}_{-0.00008}$ | $0.17226 \pm 0.00008$             | $0.17226 \pm 0.00006$                |
| $R_b^0$                                                     | $0.21629 \pm 0.00066$  | _           | $0.21578 \pm 0.00011$           | $0.21577 \pm 0.00011$             | $0.21577 \pm 0.00004$                |
| $\overline{m}_c$ [GeV]                                      | $1.27^{+0.07}_{-0.11}$ | yes         | $1.27^{+0.07}_{-0.11}$          | _                                 | _                                    |
| $\overline{m}_b  [\mathrm{GeV}]$                            | $4.20^{+0.17}_{-0.07}$ | yes         | $4.20^{+0.17}_{-0.07}$          | _                                 | _                                    |
| $m_t  [{ m GeV}]$                                           | $173.34 \pm 0.76$      | yes         | $173.81 \pm 0.85$               | $177.0^{+2.3}_{-2.4}(\heartsuit)$ | $177.0 \pm 2.3^{(\bigtriangledown)}$ |
| $\Delta \alpha_{ m had}^{(5)}(M_Z^2)^{(\dagger \triangle)}$ | $2757 \pm 10$          | yes         | $2756 \pm 10$                   | $2723 \pm 44$                     | $2722 \pm 42$                        |
| $\alpha_s(M_Z^2)$                                           | _                      | yes         | $0.1196 \pm 0.0030$             | $0.1196 \pm 0.0030$               | $0.1196 \pm 0.0028$                  |
| [Gfitter group, EPJC 74, 3046 (2014)]                       |                        |             |                                 |                                   |                                      |

UHI <u>#</u>

# **SM Fit Results**

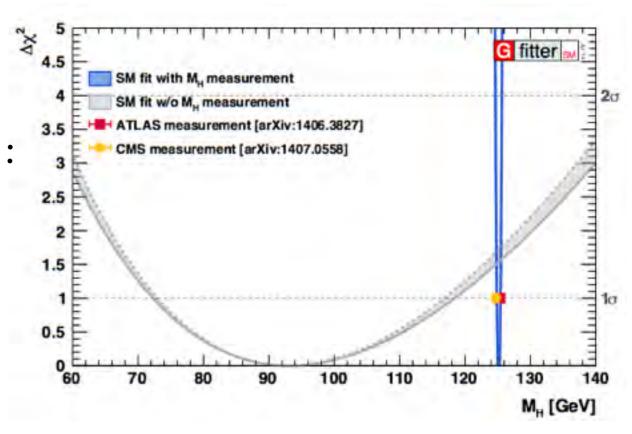
black: direct measurement (data)


orange: full fit

light-blue: fit excluding input from row

goodness of fit, p-value:

$$\chi^2_{min}$$
= 17.8 Prob( $\chi^2_{min}$ , 14) = 21%  
Pseudo experiments: 21 ± 2 (theo)%


- $\chi^2_{min}(Z \text{ widths in } I\text{-loop}) = 18.0$
- $\chi^2_{min}$ (no theory uncertainties) = 18.2
- no individual value exceeds 3σ
- largest deviations in b-sector:
  - A<sup>0,b</sup><sub>FB</sub> with 2.5σ
    - $\rightarrow$  largest contribution to  $\chi^2$
- ▶ small pulls for M<sub>H</sub>, M<sub>Z</sub>
  - input accuracies exceed fit requirements



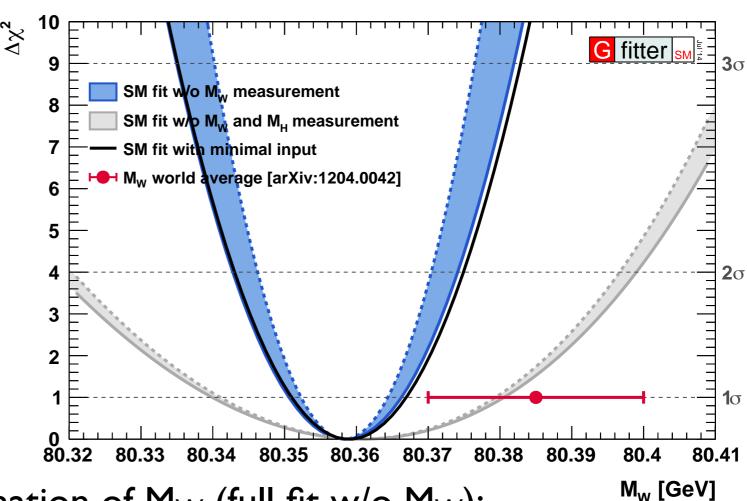
# Higgs results

# $\Delta \chi^2$ profile vs M<sub>H</sub>

- grey band: fit without M<sub>H</sub> measurement :
  - $M_H = 93^{+25}_{-21} \text{ GeV}$
  - $\bullet$  consistent with measurement at  $1.3\sigma$
- blue line: full SM fit



#### impact of most sensitive observables


- determination of M<sub>H</sub>,
   removing all sensitive observables
   except the given one
- known tension (3σ) between A<sub>I</sub>(SLD), A<sup>0,b</sup><sub>FB</sub>, and M<sub>W</sub> clearly visible



# Indirect determination of W mass

# $\Delta \chi^2$ profile vs $M_W$

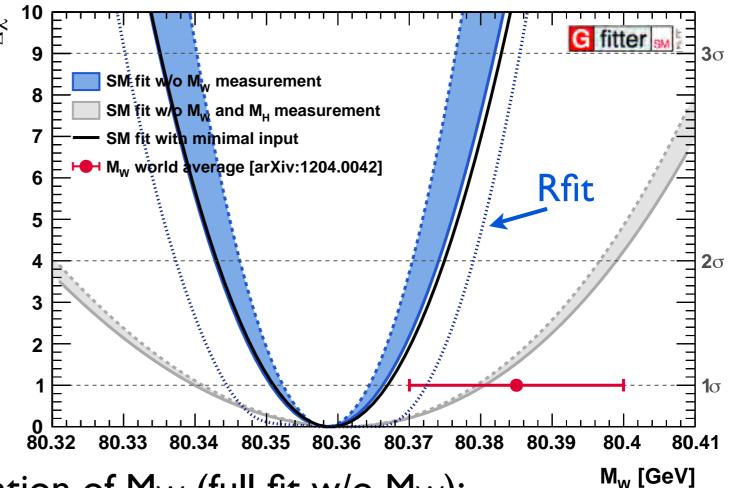
- also shown: SM fit with minimal input:
   M<sub>Z</sub>, G<sub>F</sub>, Δα<sub>had</sub><sup>(5)</sup>(M<sub>Z</sub>), α<sub>s</sub>(M<sub>Z</sub>), M<sub>H</sub>, and fermion masses
  - good consistency
- M<sub>H</sub> measurement allows for precise constraint on M<sub>W</sub>
  - agreement at  $1.4\sigma$



• fit result for indirect determination of  $M_W$  (full fit w/o  $M_W$ ):

$$M_W = 80.3584 \pm 0.0046_{m_t} \pm 0.0030_{\delta_{\text{theo}}m_t} \pm 0.0026_{M_Z} \pm 0.0018_{\Delta\alpha_{\text{had}}}$$

$$\pm 0.0020_{\alpha_S} \pm 0.0001_{M_H} \pm 0.0040_{\delta_{\text{theo}}M_W} \text{ GeV},$$


$$= 80.358 \pm 0.008_{\text{tot}} \text{ GeV}$$

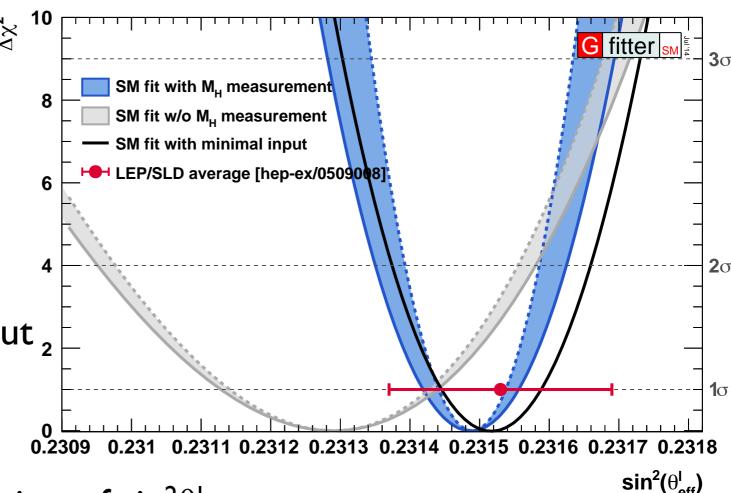
more precise than direct measurement (15 MeV)

# Indirect determination of W mass

# $\Delta\chi^2$ profile vs $M_W$

- also shown: SM fit with minimal input:  $M_Z$ ,  $G_F$ ,  $\Delta\alpha_{had}^{(5)}(M_Z)$ ,  $\alpha_s(M_Z)$ ,  $M_H$ , and fermion masses
  - good consistency
- M<sub>H</sub> measurement allows for precise constraint on M<sub>W</sub>
  - agreement at  $1.4\sigma$




• fit result for indirect determination of  $M_W$  (full fit w/o  $M_W$ ):

more precise than direct measurement (15 MeV)

# The effective weak mixing angle

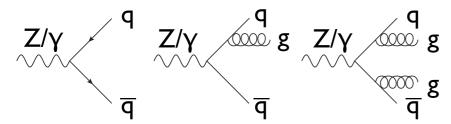
# $\Delta \chi^2$ profile vs $\sin^2 \theta^I_{eff}$

- all measurements directly sensitive to sin<sup>2</sup>θ<sup>l</sup><sub>eff</sub> removed from fit (asymmetries, partial widths)
  - good agreement with min input 2
- M<sub>H</sub> measurement allows for precise constraint
- fit result for indirect determination of  $\sin^2\theta|_{\text{eff}}$ :

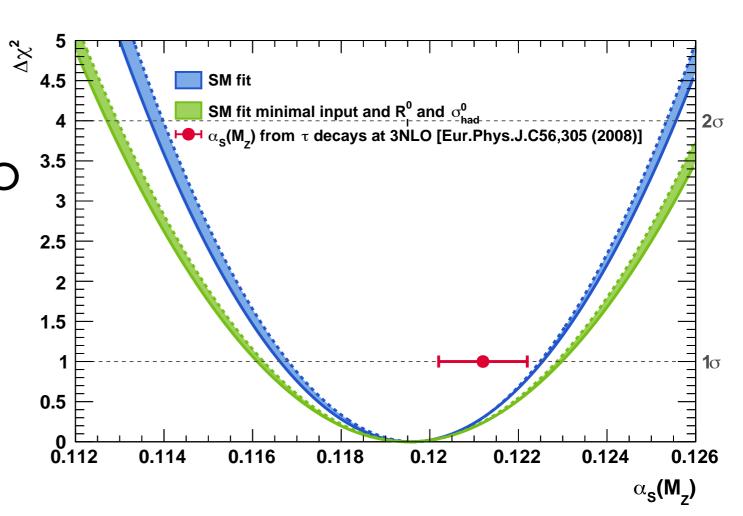


$$\sin^{2}\theta_{\text{eff}}^{\ell} = 0.231488 \pm 0.000024_{m_{t}} \pm 0.000016_{\delta_{\text{theo}}m_{t}} \pm 0.000015_{M_{Z}} \pm 0.000035_{\Delta\alpha_{\text{had}}}$$

$$\pm 0.000010_{\alpha_{S}} \pm 0.000001_{M_{H}} \pm 0.000047_{\delta_{\text{theo}}\sin^{2}\theta_{\text{eff}}^{f}}$$


$$= 0.23149 \pm 0.00007_{\text{tot}}$$

more precise than determination from LEP/SLD (1.6×10<sup>-4</sup>)


# The strong coupling $\alpha_s(M_Z)$

# $\Delta \chi^2$ profile vs $\alpha_s(M_Z)$

- b determination of  $\alpha_s$  at full NNLO and partial NNNLO
- also shown: minimal input with two most sensitive measurements:  $R_{l}$ ,  $\sigma^{0}_{had}$



► M<sub>H</sub> has no (visible) impact



$$\alpha_s(M_Z^2) = 0.1196 \pm 0.0028_{\text{exp}} \pm 0.0006_{\delta_{\text{theo}}R_{V,A}} \pm 0.0006_{\delta_{\text{theo}}\Gamma_i} \pm 0.0002_{\delta_{\text{theo}}\sigma_{\text{had}}^0}$$

$$= 0.1196 \pm 0.0030_{\text{tot}}$$

More accurate estimation of theo. uncertainties (previously:  $\delta_{theo}$  = 0.0001 from scale variations)

good agreement with WA, dominated by exp. uncertainty

# Indirect determination of mt

SM fit w/o m, measurement

SM fit w/o m, and M, measurements

 $_{-}$  m<sub>t</sub><sup>pole</sup> from Tevatron  $\sigma_{t\bar{t}}$  [arXiv:1207.0980]

 $m_t^{pole}$  from CNS,  $\sigma_{rr}$  (CMS) [arXiv:1307.1907]

 $\mathbf{m}_{\mathsf{t}}^{\mathsf{pole}}$  from ATLAS,  $\sigma_{\mathsf{t}\overline{\mathsf{t}}+\mathsf{jet}}$  [ATLAS-CONF-2014-053]

175

 → m<sup>kin</sup> world average [arXiv:1403.4427]

 $H_{t}^{\text{pole}}$  from ATLAS,  $\sigma_{t}$  [arXiv:1406.5375]

# $\Delta \chi^2$ profile vs $m_t$

- determination of m<sub>t</sub> from Z-pole data (fully obtained from rad. corrections ~m<sub>t</sub><sup>2</sup>)
- alternative to direct measurements
- M<sub>H</sub> allows for significantly more precise determination of m<sub>t</sub>

$$m_t = 177.0 \pm 2.3_{M_{W, \sin^2 \theta_{eff}}^f} \pm 0.6_{\alpha_s} \pm 0.5_{\Delta \alpha_{had}} \pm 0.4_{M_Z} \text{ GeV}$$
  
=  $177.0 \pm 2.4_{exp} \pm 0.5_{theo} \text{ GeV}$ 

26

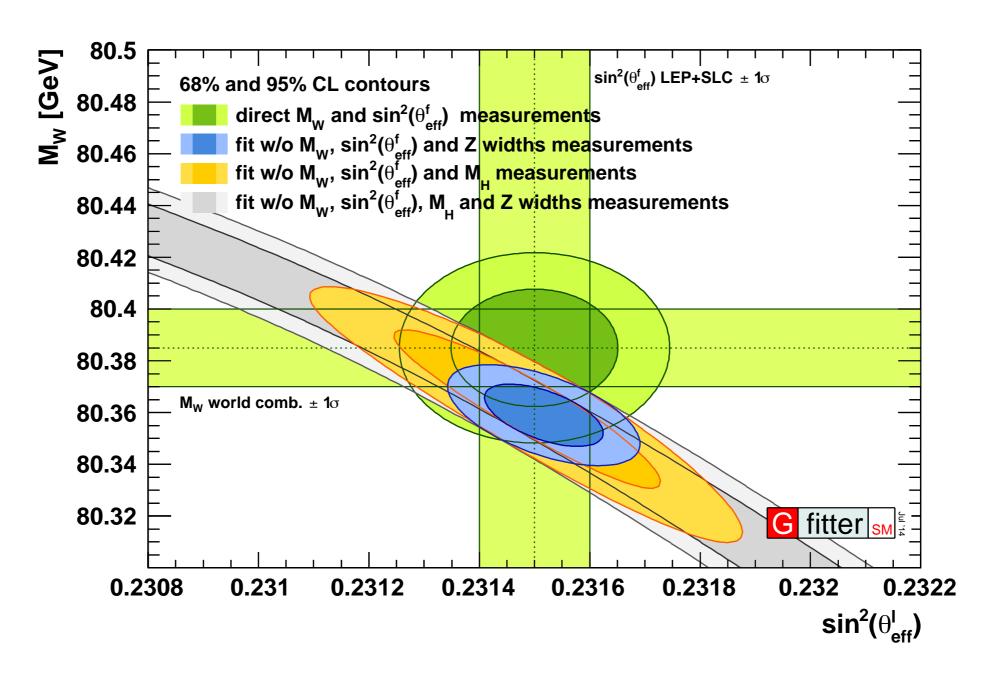
170

165

- similar precision as determination from  $\sigma_{t\bar{t}}$ , good agreement
- dominated by experimental precision



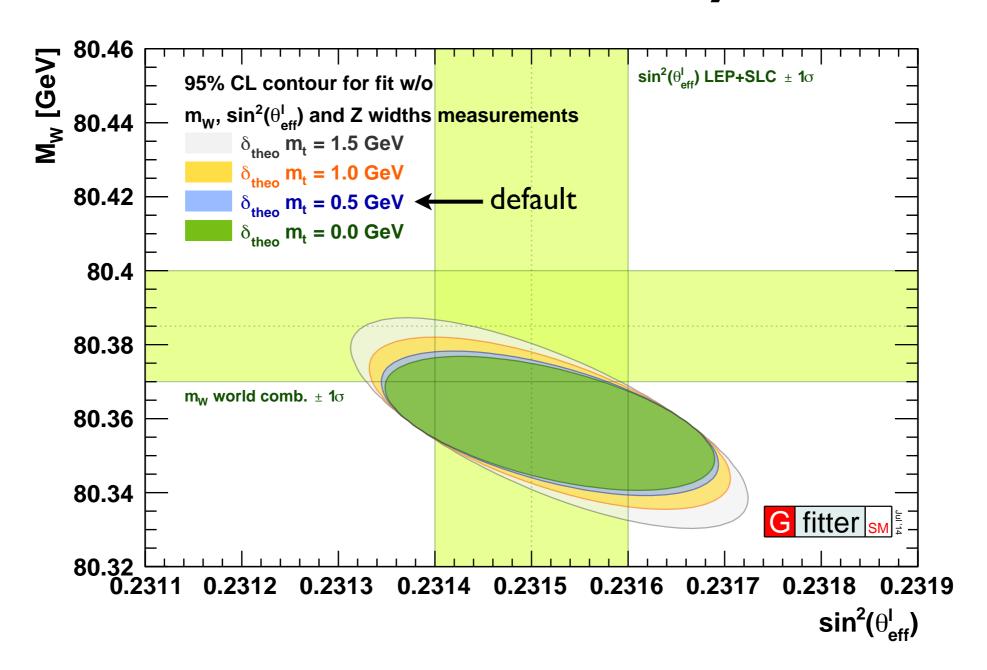
180


G fitter

185

190

m, [GeV]


# State of the SM: $M_W$ vs $sin^2\theta_{eff}$



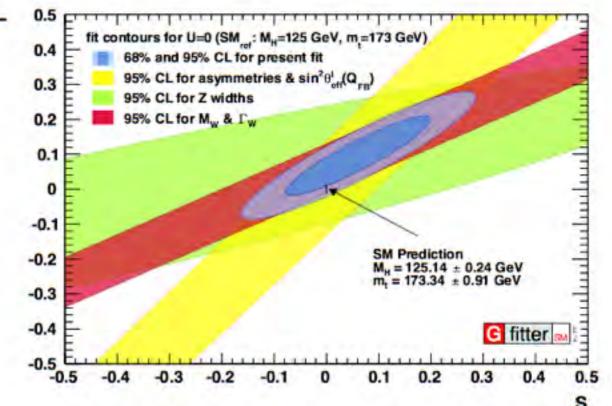
### sensitive probes of new physics

- ▶ significant reduction of parameter space due to knowledge of M<sub>H</sub>
- predictions are more precise than the direct measurements

# Theoretical uncertainty on mt



### impact of variation in $\delta_{theo}$ m<sub>t</sub> between 0 and 1.5 GeV

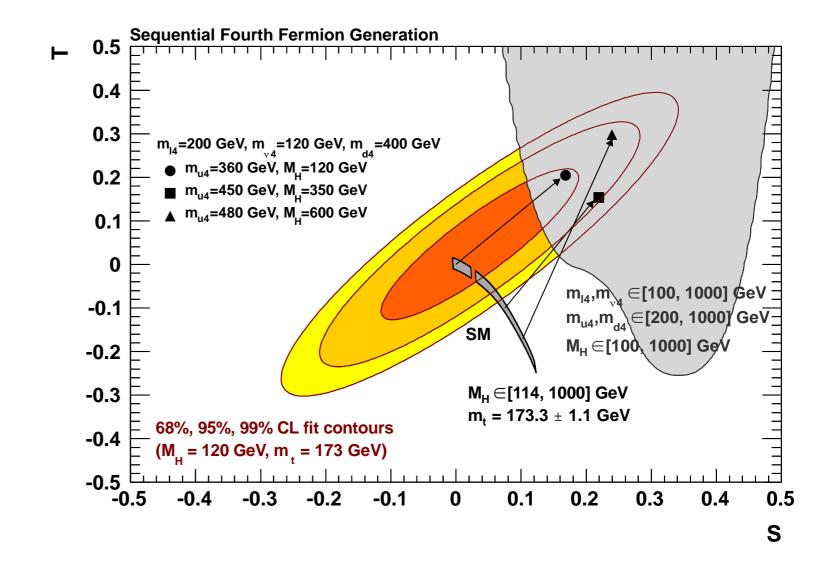

- better assessment of uncertainty on mt important for the fit
- uncertainty of 0.5 GeV small impact on result



# Constraints on BSM models

- if energy scale of NP is high, BSM physics could appear dominantly through vacuum polarisation corrections
- described by STU parameters [Peskin and Takeuchi, Phys. Rev. D46, I (1991)]
- SM:  $M_H = 125 \text{ GeV}, m_t = 173 \text{ GeV}$ this defines (S,T,U) = (0,0,0)
- S,T depend logarithmically on MH
- Fit result: S T U  $S = 0.05 \pm 0.11$  S I +0.90 -0,59  $T = 0.09 \pm 0.13$  T I -0,83  $T = 0.01 \pm 0.11$  U





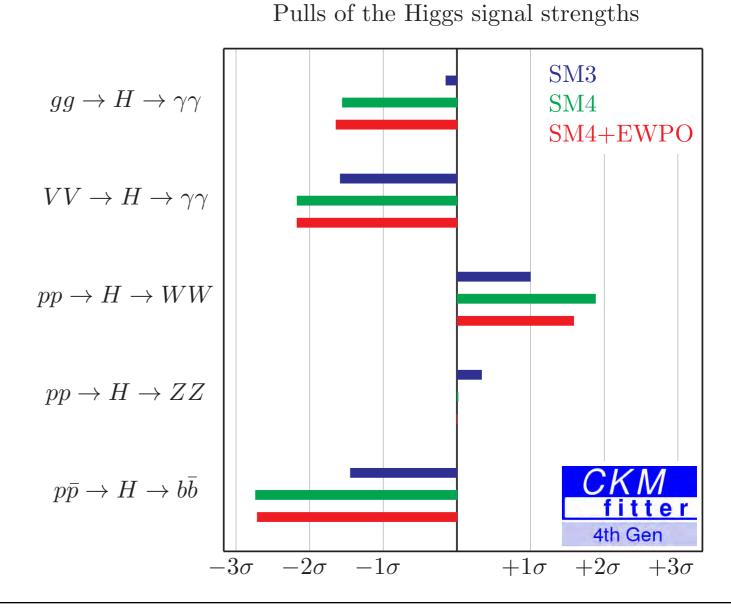

- no indication for new physics
- use this to constrain parameter space in BSM models

29

# Constraints on BSM models

- with M<sub>H</sub> unknown, changes in S,T and U could often be compensated by changes in M<sub>H</sub>
- rather weak limits: e.g. large parameter space for sequential fourth generation open

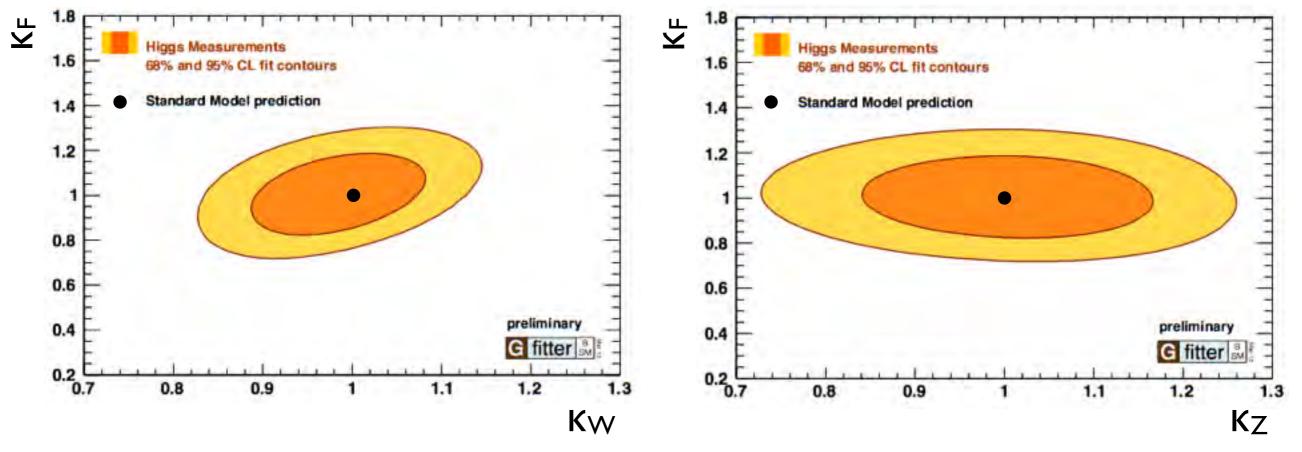





# Constraints on BSM models

- ▶ with M<sub>H</sub> unknown, changes in S,T and U could often be compensated by changes in M<sub>H</sub>
- rather weak limits: e.g. large parameter space for sequential fourth generation open

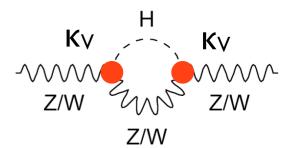
after discovery of a SM-like
 Higgs boson:
 chiral 4th generation
 ruled out
 [O. Eberhard et al., PRL 109, 241802 (2012)]


note: mostly from Higgs signal strength, small impact of EWPO



# The Scalar Sector

# Tree Level Higgs Couplings


- study of potential deviations of Higgs couplings from SM
- leading corrections only, parametrize deviations with effective couplings
- LHC and Tevatron data included using HiggsSignals [P. Bechtle et al., JHEP11, 039 (2014)]



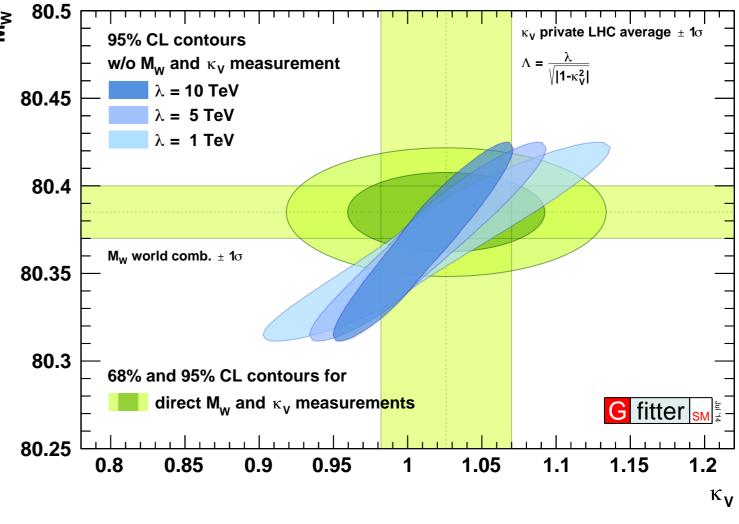
- no BSM contributions on tree-level to fermion or vector-boson coupling
- stronger constraints on Kw than on Kz
- custodial symmetry holds,  $\kappa_W = \kappa_Z = \kappa_V$



### Constraints from EWPD



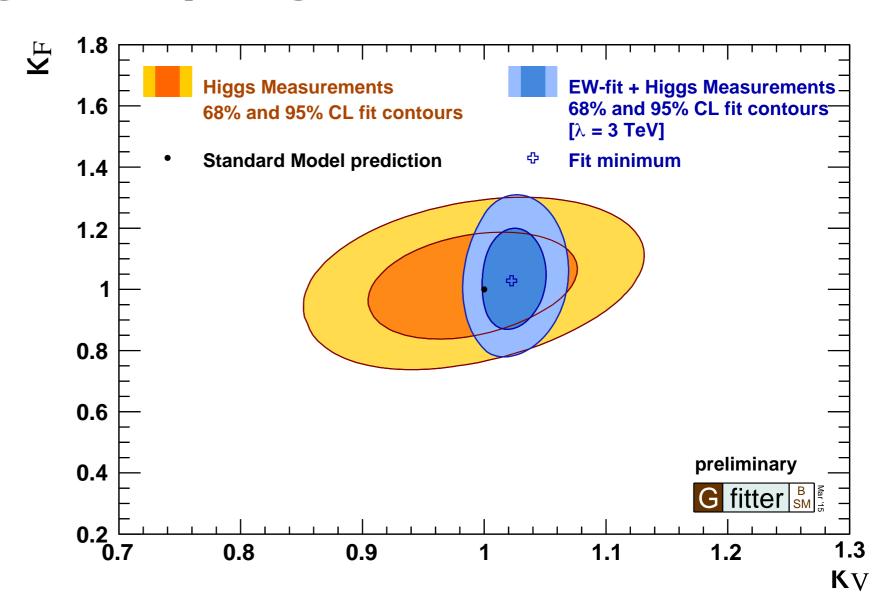
- consider specific model in "κ parametrisation":
  - scaling of Higgs-vector boson ( $\kappa_V$ ) and Higgs-fermion couplings ( $\kappa_F$ ), with no invisible/undetectable widths
- ▶ main effect on EWPD due to modified Higgs coupling to gauge bosons (K<sub>V</sub>) [Espinosa et al. arXiv:1202.3697, Falkowski et al. arXiv:1303.1812], etc


$$S = \frac{1}{12\pi} (1 - \kappa_V^2) \ln \frac{\Lambda^2}{M_H^2}$$

$$T = -\frac{3}{16\pi \cos^2 \theta_{\text{eff}}^{\ell}} (1 - \kappa_V^2) \ln \frac{\Lambda^2}{M_H^2}$$

$$\Lambda = \frac{\lambda}{\sqrt{|1 - \kappa_V^2|}}$$

- $\blacktriangleright$  correlation between  $\kappa_V$  and  $M_W$ 
  - slightly smaller values of M<sub>W</sub>
     preferred


Roman Kogler



## Higgs Coupling Results

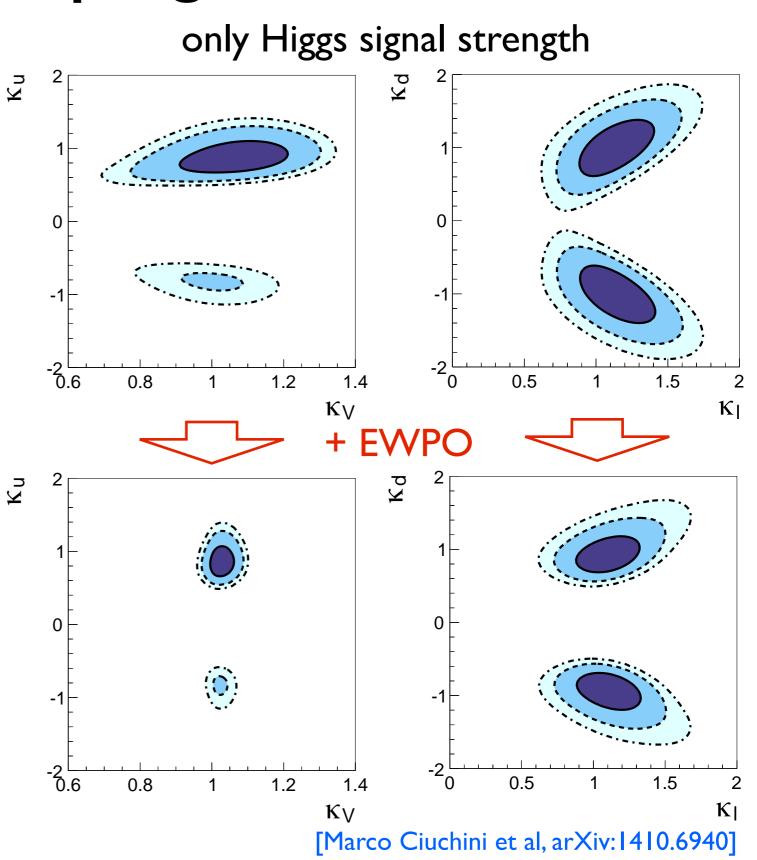
# Higgs coupling measurements:

- $\kappa_{V} = 0.99 \pm 0.08$
- $\kappa_F = 1.01 \pm 0.17$
- Combined result:
- $\kappa_{V} = 1.03 \pm 0.02$ ( $\lambda = 3 \text{ TeV}$ )
- implies NP-scale of  $\Lambda \geq 13 \, \text{TeV}$



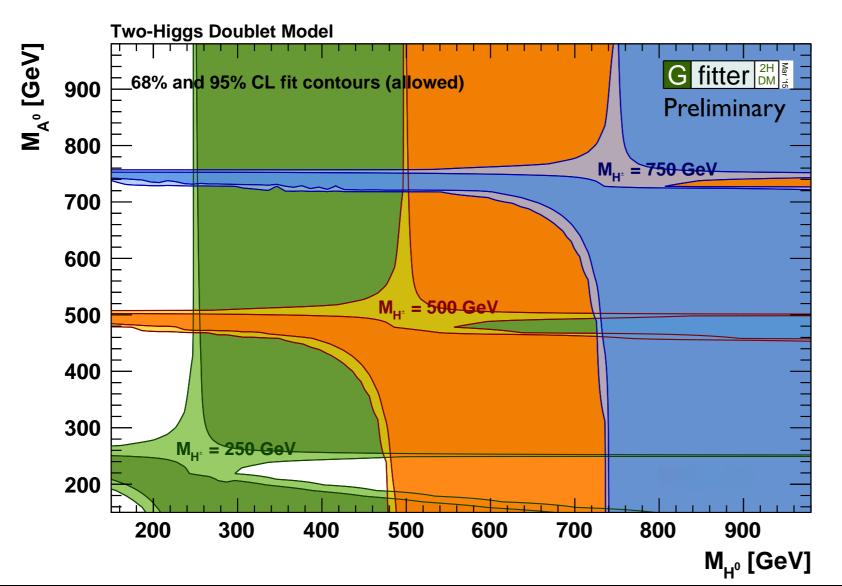
- some dependency for  $K_V$  in central value [1.02-1.04] and error [0.02-0.03] on cut-off scale  $\lambda$  [1-10 TeV]
  - EW fit sofar more precise result for KV than current LHC experiments

34


- EW fit has positive deviation of K<sub>V</sub> from 1.0
  - many BSM models:  $\kappa_V < 1$

### Higgs coupling results

- allowing for different couplings to up- and downtype quarks K<sub>u</sub> and K<sub>d</sub>
- stricter constraints due to EWPO, some gain also in the fermion sector


|               | 68%             | 95%          | Correlations                                               |
|---------------|-----------------|--------------|------------------------------------------------------------|
| $\kappa_V$    | $1.03 \pm 0.02$ | [0.99, 1.07] | 1.00                                                       |
| $\kappa_\ell$ | $1.10 \pm 0.14$ | [0.82, 1.38] | 0.14 1.00                                                  |
| $\kappa_u$    | $0.88 \pm 0.12$ | [0.66, 1.15] | 0.09 0.23 1.00                                             |
| $\kappa_d$    | $0.92 \pm 0.15$ | [0.65, 1.26] | 1.00<br>0.14 1.00<br>0.09 0.23 1.00<br>0.28 0.35 0.81 1.00 |

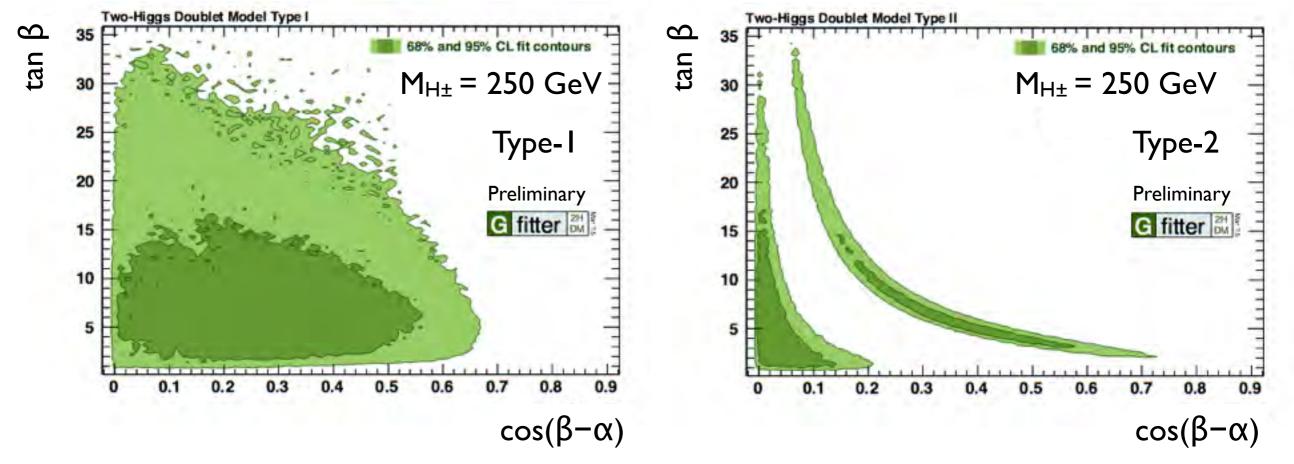
- also possible to constrain coefficients of dimension-6 operators
  - contributions to EWPO have been worked out
  - theoretically sounder than constraints from S,T,U



### Two Higgs Doublet Models

- extend the scalar sector by another doublet
- ▶ studies of Z₂ Type-I and Type-2 2HDMs
  - difference in the coupling to down-type quarks
  - Type-2 related to MSSM, but less constrained



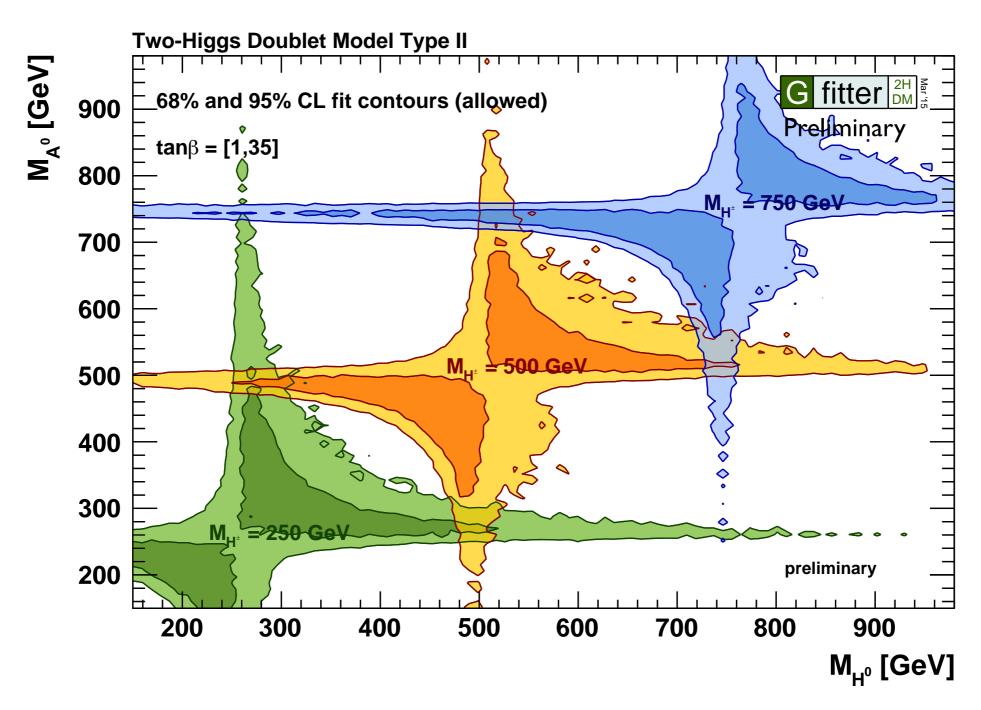

Roman Kogler

|       | Type I and Type II     |
|-------|------------------------|
| Higgs | $C_V$                  |
| h     | $\sin(\beta - \alpha)$ |
| H     | $\cos(\beta - \alpha)$ |
| Ā     | 0                      |

- from EWPD using S,T,U formalism
- ▶ lightest scalar
  M<sub>h</sub> = 125.1 GeV
- weak constraints
   on masses, since
   tanβ and cos(β-α)
   are unconstrained

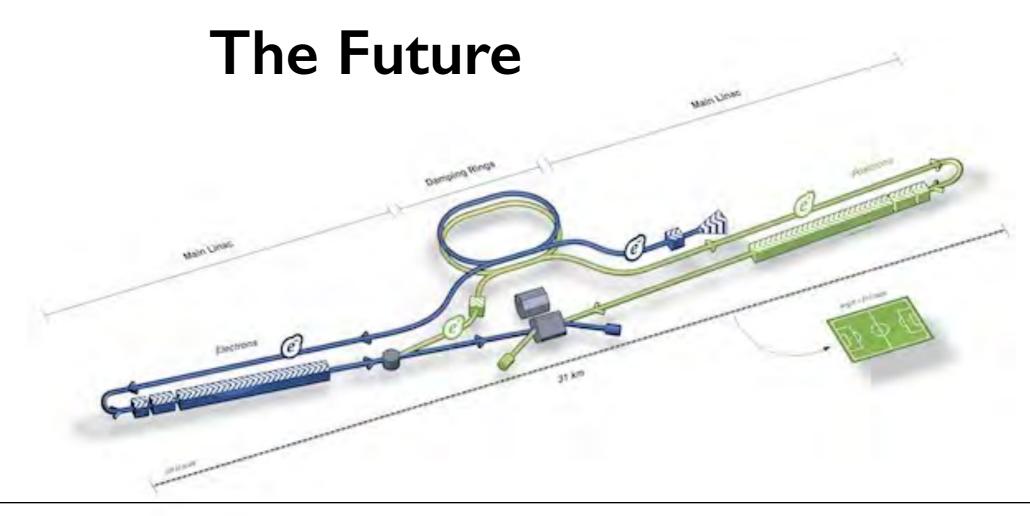
### 2HDM and H Coupling Measurements

- coupling measurements place important constraints on 2HDMs
- predictions of BRs using 2HDMC [D. Eriksson et al., CPC 181, 189 (2010)]
- ▶ 7 additional, unconstraint parameters (4 masses, 2 angles, soft breaking scale): importance sampling with MultiNest [F. Feroz et al., arXiv:1306.2144]




- > additional constraints from flavour data
  - $B \rightarrow X_s \gamma$ :  $tan \beta > 1$

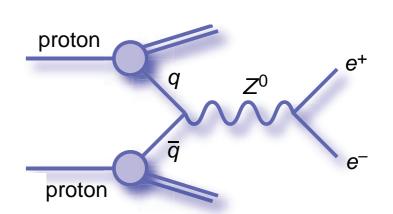
•  $B_s \rightarrow \mu \mu$  : constraints depending on  $M_H$  and  $M_{H\pm}$ 

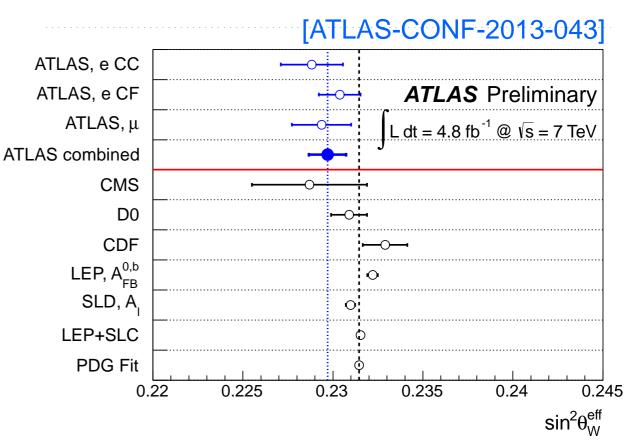

37

### Global Fit to 2HDM of Type-2



- ▶ for given M<sub>H±</sub> tight constraints from H coupling measurements and EWPD
- expect improvement from direct searches at the LHC




### $sin^2\theta^l_{eff}$ measurements at the LHC

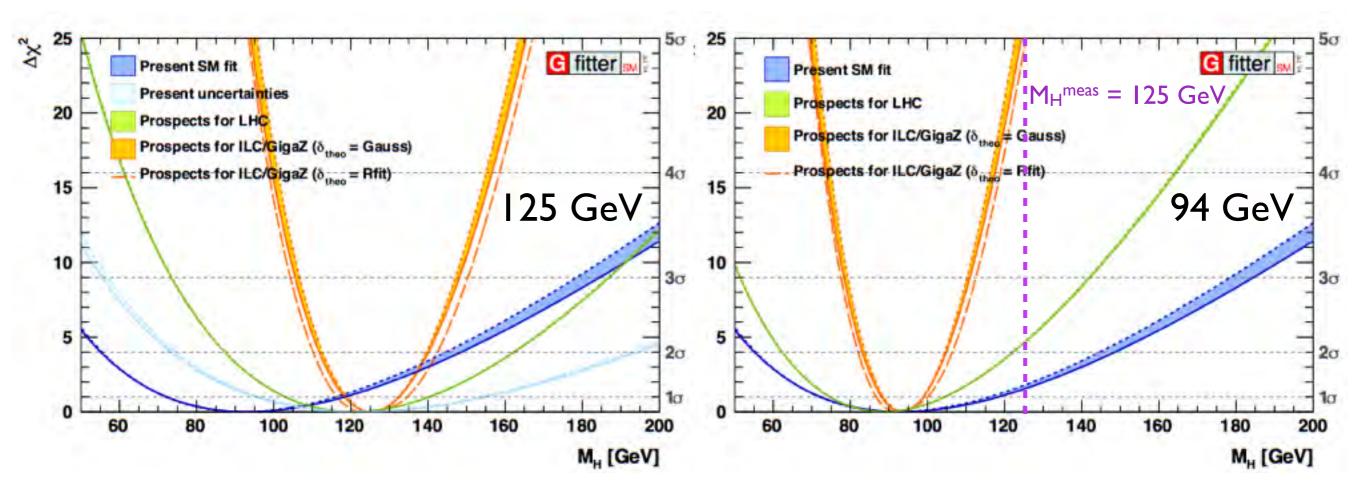
- Drell-Yan: A<sub>FB</sub> sensitive to distribution of polar angle of lepton w.r.t. quark direction
  - LHC: quark direction unknown!
- > assume: dilepton boost is quark direction
  - often: interaction of valence quark with sea antiquark
  - important: reach in  $|y_{II}|$ , ie.  $|\eta_{I}|$
- ambiguity due to PDFs dilution of A<sub>FB</sub>
- $\rightarrow$  sin<sup>2</sup> $\theta_{eff}$  from MC templates
  - accuracy of 9.8×10<sup>-4</sup>
  - consistent with LEP/SLD result (accuracy 1.6×10<sup>-4</sup>)
- prediction for LHC 14/300
  - accuracy of 3.6×10<sup>-4</sup> [arXiv:1310.6708]

substantial contribution from LHC difficult



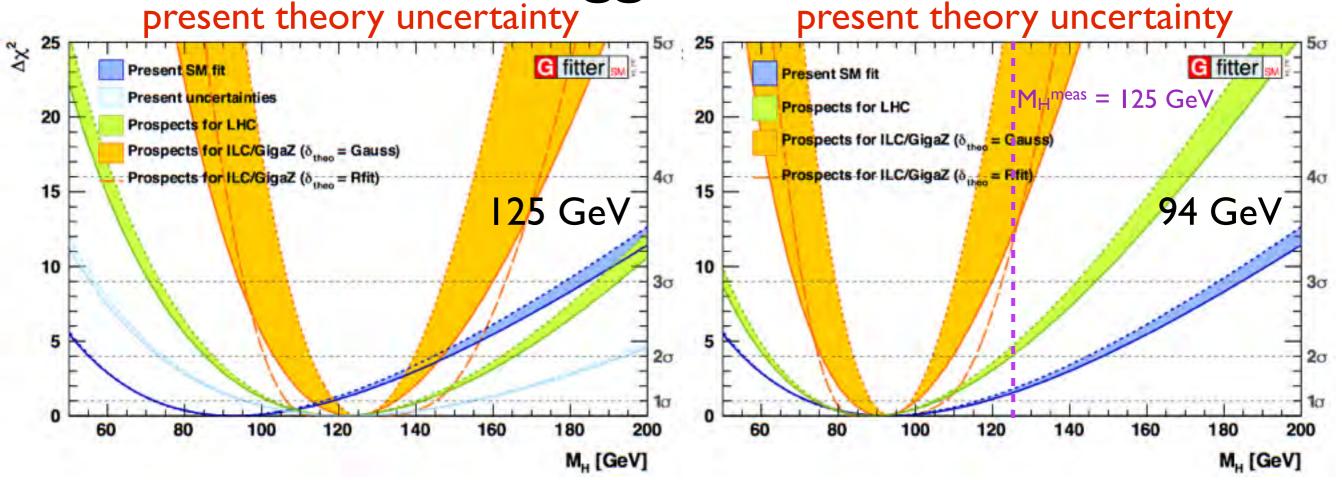


$$\sin^2 \theta_{\text{eff}}^{\ell}(\exp) = 0.23153 \pm 0.00016$$
$$\sin^2 \theta_{\text{eff}}^{\ell}(\text{fit}) = 0.23149 \pm 0.00007$$


### **Future improvements**

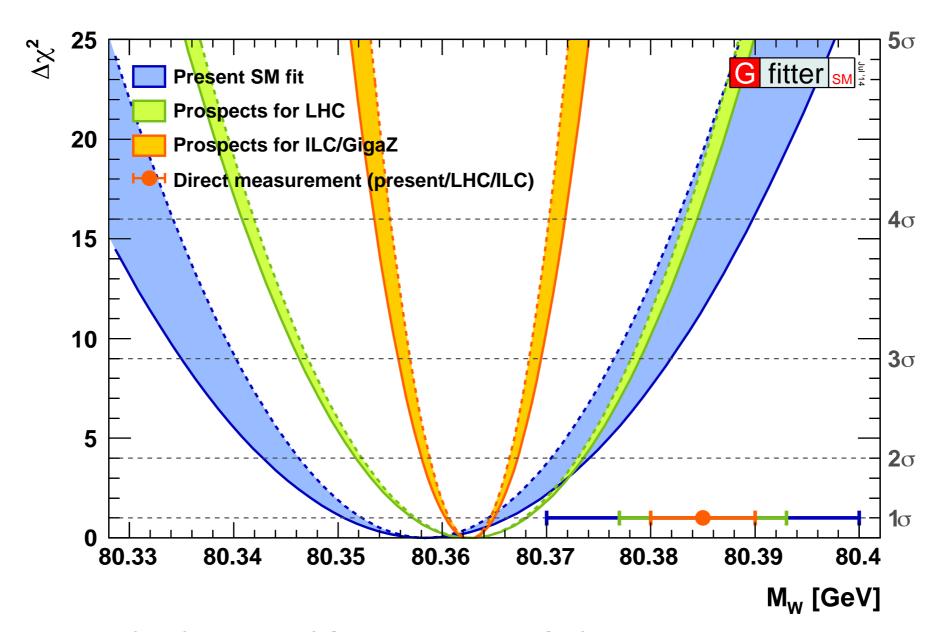
| $rac{	ext{Parameter}}{M_H 	ext{ [GeV]}}$           | Present LHC $0.2 \longrightarrow < 0.1$ | ILC/Giga            | LHC = LHC with 300 fb <sup>-1</sup> ILC/GigaZ = future e <sup>+</sup> e <sup>-</sup> collider, option to run on  Z-pole (w polarized beams) |
|-----------------------------------------------------|-----------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| $M_W$ [MeV]                                         | $15 \longrightarrow 8$                  | $\rightarrow$ 5     | WW threshold                                                                                                                                |
| $M_Z$ [MeV]                                         | 2.1 $2.1$                               | 2.1                 | VVVV CITICSTICIC                                                                                                                            |
| $m_t \; [{ m GeV}]$                                 | $0.8 \longrightarrow 0.6$               | $\rightarrow$ 0.1   | tt threshold scan                                                                                                                           |
| $\sin^2 \theta_{\text{eff}}^{\ell} [10^{-5}]$       | 16 16                                   | <b>→</b> 1.3        | $\delta A^{0,f}_{LR} : 10^{-3} \rightarrow 10^{-4}$                                                                                         |
| $\Delta lpha_{ m had}^5(M_Z^2)$ [10 <sup>-5</sup> ] | $10 \longrightarrow 4.7$                | 4.7                 | low energy data, better $\alpha_s$                                                                                                          |
| $R_l^0 \ [10^{-3}]$                                 | 25 $25$                                 | $\longrightarrow$ 4 | high statistics on Z-pole                                                                                                                   |
| $\kappa_V \; (\lambda = 3  \text{TeV})$             | $0.05 \longrightarrow 0.03$             | $\rightarrow$ 0.01  | direct measurement of BRs                                                                                                                   |

- theoretical uncertainties reduced by a factor of 4 (esp.  $M_W$  and  $\sin^2\theta_{eff}$ )
  - implies three-loop calculations!
  - exception:  $\delta_{\text{theo}}$  m<sub>t</sub> (LHC) = 0.25 GeV (factor 2)
- central values of input measurements adjusted to M<sub>H</sub> = 125 GeV


[Baak et al, arXiv:1310.6708]

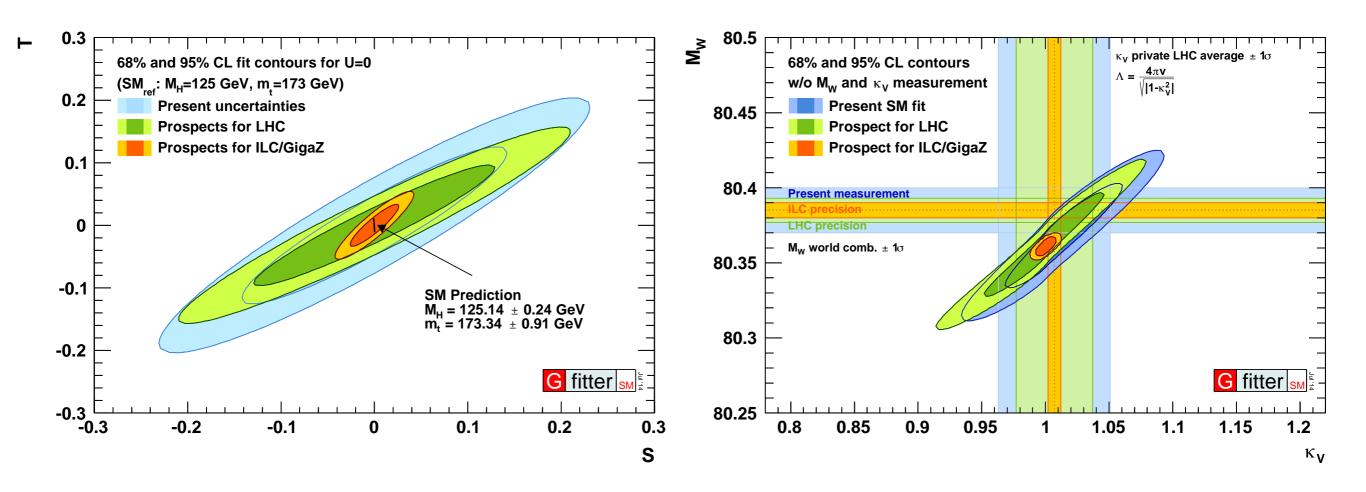
### Higgs mass




- ▶ Logarithmic dependency on MH  $\rightarrow$  cannot compete with direct M<sub>H</sub> meas.
  - no theory uncertainty:  $M_H = 125 \pm 7 \text{ GeV}$
  - future theory uncertainty (Rfit):  $M_H = 125 ^{+10}_{-9} \text{ GeV}$
  - present day theory uncertainty:  $M_H = 125^{+20}_{-17} \text{ GeV}$
- If EWPO central values unchanged (94 GeV), ~5σ discrepancy with measured Higgs mass

Higgs mass




- ▶ Logarithmic dependency on  $MH \rightarrow cannot compete with direct <math>M_H$  meas.
  - no theory uncertainty:  $M_H = 125 \pm 7 \text{ GeV}$
  - future theory uncertainty (Rfit):  $M_H = 125 ^{+10}_{-9} \text{ GeV}$
  - present day theory uncertainty:  $M_H = 125^{+20}_{-17} \text{ GeV}$
- If EWPO central values unchanged (94 GeV), ~5σ discrepancy with measured Higgs mass compromised by present theory uncertainty!

### Prospects for Mw



- improvement of a factor of 3 with the ILC (similar to measurement)
- stringent test of internal consistency of SM
- moderate improvement with LHC (~30%)
  - nevertheless, if at present values, theory uncertainties already important

### **BSM** Prospects of EW fit



- ▶ for STU parameters, improvement of factor of >3 is possible at ILC
- again, at ILC a deviation between the SM predictions and direct measurements would be prominently visible.
- competitive results between EW fit and Higgs coupling measurements!
  - precision of about 1%

# Summary of indirect predictions

|                                                     | Experimental input $[\pm 1\sigma_{\rm exp}]$ |         |           | Indirect determination $[\pm 1\sigma_{\rm exp}, \pm 1\sigma_{\rm theo}]$ |                          |                          |
|-----------------------------------------------------|----------------------------------------------|---------|-----------|--------------------------------------------------------------------------|--------------------------|--------------------------|
| Parameter                                           | Present                                      | LHC     | ILC/GigaZ | Present                                                                  | LHC                      | ILC/GigaZ                |
| $M_H$ [GeV]                                         | 0.2                                          | < 0.1   | < 0.1     | $+31 +10 \\ -26 -8$                                                      | $+20 +3.9 \\ -18 , -3.2$ | $+6.8 +2.5 \\ -6.5 +2.4$ |
| $M_W  [{ m MeV}]$                                   | 15                                           | 8       | 5         | (6.0, 5.0)                                                               | 5.2, 1.8                 | 1.9, 1.3                 |
| $M_Z  [{ m MeV}]$                                   | 2.1                                          | 2.1     | 2.1       | 11, 4                                                                    | 7.0, 1.4                 | 2.5, 1.0                 |
| $m_t \; [{ m GeV}]$                                 | 0.8                                          | 0.6     | 0.1       | 2.4, 0.6                                                                 | 1.5, 0.2                 | $0.7, \ 0.2$             |
| $\sin^2 \theta_{\mathrm{eff}}^{\ell} \ [10^{-5}]$   | 16                                           | 16      | 1.3       | (4.5, 4.9)                                                               | 2.8, 1.1                 | 2.0, 1.0                 |
| $\Delta lpha_{ m had}^5(M_Z^2)$ [10 <sup>-5</sup> ] | 10                                           | 4.7     | 4.7       | 42, 13                                                                   | 36, 6                    | 5.6, 3.0                 |
| $R_l^0$ [10 <sup>-3</sup> ]                         | 25                                           | 25      | 4         | _                                                                        | _                        | _                        |
| $\alpha_S(M_Z^2) \ [10^{-4}]$                       | _                                            | _       | _         | 40, 10                                                                   | 39, 7                    | 6.4, 6.9                 |
| $S _{U=0}$                                          | _                                            | _       | _         | 0.094, 0.027                                                             | 0.086, 0.006             | 0.017, 0.006             |
| $T _{U=0}$                                          | _                                            | <u></u> | _         | 0.083, 0.023                                                             | $0.064,\ 0.005$          | $0.022,\ 0.005$          |
| $\kappa_V (\lambda = 3  \text{TeV})$                | 0.05                                         | 0.03    | 0.01      | 0.02                                                                     | 0.02                     | 0.01                     |

### Summary of indirect predictions

|                                                      | Experimental input $[\pm 1\sigma_{\rm exp}]$ |       |              | Indirect determination $[\pm 1\sigma_{\rm exp}, \pm 1\sigma_{\rm theo}]$ |                          |                          |
|------------------------------------------------------|----------------------------------------------|-------|--------------|--------------------------------------------------------------------------|--------------------------|--------------------------|
| Parameter                                            | Present                                      | LHC   | ILC/GigaZ    | Present                                                                  | LHC                      | ILC/GigaZ                |
| $M_H$ [GeV]                                          | 0.2                                          | < 0.1 | < 0.1        | +31, +10 $-26, -8$                                                       | $+20 +3.9 \\ -18 , -3.2$ | $+6.8 +2.5 \\ -6.5 +2.4$ |
| $M_W$ [MeV]                                          | 15                                           | 8     | 5            | 6.0, 5.0                                                                 | (5.2, 1.8)               | (1.9, 1.3)               |
| $M_Z  [{ m MeV}]$                                    | 2.1                                          | 2.1   | 2.1          | 11, 4                                                                    | 7.0, 1.4                 | $2.5, \ 1.0$             |
| $m_t$ [GeV]                                          | 0.8                                          | 0.6   | 0.1          | $2.4, \ 0.6$                                                             | (1.5, 0.2)               | 0.7, 0.2                 |
| $\sin^2\!\theta_{ m eff}^{\ell}$ [10 <sup>-5</sup> ] | 16                                           | 16    | 1.3          | (4.5, 4.9)                                                               | (2.8, 1.1)               | (2.0, 1.0)               |
| $\Delta \alpha_{\mathrm{had}}^5(M_Z^2) \ [10^{-5}]$  | 10                                           | 4.7   | 4.7          | 42, 13                                                                   | 36, 6                    | $5.6, \ 3.0$             |
| $R_l^0$ [10 <sup>-3</sup> ]                          | 25                                           | 25    | 4            | _                                                                        | _                        | _                        |
| $\alpha_S(M_Z^2) \ [10^{-4}]$                        | _                                            | _     | _            | 40, 10                                                                   | 39, 7                    | 6.4, 6.9                 |
| $S _{U=0}$                                           | _                                            | _     | _            | 0.094, 0.027                                                             | 0.086, 0.006             | 0.017, 0.006             |
| $T _{U=0}$                                           | _                                            | —     | <del>_</del> | 0.083, 0.023                                                             | 0.064, 0.005             | 0.022, 0.005             |
| $\kappa_V \ (\lambda = 3  \text{TeV})$               | 0.05                                         | 0.03  | 0.01         | 0.02                                                                     | 0.02                     | 0.01                     |

- theory uncertainty needs to be reduced if we want to achieve the ultimate precision with the LHC!
- ▶ ILC/GigaZ offers fantastic possibilities to test the SM and constrain NP

45

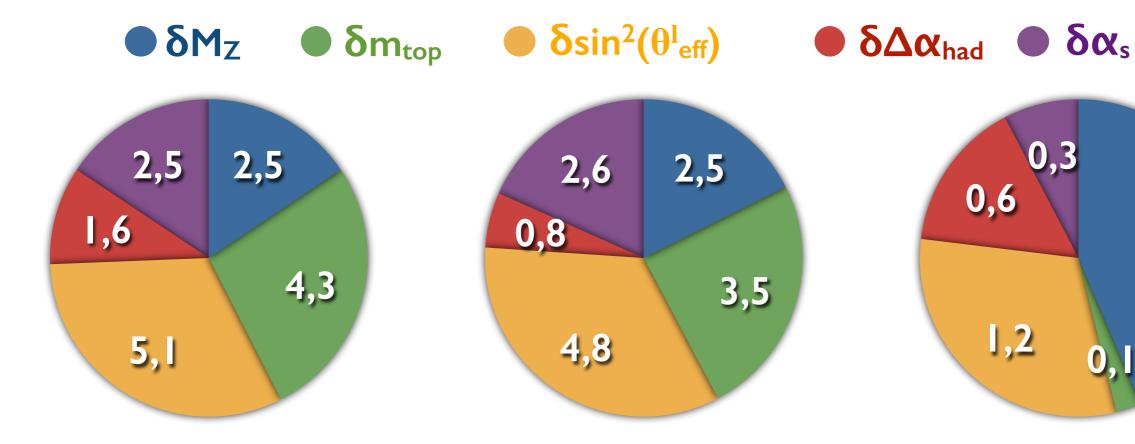
### Mw: Impact of Uncertainties

#### **Today**

$$\delta_{\text{meas}} = 15 \text{ MeV}$$

$$\delta_{\text{fit}}$$
 = 8 MeV

#### LHC-300


$$\delta_{\text{meas}} = 8 \text{ MeV}$$

$$\delta_{\text{fit}}$$
 = 6 MeV

#### ILC/GigaZ

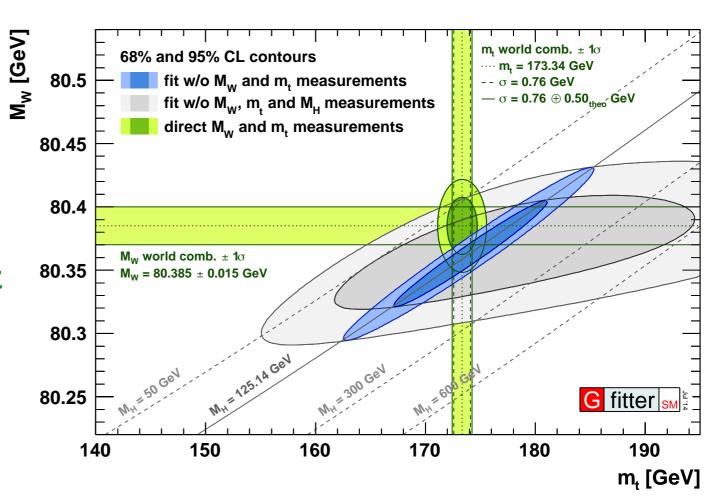
$$\delta_{\text{meas}} = 5 \text{ MeV}$$

$$\delta_{\rm fit}$$
 = 2 MeV



Impact of individual uncertainties on  $\delta M_W$  in fit (numbers in MeV)

▶ ILC/GigaZ: impact  $\delta M_Z$  of will become important again!


### Summary

#### Paradigm change

- boson to a probe of new physics
- knowledge of M<sub>H</sub> and two-loop calculations unprecedented precision of EW fit
- cannot know M<sub>W</sub> and sin<sup>2</sup>θ<sup>l</sup>eff precise enough

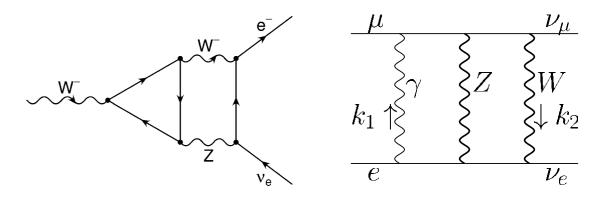
#### LHC 14/300

 $\Delta M_W$  (indirect) = 5.5 MeV  $\Delta M_W$  (exp) = 8 MeV

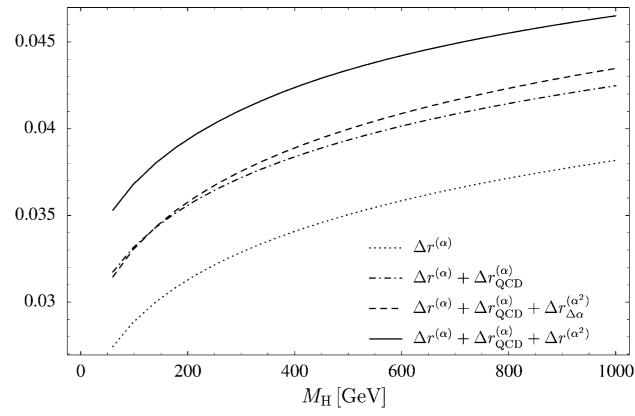


More information and latest results: <a href="https://www.cern.ch/gfitter">www.cern.ch/gfitter</a>

#### ILC with GigaZ


- ▶  $\Delta m_t$  (exp) = 100 MeV →  $\Delta M_W$  (indirect) = 2 MeV measurement of M<sub>Z</sub> will become important again ( $\Delta \alpha_{had}$  as well)
- indirect determinations of  $M_Z$  and  $\Delta\alpha_{had}$  will match exp. precision

### **Additional Material**


### Calculation of M<sub>W</sub>

- Full EW one- and two-loop calculation of fermionic and bosonic contributions
- One- and two-loop QCD corrections and leading terms of higher order corrections
- Results for  $\Delta r$  include terms of order  $O(\alpha)$ ,  $O(\alpha\alpha_s)$ ,  $O(\alpha\alpha_s^2)$ ,  $O(\alpha^2_{\text{ferm}})$ ,  $O(\alpha^2_{\text{bos}})$ ,  $O(\alpha^2\alpha_s m_t^4)$ ,  $O(\alpha^3 m_t^6)$
- Uncertainty estimate:
  - missing terms of order  $O(\alpha^2\alpha_s)$ : about 3 MeV (from  $O(\alpha^2\alpha_s m_t^4)$ )
  - electroweak three-loop correction  $O(\alpha^3)$ : < 2 MeV
  - three-loop QCD corrections  $O(\alpha \alpha_s^3)$ : < 2 MeV
  - Total:  $\delta M_W \approx 4 \text{ MeV}$

[M Awramik et al., Phys. Rev. D69, 053006 (2004)] [M Awramik et al., Phys. Rev. Lett. 89, 241801 (2002)]







# Calculation of $sin^2(\theta_{eff})$

Effective mixing angle:

$$\sin^2 \theta_{\text{eff}}^{\text{lept}} = \left(1 - M_{\text{W}}^2 / M_{\text{Z}}^2\right) \left(1 + \Delta \kappa\right)$$

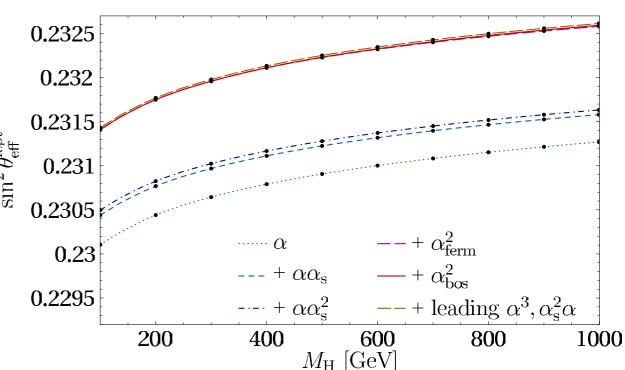
- ▶ Two-loop EW and QCD correction to  $\Delta \kappa$  known, leading terms of higher order QCD corrections
- fermionic two-loop correction about  $10^{-3}$ , whereas bosonic one  $10^{-5}$
- Uncertainty estimate obtained with different methods, geometric progression:

$$\mathcal{O}(\alpha^2 \alpha_s) = \frac{\mathcal{O}(\alpha^2)}{\mathcal{O}(\alpha)} \, \mathcal{O}(\alpha \alpha_s).$$

 $\mathcal{O}(\alpha^2 \alpha_{\rm s})$  beyond leading  $m_{\rm t}^4 = 3.3 \dots 2.8 \times 10^{-5}$ 

$$3.3 \dots 2.8 \times 10^{-5}$$

 $\mathcal{O}(\alpha\alpha_{\rm s}^3)$ 

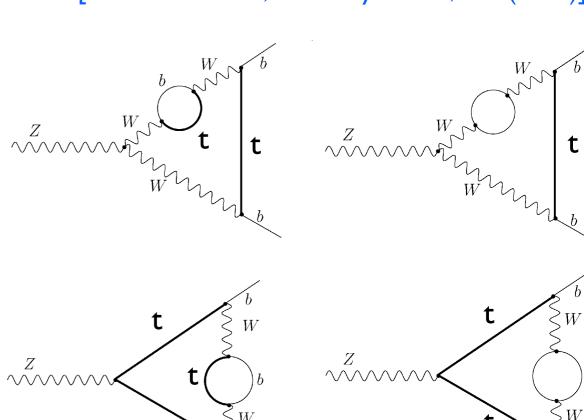

 $1.5 \dots 1.4$ 

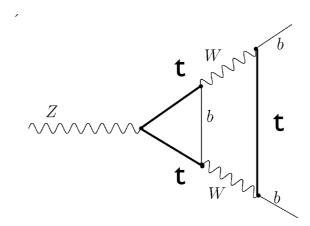
 $\mathcal{O}(\alpha^3)$  beyond leading  $m_{\rm t}^6$  2.5...3.5

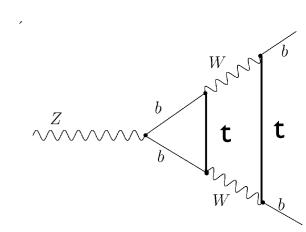
Total:  $\delta \sin^2 \theta_{\text{eff}}^1 \approx 4.7 \cdot 10^{-5}$ 

[M Awramik et al, Phys. Rev. Lett. 93, 201805 (2004)] [M Awramik et al., JHEP 11, 048 (2006)]







# Calculation of $sin^2(\theta^{bb}_{eff})$


- ► Calculation of  $\sin^2\theta_{eff}$  for b-quarks more involved, because of top quark propagators in the  $Z \rightarrow b\bar{b}$  vertex
- Investigation of known discrepancy between  $sin^2\theta_{eff}$  from leptonic and hadronic asymmetry measurements
- ► Two-loop EW correction only recently completed, effect of  $O(10^{-4})$
- Now  $\sin^2\theta^{bb}_{eff}$  known at the same order as  $\sin^2\theta_{eff}$  for leptons and light quarks
- Uncertainty assumed to be of same size as for  $\sin^2\theta_{eff}$ :

 $\delta \sin^2 \theta^{\rm bb}_{\rm eff} \approx 4.7 \, 10^{-5}$ 

[M Awramik et al, Nucl. Phys. B813, 174 (2009)]







### Calculation of R<sup>0</sup><sub>b</sub>

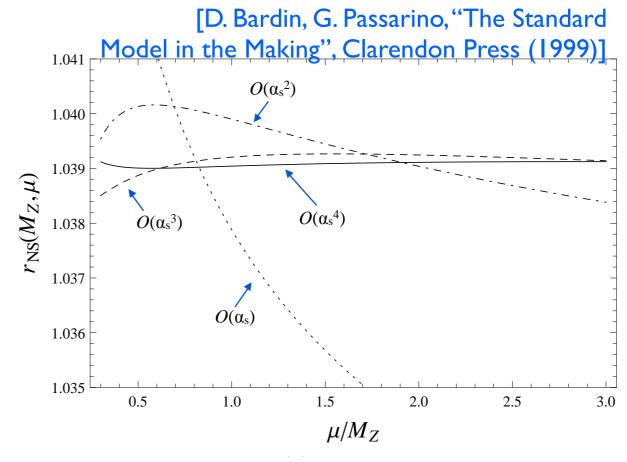
### Full two-loop calculation of Z→bb

[A. Freitas et al., JHEP 1208, 050 (2012) Erratum ibid. 1305 (2013) 074]

▶ The branching ratio  $R^{0}_{b}$ : partial decay width of  $Z \rightarrow bb$  and  $Z \rightarrow q\overline{q}$ 

$$R_b \equiv \frac{\Gamma_b}{\Gamma_{\text{had}}} = \frac{\Gamma_b}{\Gamma_d + \Gamma_u + \Gamma_s + \Gamma_c + \Gamma_b} = \frac{1}{1 + 2(\Gamma_d + \Gamma_u)/\Gamma_b}$$

- $\blacktriangleright$  Contribution of same terms as in the calculation of  $\sin^2\theta^{bb}$ <sub>eff</sub>
  - → cross-check the two results, found good agreement
- ▶ Two-loop corrections small compared to experimental uncertainty (6.6 · 10<sup>-4</sup>)


|                  | I-loop EW and<br>QCD correction<br>to FSR                                                | 2-loop EW correction                                                              | 2-loop EW and<br>2+3-loop QCD<br>correction to FSR                                                                                 | I+2-loop QCD correction to gauge boson selfenergies                                                              |
|------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| $M_{ m H}$ [GeV] | $  \mathcal{O}(\alpha) + \text{FSR}_{\alpha,\alpha_{s},\alpha_{s}^{2}}   $ $  10^{-4}  $ | $ \begin{array}{c c} \mathcal{O}(\alpha_{\text{ferm}}^2) \\ 10^{-4} \end{array} $ | $\mathcal{O}(\alpha_{\text{ferm}}^2) + \text{FSR}_{\alpha_{\text{s}}^3, \alpha \alpha_{\text{s}}, m_b^2 \alpha_{\text{s}}, m_b^4}$ | $ \begin{array}{c c} \mathcal{O}(\alpha\alpha_{\rm s}, \alpha\alpha_{\rm s}^2) \\ \hline [10^{-4}] \end{array} $ |
| 100              | -35.66                                                                                   | -0.856                                                                            | -2.496                                                                                                                             | -0.407                                                                                                           |
| 200              | -35.85                                                                                   | -0.851                                                                            | -2.488                                                                                                                             | -0.407                                                                                                           |
| 400              | -36.09                                                                                   | -0.846                                                                            | -2.479                                                                                                                             | -0.406                                                                                                           |

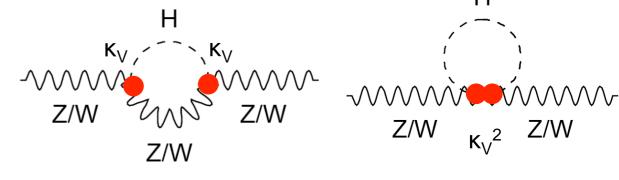
#### **Radiator Functions**

- Partial widths are defined inclusively: they contain QCD and QED contributions
- ▶ Corrections can be expressed as radiator functions  $R_{A,f}$  and  $R_{V,f}$

$$\Gamma_{f\bar{f}} = N_c^f \frac{G_F M_Z^3}{6\sqrt{2}\pi} \left( |g_{A,f}|^2 R_{A,f} + |g_{V,f}|^2 R_{V,f} \right)^2$$

- High sensitivity to the strong coupling  $\alpha_s$
- ▶ Full four-loop calculation of QCD Adler function available (N³LO)
- Much reduced scale dependence
- Theoretical uncertainty of 0.1 MeV, compare to experimental uncertainty of 2.0 MeV




[P. Baikov et al., Phys. Rev. Lett. 108, 222003 (2012)] [P. Baikov et al Phys. Rev. Lett. 104, 132004 (2010)]

# Modified Higgs Couplings

#### Study of potential deviations of Higgs couplings from SM

- BSM modelled as extension of SM through effective Lagrangian
  - Leading corrections only
- Benchmark model:
  - Scaling of Higgs-vector boson (K<sub>V</sub>)
     and Higgs-fermion couplings (K<sub>F</sub>)
- $L_{V} = \frac{h}{v} \left( 2\kappa_{V} m_{W}^{2} W_{\mu} W^{\mu} + \kappa_{V} m_{Z}^{2} Z_{\mu} Z^{\mu} \right)$   $L_{F} = -\frac{h}{v} \left( \kappa_{F} m_{t} \bar{t}t + \kappa_{F} m_{b} \bar{b}b + \kappa_{F} m_{\tau} \bar{\tau}\tau \right)$ 
  - No additional loops in the production or decay of the Higgs, no invisible Higgs decays and undetectable width
- Main effect on EWPO due to modified Higgs coupling to gauge bosons (K<sub>V</sub>)
  - Involving the longitudinal d.o.f.
- Most BSM models: K√ < I</p>
- $\blacktriangleright$  Additional Higgses typically give positive contribution to  $M_W$

54

