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The Electroweak Sector of the SM
Electroweak interactions described by SU(2)×U(1) 
‣ 4 gauge bosons: 3 massive (Z, W±), 1 massless (γ)
‣ 1 scalar (H)

• extremely successful theory
• taught in each particle physics course
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[Philip Tanedo, quantumdiaries.org]

Let’s take one step back... 
‣ it’s a complicated, highly non-trivial theory

• massive gauge bosons
• parity (and CP) violation 
• Higgs field, results in a scalar particle 

Why do we believe it? 
‣we physicists always had a hard time believing anything...
‣we want to test the theory to ultimate precision!
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The Electroweak Sector of the SM

Electroweak sector given by 3 parameters  
‣ g, g’ : coupling constants of SU(2)L and U(1)Y

‣ v : vacuum expectation value 
‣weak mixing angle : fixed by the massless photon

Use the three most precise parameters 
‣α : Δα/α = 3×10-10

‣GF : ΔGF/GF = 5×10-7

‣MZ : ΔMZ/MZ = 2×10-5

‣measure more than the minimal set  
of parameters to test the theory!
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Calculate MW and compare with experiment 
‣MW(theo) = 80.939 ± 0.003 GeV
‣MW(exp)    = 80.385 ± 0.015 GeV
‣ difference =   0.554 GeV ~ 35σ !! new physics?
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Radiative Corrections
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Modification of propagators  
and vertices 

‣ Parametrisation of radiative corrections:  
electroweak form factors ρ, κ, Δr

‣ Effective couplings at the Z-pole:

‣ Mass of the W boson

‣ ρ, κ, Δr depend on all parameters of the theory (mt, MH, αs...) 6 Higgs Hunting – Orsay 2010 Andreas Hoecker   –   Electroweak Constraints on Higgs Boson 

 which is 19σ away from the experimental 
value obtained by combining all asymmetry 
measurements:  

Radiative corrections –                             
modifying propagators and vertices 

Significance of radiative corrections 
can be illustrated by verifying tree level 
relation:  

  
sin2θW =1−

MW
2

MZ
2

  

MW = (80.399 ± 0.023) GeV
MZ = (91.1875 ± 0.0021) GeV

 one predicts:   

•  Using the measurements: 

  sin2θW = 0.23151± 0.00011

  sin2θW = 0.22284 ± 0.00045
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Free Parameters
EW sector  
‣GF : ΔGF/GF = 5×10-7

‣MZ : ΔMZ/MZ = 2×10-5

‣ evolution of fine structure constant (Δα/α = 3×10-10) to scale s 

Fermion masses 
‣mc, mb : precision of about 7% and 1%, sufficient (see later)
‣mt crucial parameter, experimental precision of 0.5% (more later)

Strong sector 
‣αs : can be constrained using Z-pole measurements

Higgs sector 
‣MH : precision of LHC measurements is 0.3% 
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A Standard Model Formulae

This section gives the relevant formulae for the calculation of the electroweak observables used in
the global electroweak fit. We discuss the scale evolution of the QED and QCD couplings and
quark masses, and give expressions for the electroweak form factors and radiator functions.

A.1 Running QED Coupling

The electroweak fit requires the knowledge of the electromagnetic couping strength at the Z-mass
scale to an accuracy of 1% or better. The evolution of α(s) versus the mass scale-squared s is
conventionally parametrised by

α(s) =
α(0)

1−∆α(s)
, (44)

following from an all-orders resummation of vacuum polarisation diagrams, sole contributors to
the running α. Here α = α(0) = 1/137.035 999 679(94) is the fine structure constant in the long-
wavelength Thomson limit [149], and the term ∆α(s) controls the evolution. It is conveniently
decomposed into leptonic and hadronic contributions

∆α(s) = ∆αlep(s) +∆α(5)
had(s) +∆αtop(s) , (45)

where the hadronic term has been further separated into contributions from the five light quarks
(with respect to MZ) and the top quark. The leptonic term in (45) is known up to three loops in
the q2 ≫ m2

ℓ limit [150]. The dominant one-loop term at the Z-mass scale reads

∆α(1-loop)
lep (M2

Z) = α
∑

ℓ=e,µ,τ

(
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5
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− 2
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Z
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m4
ℓ

M4
Z

))

≈ 314.19 · 10−4 . (46)

Adding the sub-leading loops gives a total of ∆αlep(s) = 314.97·10−4 , with negligible uncertainty.46

The hadronic contribution for quarks with masses smaller than MZ cannot be obtained from per-
turbative QCD alone because of the low energy scale involved. Its computation relies on analyticity
and unitarity to express the photon vacuum polarisation function as a dispersion integral involving
the total cross section for e+e− annihilation to hadrons at all time-like energies above the two-
pion threshold. In energy regions where perturbative QCD fails to locally predict the inclusive
hadronic cross section, experimental data is used. The accuracy of the calculations has therefore
followed the progress in the quality of the corresponding data. Recent calculations improved the
precision by extending the use of perturbative QCD to energy regions of relatively low scales,
benefiting from global quark-hadron duality. For the fits in this paper we use the most recent

value, ∆α(5)
had(M

2
Z) = (276.8 ± 2.2) · 10−4, from Ref. [75]. The error is dominated by systematic

uncertainties in the experimental data used to calculate the dispersion integral. A small part
of the error, 0.14 · 10−4, is introduced by the uncertainty in αS(s) (the authors of [75] used the
value αS(M2

Z) = 0.1176 ± 0.0020 [151]). We include this dependence in the fits via the parameter
rescaling mechanism implemented in Gfitter (cf. Section 3).

46While the two-loop leptonic contribution of 0.78 · 10−4 is significant (roughly one third of the uncertainty in the
hadronic contribution), the third order term, 0.01 · 10−4, is very small,

1×10-6 2×10-4 1×10-7relative precision  =

Measure more than minimal set to constrain the theory
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Measurements at e+e− Colliders

Z-pole measurements at LEP-1 and SLC 

‣ LEP : running near the Z-pole, four  
experiments, 4×106 Zs / experiment

‣ SLC : one experiment, 500.000 Zs,  
polarized beams 

Precision measurements 

‣ exactly known initial state

‣ precise beam energy, ΔEbeam = ± 0.2 MeV

Cross section  

‣  

6

key measurements at lepton colliders 

!   question: is the electroweak sector of the SM internally consistent ? 
!   where do LHC results contribute? 

!   electroweak sector heavily tested     
 at lepton colliders 

!   during the 90ies: Z pole      
 measurements LEP (and SLC) 
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Figure 1.1: The lowest-order s-channel Feynman diagrams for e+e− → ff. For e+e− final states,
the photon and the Z boson can also be exchanged via the t-channel. The contribution of Higgs
boson exchange diagrams is negligible.
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Figure 1.2: The hadronic cross-section as a function of centre-of-mass energy. The solid line is
the prediction of the SM, and the points are the experimental measurements. Also indicated
are the energy ranges of various e+e− accelerators. The cross-sections have been corrected for
the effects of photon radiation.
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Figure 1.7: Pictures of qq, e+e−, µ+µ− and τ+τ− final states, visualised with the event displays
of the OPAL, DELPHI, L3 and ALEPH collaborations, respectively. In all views, the electron-
positron beam axis is perpendicular to the plane of the page. The stability of the electron
and the long lifetime of the muon allow these fundamental Z decays to be directly observed,
while the low-multiplicity products of τ decays are confined to well-isolated cones. Hadronic Z
decays result in higher-multiplicity jets of particles produced in the QCD cascades initiated by
the initial qq pair.
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!   well known initial state, precise 
beam energy (ΔEBeam = ±0.2 MeV), 
clean final states, decent statistics 
(17.106 Z0 decays) 

!   measurements with small 
uncertainties, stringent SM tests 
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Fig. 1.1. The lowest-order s-channel Feynman diagrams for e+e− → ff. For e+e− final states, the photon and the Z boson can also be exchanged
via the t-channel. The contribution of Higgs boson exchange diagrams is negligible.

10

10 2

10 3

10 4

10 5

0 20 40 60 80 100 120 140 160 180 200 220

Centre-of-mass energy (GeV)

C
ro

ss
-s

ec
ti

on
 (p

b)

CESR
DORIS

PEP

PETRA
TRISTAN

KEKB
PEP-II

SLC

LEP I LEP II

Z

W+W-

e+e−→hadrons

Fig. 1.2. The hadronic cross-section as a function of centre-of-mass energy. The solid line is the prediction of the SM, and the points are the
experimental measurements. Also indicated are the energy ranges of various e+e− accelerators. The cross-sections have been corrected for the
effects of photon radiation.

centre-of-mass energies of approximately 91 GeV, close to the mass of the Z boson.1 Fig. 1.2 illustrates two prominent
features of the hadronic cross-section as a function of the centre-of-mass energy. The first is the 1/s fall-off, due to
virtual photon exchange, corresponding to the left-hand diagram in Fig. 1.1, which leads to the peak at low energies.
The second is the peak at 91 GeV, due to Z exchange, which corresponds to the right-hand diagram of Fig. 1.1, and
allows LEP and SLC to function as “Z factories”.

The LEP accelerator operated from 1989 to 2000, and until 1995, the running was dedicated to the Z boson region.
From 1996 to 2000, the centre-of-mass energy was increased to 161 GeV and ultimately to 209 GeV allowing the
production of pairs of W bosons, e+e− → W+W−, as indicated in Fig. 1.2. Although some results from this later
running will be used in this report, the bulk of the data stems from the Z period. When needed, the Z period will be
denoted “LEP-I”, and the period beginning in 1996 “LEP-II”. During the seven years of running at LEP-I, the four
experiments ALEPH [7], DELPHI [8], L3 [9] and OPAL [10] collected approximately 17 million Z decays in total,
distributed over seven centre-of-mass energy points within plus or minus 3 GeV of the Z-pole.

The SLC accelerator started running in 1989 and the Mark-II collaboration published the first observations of Z
production in e+e− collisions [11]. However, it was not until 1992 that longitudinal polarisation of the SLC electron
beam was established. By then the SLD detector [12,13] had replaced Mark-II. From 1992 until 1998, when the
accelerator was shut down, SLD accumulated approximately 600 thousand Z decays. Although the data set is much

1 In this report h̄ = c = 1.
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key measurements at lepton colliders 

!   V−A structure of electroweak interaction tested by measurements of: 
!   mass and width of Z0:  MZ, ΓZ 
! hadronic pole cross-section:  σ0

had 

! leptonic decay ratio(s): 
!   quark decay ratios:  
!   asymmetries:  
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Figure 1.12: Average over measurements of the hadronic cross-sections (top) and of the muon
forward-backward asymmetry (bottom) by the four experiments, as a function of centre-of-mass
energy. The full line represents the results of model-independent fits to the measurements, as
outlined in Section 1.5. Correcting for QED photonic effects yields the dashed curves, which
define the Z parameters described in the text.
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2 Update of the global electroweak fit 6

Free w/o exp. input w/o exp. input
Parameter Input value

in fit
Fit Result

in line in line, no theo. unc

MH [GeV](�) 125.14± 0.24 yes 125.14± 0.24 93+25
�21 93+24

�20

MW [GeV] 80.385± 0.015 – 80.364± 0.007 80.358± 0.008 80.358± 0.006

�W [GeV] 2.085± 0.042 – 2.091± 0.001 2.091± 0.001 2.091± 0.001

MZ [GeV] 91.1875± 0.0021 yes 91.1880± 0.0021 91.200± 0.011 91.2000± 0.010

�Z [GeV] 2.4952± 0.0023 – 2.4950± 0.0014 2.4946± 0.0016 2.4945± 0.0016

�0
had [nb] 41.540± 0.037 – 41.484± 0.015 41.475± 0.016 41.474± 0.015

R0
` 20.767± 0.025 – 20.743± 0.017 20.722± 0.026 20.721± 0.026

A0,`
FB 0.0171± 0.0010 – 0.01626± 0.0001 0.01625± 0.0001 0.01625± 0.0001

A`
(?) 0.1499± 0.0018 – 0.1472± 0.0005 0.1472± 0.0005 0.1472± 0.0004

sin2✓`e↵(QFB) 0.2324± 0.0012 – 0.23150± 0.00006 0.23149± 0.00007 0.23150± 0.00005

Ac 0.670± 0.027 – 0.6680± 0.00022 0.6680± 0.00022 0.6680± 0.00016

Ab 0.923± 0.020 – 0.93463± 0.00004 0.93463± 0.00004 0.93463± 0.00003

A0,c
FB 0.0707± 0.0035 – 0.0738± 0.0003 0.0738± 0.0003 0.0738± 0.0002

A0,b
FB 0.0992± 0.0016 – 0.1032± 0.0004 0.1034± 0.0004 0.1033± 0.0003

R0
c 0.1721± 0.0030 – 0.17226+0.00009

�0.00008 0.17226± 0.00008 0.17226± 0.00006

R0
b 0.21629± 0.00066 – 0.21578± 0.00011 0.21577± 0.00011 0.21577± 0.00004

mc [GeV] 1.27+0.07
�0.11 yes 1.27+0.07

�0.11 – –

mb [GeV] 4.20+0.17
�0.07 yes 4.20+0.17

�0.07 – –

mt [GeV] 173.34± 0.76 yes 173.81± 0.85(5) 177.0+2.3
�2.4

(5) 177.0± 2.3

�↵
(5)
had(M

2
Z)

(†4) 2757± 10 yes 2756± 10 2723± 44 2722± 42

↵s(M2
Z) – yes 0.1196± 0.0030 0.1196± 0.0030 0.1196± 0.0028

(�)Average of the ATLAS [48] and CMS [49] measurements assuming no correlation of the systematic uncertainties.
(?)Average of the LEP and SLD A` measurements [12], used as two measurements in the fit.
(5)The theoretical top mass uncertainty of 0.5 GeV is excluded.
(†)In units of 10�5.
(4)Rescaled due to ↵s dependence.

Table 2: Input values and fit results for the observables used in the global electroweak fit. The first and
second columns list respectively the observables/parameters used in the fit, and their experimental values
or phenomenological estimates (see text for references). The third column indicates whether a parameter
is floating in the fit. The fourth column quotes the results of the fit including all experimental data. In
the fifth column the fit results are given without using the corresponding experimental or phenomenological
estimate in the given row (indirect determination). The last column shows for illustration the result using
the same fit setup as in the fifth column, but ignoring all theoretical uncertainties. The nuisance parameters
that are used to parameterise theoretical uncertainties are given in Table 1.

Rl
0 = Γhad Γll

Rc,b
0 = Γcc ,bb Γhad

AFB =
NF − NB

NF + NB

ALR =
NL − NR

NL + NR

1
Pe
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3.2% for Bhabha scattering, ~ 5 %  for muon pair 
production and ~ 4  % for tau pairs. 

The luminosity was obtained from e +e---*e+e - 
and e+e --*77. For the Bhabha cross-sections in 
Fig. 1 the endcap region at polar angles of 
0.91<1cos01<0.955 was used for normalisation, 
which has a systematic error of 2.8 % and dominates 
the total normalisation error. For  muon and tau- 
pairs the luminosity obtained in the barrel region, 
I cos01 <0.76, was used, which has a systematic error 
of 1.6% at 1 /s~34.5  GeV and 2.5% at higher en- 
ergies. 
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θ is angle between electron beam and 
scattered fermion (as opposed to anti-fermion) 
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Table 1.3: The weak-isospin structure of the fermions in the SM. “L” and “R” stand for left-
handed and right-handed fermions, T and T3 are the total weak-isospin and its third component,
and Q is the electric charge. Note that the results presented in this report are insensitive to,
and independent of, any small (< MeV) neutrino masses.

1.4 Standard Model Relations

In the SM at tree level, the relationship between the weak and electromagnetic couplings is
given by

GF =
πα√

2m2
W sin2 θtree

W

, (1.4)

where GF is the Fermi constant determined in muon decay, α is the electromagnetic fine-
structure constant, mW is the W boson mass, and sin2 θtree

W is the electroweak mixing angle. In
addition, the relationship between the neutral and charged weak couplings is fixed by the ratio
of the W and Z boson masses:

ρ0 =
m2

W

m2
Z cos2 θtree

W

. (1.5)

The ρ0 parameter [25] is determined by the Higgs structure of the theory; in the Minimal
Standard Model containing only Higgs doublets, ρ0 = 1.

The fermions are arranged in weak-isospin doublets for left-handed particles and weak-
isospin singlets for right-handed particles, as shown in Table 1.3. The interaction of the Z
boson with fermions depends on charge, Q, and the third component of weak-isospin, T3, and
is given by the left- and right-handed couplings:

gtree
L =

√
ρ0 (T f

3 − Qf sin2 θtree
W ) (1.6)

gtree
R = −

√
ρ0 Qf sin2 θtree

W , (1.7)

or, equivalently in terms of vector and axial-vector couplings:
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√
ρ0 (T f

3 − 2Qf sin2 θtree
W ) (1.8)

gtree
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√
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3 . (1.9)
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!   accuracy up to 
0.002% !! 

!   only these data enable 
precision checks of SM 
consistency using data 
from hadron colliders 

A
D

LO
, P

hy
s.

 R
ep

t.4
27

:2
57

,2
00

6,
 h

ep
-e

x/
05

09
00

8 

JADE Collab., Z Phys. C 30, 371 (1986) 

Roman Kogler The global electroweak fit 

Observables

Minimal correlated set of parameters 

‣mass and total width of Z0  

‣ hadronic pole cross section

‣ leptonic decay ratios  

‣ hadronic width ratios

Asymmetries 

‣                                                 directly related to 
 

‣ forward/backward asymmetry                            ,

‣ left/right asymmetry

7

�0
had = 12⇡/M2

Z · �ee�had/�
2
Z

R0
` = R0

e = �had/�ee

�
= R0

µ = R0
⌧

�

MZ ,�Z

R0
c,b = �cc̄,bb̄/�had

[ADLO, Phys. Rep. 427, 257 (2006)]

Af =
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= 2
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1 + (gV,f/gA,f )
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4Qf

✓
1 +Re

✓
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Af
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AeAf
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2 Update of the global electroweak fit 6

Free w/o exp. input w/o exp. input
Parameter Input value

in fit
Fit Result

in line in line, no theo. unc

MH [GeV](�) 125.14± 0.24 yes 125.14± 0.24 93+25
�21 93+24

�20

MW [GeV] 80.385± 0.015 – 80.364± 0.007 80.358± 0.008 80.358± 0.006

�W [GeV] 2.085± 0.042 – 2.091± 0.001 2.091± 0.001 2.091± 0.001

MZ [GeV] 91.1875± 0.0021 yes 91.1880± 0.0021 91.200± 0.011 91.2000± 0.010

�Z [GeV] 2.4952± 0.0023 – 2.4950± 0.0014 2.4946± 0.0016 2.4945± 0.0016

�0
had [nb] 41.540± 0.037 – 41.484± 0.015 41.475± 0.016 41.474± 0.015

R0
` 20.767± 0.025 – 20.743± 0.017 20.722± 0.026 20.721± 0.026

A0,`
FB 0.0171± 0.0010 – 0.01626± 0.0001 0.01625± 0.0001 0.01625± 0.0001

A`
(?) 0.1499± 0.0018 – 0.1472± 0.0005 0.1472± 0.0005 0.1472± 0.0004

sin2✓`e↵(QFB) 0.2324± 0.0012 – 0.23150± 0.00006 0.23149± 0.00007 0.23150± 0.00005

Ac 0.670± 0.027 – 0.6680± 0.00022 0.6680± 0.00022 0.6680± 0.00016

Ab 0.923± 0.020 – 0.93463± 0.00004 0.93463± 0.00004 0.93463± 0.00003

A0,c
FB 0.0707± 0.0035 – 0.0738± 0.0003 0.0738± 0.0003 0.0738± 0.0002

A0,b
FB 0.0992± 0.0016 – 0.1032± 0.0004 0.1034± 0.0004 0.1033± 0.0003

R0
c 0.1721± 0.0030 – 0.17226+0.00009

�0.00008 0.17226± 0.00008 0.17226± 0.00006

R0
b 0.21629± 0.00066 – 0.21578± 0.00011 0.21577± 0.00011 0.21577± 0.00004

mc [GeV] 1.27+0.07
�0.11 yes 1.27+0.07

�0.11 – –

mb [GeV] 4.20+0.17
�0.07 yes 4.20+0.17

�0.07 – –

mt [GeV] 173.34± 0.76 yes 173.81± 0.85(5) 177.0+2.3
�2.4

(5) 177.0± 2.3

�↵
(5)
had(M

2
Z)

(†4) 2757± 10 yes 2756± 10 2723± 44 2722± 42

↵s(M2
Z) – yes 0.1196± 0.0030 0.1196± 0.0030 0.1196± 0.0028

(�)Average of the ATLAS [48] and CMS [49] measurements assuming no correlation of the systematic uncertainties.
(?)Average of the LEP and SLD A` measurements [12], used as two measurements in the fit.
(5)The theoretical top mass uncertainty of 0.5 GeV is excluded.
(†)In units of 10�5.
(4)Rescaled due to ↵s dependence.

Table 2: Input values and fit results for the observables used in the global electroweak fit. The first and
second columns list respectively the observables/parameters used in the fit, and their experimental values
or phenomenological estimates (see text for references). The third column indicates whether a parameter
is floating in the fit. The fourth column quotes the results of the fit including all experimental data. In
the fifth column the fit results are given without using the corresponding experimental or phenomenological
estimate in the given row (indirect determination). The last column shows for illustration the result using
the same fit setup as in the fifth column, but ignoring all theoretical uncertainties. The nuisance parameters
that are used to parameterise theoretical uncertainties are given in Table 1.

ALEPH

DELPHI

L3

OPAL

LEP

91.1893±0.0031

91.1863±0.0028

91.1894±0.0030

91.1853±0.0029

91.1875±0.0021
common:  0.0017
χ2/DoF = 2.2/3

mZ [GeV]
91.18 91.19 91.2

ALEPH

DELPHI

L3

OPAL

LEP

 2.4959±0.0043

 2.4876±0.0041

 2.5025±0.0041

 2.4947±0.0041

 2.4952±0.0023
common:  0.0012
χ2/DoF = 7.3/3

ΓZ [GeV]
2.48 2.49 2.5 2.51

ALEPH

DELPHI

L3

OPAL

LEP

41.559±0.057

41.578±0.069

41.536±0.055

41.502±0.055

41.540±0.037
common: 0.028
χ2/DoF = 1.2/3

σ0  
had  [nb]

41.4 41.5 41.6 41.7

ALEPH

DELPHI

L3

OPAL

LEP

20.729±0.039

20.730±0.060

20.809±0.060

20.822±0.044

20.767±0.025
common: 0.007
χ2/DoF = 3.5/3

     R0
l

20.7 20.8 20.9
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L3

OPAL

LEP

0.0173±0.0016

0.0187±0.0019

0.0192±0.0024

0.0145±0.0017

0.0171±0.0010
common: 0.0003
χ2/DoF = 3.9/3

Afb
0,l

0.015 0.02 0.025

Figure 2.9: Measurements of mZ, ΓZ,
σ0

had, R0
ℓ and A0, ℓ

FB. The averages indicated
were obtained using the common errors
and combination method discussed in
the text. The values of χ2 per degree of
freedom were calculated considering error
correlations between measurements of the
same parameter, but not error correlations
between different parameters.
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Figure 1.14: In the SM the variation of Af with sin2 θf
eff is controlled by the charge and weak

isospin assignment of the fermion species concerned. The measured values of sin2 θf
eff are near

the vertical line. In this region, Aℓ depends strongly on sin2 θlept
eff , while Ab depends much more

weakly on sin2 θb
eff .

b-quark cross-section divided by the hadronic cross-section, σbb/σhad, while R0
b is the derived

ratio of Z boson partial widths, Γbb/Γhad.
In the Z lineshape analysis the true realistic observables are the experimental cross-sections

and asymmetries measured in the acceptances particular to each detector. Before these can
be further analysed, each collaboration applies small corrections to extrapolate them to more
generic, idealized acceptances, as described in Section 2.2.2.

The programs TOPAZ0 and ZFITTER are able to calculate the cross-sections measured
within these idealized acceptances, including the effects of QED radiation, as a function of the
set of nine pseudo-parameters chosen to describe the observable features of the Z resonance in a
model-independent manner. It is important to realize that the bulk of the radiative corrections
necessary to interpret the real observables in terms of the pseudo-observables are QED effects
distinct from the deeper electroweak corrections which modify the relations between the pseudo-
parameters in the context of any particular model, such as the SM. Further details are discussed
in Section 8.4.2.

After these QED effects which depend in a model-independent manner on the resonance
properties of the Z have been accounted for, the remaining differences between the pseudo-
observables and the QED deconvoluted observables at

√
s = mZ are attributable to non-

factorisable complex components, termed “remnants”, of the couplings GAf and GVf and of
α(m2

Z) in Equation 1.34. These effects are found to be small in the SM. For example, the
calculated value of σ0

ff
, given in terms of the partial decay widths, agrees to better than 0.05%
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Roman Kogler The global electroweak fit 

Measurements at the Z-Pole

8

‣ precision of up to 0.002%!

‣ LEP/SLD measurements will stay the 
most precise for quite some time 

‣ allow for precision tests of the SM and 
constrain new physics

[ADLO, Phys. Rep. 427, 257 (2006)]
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measurements of the top mass 

!   LHC collaborations taking over 
!   re-use of methods 
!   high LHC statistics 

!   world average: accuracy 0.4% 
!   CMS: best in all channels !  

!   single best measurement in WA:       
recently updated: CMS l-jets 8 TeV  
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Figure 1: (a): Input measurements and result of their combination (see also Table 3), compared with the
Tevatron and LHC combined mtop values [6, 7]. With respect to Ref. [6] only a partial set of Tevatron mtop
measurements is used in the world combination (see Section 4). For each measurement, the total uncertainty,
the statistical and the iJES contributions (when applicable), as well as the sum of the remaining uncertainties
are reported separately. The iJES contribution is statistical in nature and applies only to analyses performing in
situ (tt̄) jet energy calibration procedures. The grey vertical band reflect the total uncertainty on the combined
mtop value. Panels (b) and (c) show, respectively, the BLUE combination coe�cients and pulls of the input
measurements. 14

CDF, D0, ATLAS, CMS: arXiv:1403.4427 

12 6 Results on the top-quark mass
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Figure 6: (a) The 2D likelihood (�2D log (L)) measured for the `+jets final state. The ellipses
correspond to statistical uncertainties on mt and JSF of one, two, and three standard deviations.
(b) The statistical uncertainty distribution obtained from pseudo-experiments is compared to
the uncertainty of the measurement in data.

ously determined jet energy scale factors are 1.010 ± 0.002 (stat.) and 1.005 ± 0.002 (stat.). The
combined fit to the 28 750 `+jets events in the two channels yields:

mt = 172.04 ± 0.19 (stat.+JSF) ± 0.75 (syst.) GeV,
JSF = 1.007 ± 0.002 (stat.) ± 0.012 (syst.).

Figure 6 (a) shows the 2D likelihood obtained from data. As depicted in Fig. 6 (b), the uncer-
tainty of the measurement agrees with the expected precision from the pseudo-experiments.
As the top-quark mass and the JSF are measured simultaneously, the statistical uncertainty on
mt combines the statistical uncertainty arising from both components of the measurement.

The overall uncertainty of the presented measurement is 0.77 GeV on the top-quark mass from
adding the components in quadrature. The measured JSF is compatible with the one obtained
from events with jets and Z bosons or photons [29].

We estimate the impact of the simultaneous fit of a jet energy scale factor by fixing the JSF to
unity. This yields mt = 172.66± 0.11 (stat.)± 1.29 (syst.) GeV. The larger systematic uncertainty
stems from a JES uncertainty of 1.17 GeV and demonstrates the gain from the simultaneous fit
of mt and a JSF.

We use the Best Linear Unbiased Estimate technique [47] to combine the result presented in
this note with the CMS measurement in the dilepton and lepton+jets channel based on 2010
data [48, 49], and the measurements in the dilepton, lepton+jets, and all-jets channels based on
2011 data [3, 50, 51]. Most of the systematic uncertainties listed in Table 1 are assumed to be
fully correlated among the five input measurements. Exceptions are the experimental uncer-
tainties, for which we assign full correlation between the analyses that use data from the same
year but no correlation otherwise, as a large part of the uncertainty on the underlying detec-
tor calibration constants is of a purely statistical nature, while the running conditions and the
treatment of pileup differ. In addition, the statistical uncertainty in the in situ fit for the JSF and
the uncertainties in the mass calibration, the background normalization from control samples
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Figure 6: (a) The 2D likelihood (�2D log (L)) measured for the `+jets final state. The ellipses
correspond to statistical uncertainties on mt and JSF of one, two, and three standard deviations.
(b) The statistical uncertainty distribution obtained from pseudo-experiments is compared to
the uncertainty of the measurement in data.

ously determined jet energy scale factors are 1.010 ± 0.002 (stat.) and 1.005 ± 0.002 (stat.). The
combined fit to the 28 750 `+jets events in the two channels yields:

mt = 172.04 ± 0.19 (stat.+JSF) ± 0.75 (syst.) GeV,
JSF = 1.007 ± 0.002 (stat.) ± 0.012 (syst.).

Figure 6 (a) shows the 2D likelihood obtained from data. As depicted in Fig. 6 (b), the uncer-
tainty of the measurement agrees with the expected precision from the pseudo-experiments.
As the top-quark mass and the JSF are measured simultaneously, the statistical uncertainty on
mt combines the statistical uncertainty arising from both components of the measurement.

The overall uncertainty of the presented measurement is 0.77 GeV on the top-quark mass from
adding the components in quadrature. The measured JSF is compatible with the one obtained
from events with jets and Z bosons or photons [29].

We estimate the impact of the simultaneous fit of a jet energy scale factor by fixing the JSF to
unity. This yields mt = 172.66± 0.11 (stat.)± 1.29 (syst.) GeV. The larger systematic uncertainty
stems from a JES uncertainty of 1.17 GeV and demonstrates the gain from the simultaneous fit
of mt and a JSF.

We use the Best Linear Unbiased Estimate technique [47] to combine the result presented in
this note with the CMS measurement in the dilepton and lepton+jets channel based on 2010
data [48, 49], and the measurements in the dilepton, lepton+jets, and all-jets channels based on
2011 data [3, 50, 51]. Most of the systematic uncertainties listed in Table 1 are assumed to be
fully correlated among the five input measurements. Exceptions are the experimental uncer-
tainties, for which we assign full correlation between the analyses that use data from the same
year but no correlation otherwise, as a large part of the uncertainty on the underlying detec-
tor calibration constants is of a purely statistical nature, while the running conditions and the
treatment of pileup differ. In addition, the statistical uncertainty in the in situ fit for the JSF and
the uncertainties in the mass calibration, the background normalization from control samples

! mt and JES from joint likelihood fit 

!   crucial: JER, pile-up modelling, q-
flavour-dependence of JES  

!   details: talk by M. Seidel 

!   final LHC projection:       
# #Δmt = 400 - 500 MeV 

Roman Kogler The global electroweak fit 

Measurements of mt

‣ Tevatron pioneered measurements  
of a “kinematic” mass in t decays
‣ Tevatron 

• exceeding all expectations  
(expected precision: 2-3 GeV)

‣ LHC collaborations taking over
• re-use of methods, high statistics
‣world average:  mt = 173.34 ± 0.76 GeV

• single best measurement in WA from  
CMS in l+jets channel

• recently updated 
mt = 172.04 ± 0.19 (stat.+JES) ± 0.75 (syst.) GeV
- crucial: JER, pile-up, flavour dependence of JES

‣ Tevatron 2014: Δmt = 0.64 GeV
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[D0, CDF,  arXiv:1407.2682]

measurements of the top mass 

!   LHC collaborations taking over 
!   re-use of methods 
!   high LHC statistics 

!   world average: accuracy 0.4% 
!   CMS: best in all channels !  

!   single best measurement in WA:       
recently updated: CMS l-jets 8 TeV  

 CMS-PAS-TOP-14-001 
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Figure 1: (a): Input measurements and result of their combination (see also Table 3), compared with the
Tevatron and LHC combined mtop values [6, 7]. With respect to Ref. [6] only a partial set of Tevatron mtop
measurements is used in the world combination (see Section 4). For each measurement, the total uncertainty,
the statistical and the iJES contributions (when applicable), as well as the sum of the remaining uncertainties
are reported separately. The iJES contribution is statistical in nature and applies only to analyses performing in
situ (tt̄) jet energy calibration procedures. The grey vertical band reflect the total uncertainty on the combined
mtop value. Panels (b) and (c) show, respectively, the BLUE combination coe�cients and pulls of the input
measurements. 14
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Figure 6: (a) The 2D likelihood (�2D log (L)) measured for the `+jets final state. The ellipses
correspond to statistical uncertainties on mt and JSF of one, two, and three standard deviations.
(b) The statistical uncertainty distribution obtained from pseudo-experiments is compared to
the uncertainty of the measurement in data.

ously determined jet energy scale factors are 1.010 ± 0.002 (stat.) and 1.005 ± 0.002 (stat.). The
combined fit to the 28 750 `+jets events in the two channels yields:

mt = 172.04 ± 0.19 (stat.+JSF) ± 0.75 (syst.) GeV,
JSF = 1.007 ± 0.002 (stat.) ± 0.012 (syst.).

Figure 6 (a) shows the 2D likelihood obtained from data. As depicted in Fig. 6 (b), the uncer-
tainty of the measurement agrees with the expected precision from the pseudo-experiments.
As the top-quark mass and the JSF are measured simultaneously, the statistical uncertainty on
mt combines the statistical uncertainty arising from both components of the measurement.

The overall uncertainty of the presented measurement is 0.77 GeV on the top-quark mass from
adding the components in quadrature. The measured JSF is compatible with the one obtained
from events with jets and Z bosons or photons [29].

We estimate the impact of the simultaneous fit of a jet energy scale factor by fixing the JSF to
unity. This yields mt = 172.66± 0.11 (stat.)± 1.29 (syst.) GeV. The larger systematic uncertainty
stems from a JES uncertainty of 1.17 GeV and demonstrates the gain from the simultaneous fit
of mt and a JSF.

We use the Best Linear Unbiased Estimate technique [47] to combine the result presented in
this note with the CMS measurement in the dilepton and lepton+jets channel based on 2010
data [48, 49], and the measurements in the dilepton, lepton+jets, and all-jets channels based on
2011 data [3, 50, 51]. Most of the systematic uncertainties listed in Table 1 are assumed to be
fully correlated among the five input measurements. Exceptions are the experimental uncer-
tainties, for which we assign full correlation between the analyses that use data from the same
year but no correlation otherwise, as a large part of the uncertainty on the underlying detec-
tor calibration constants is of a purely statistical nature, while the running conditions and the
treatment of pileup differ. In addition, the statistical uncertainty in the in situ fit for the JSF and
the uncertainties in the mass calibration, the background normalization from control samples
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the uncertainty of the measurement in data.
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combined fit to the 28 750 `+jets events in the two channels yields:

mt = 172.04 ± 0.19 (stat.+JSF) ± 0.75 (syst.) GeV,
JSF = 1.007 ± 0.002 (stat.) ± 0.012 (syst.).

Figure 6 (a) shows the 2D likelihood obtained from data. As depicted in Fig. 6 (b), the uncer-
tainty of the measurement agrees with the expected precision from the pseudo-experiments.
As the top-quark mass and the JSF are measured simultaneously, the statistical uncertainty on
mt combines the statistical uncertainty arising from both components of the measurement.

The overall uncertainty of the presented measurement is 0.77 GeV on the top-quark mass from
adding the components in quadrature. The measured JSF is compatible with the one obtained
from events with jets and Z bosons or photons [29].

We estimate the impact of the simultaneous fit of a jet energy scale factor by fixing the JSF to
unity. This yields mt = 172.66± 0.11 (stat.)± 1.29 (syst.) GeV. The larger systematic uncertainty
stems from a JES uncertainty of 1.17 GeV and demonstrates the gain from the simultaneous fit
of mt and a JSF.

We use the Best Linear Unbiased Estimate technique [47] to combine the result presented in
this note with the CMS measurement in the dilepton and lepton+jets channel based on 2010
data [48, 49], and the measurements in the dilepton, lepton+jets, and all-jets channels based on
2011 data [3, 50, 51]. Most of the systematic uncertainties listed in Table 1 are assumed to be
fully correlated among the five input measurements. Exceptions are the experimental uncer-
tainties, for which we assign full correlation between the analyses that use data from the same
year but no correlation otherwise, as a large part of the uncertainty on the underlying detec-
tor calibration constants is of a purely statistical nature, while the running conditions and the
treatment of pileup differ. In addition, the statistical uncertainty in the in situ fit for the JSF and
the uncertainties in the mass calibration, the background normalization from control samples

! mt and JES from joint likelihood fit 

!   crucial: JER, pile-up modelling, q-
flavour-dependence of JES  

!   details: talk by M. Seidel 

!   final LHC projection:       
# #Δmt = 400 - 500 MeV 

[CDF, D0, ATLAS, CMS: arXiv:1403.4427]

[CMS-PAS-TOP-14-001]

 welcome to the community of precision measurements! 
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What about accuracy? 
‣ top mass definition

• EFT, factorization: hard function, universal  
jet-function, non-pert. soft function 
[Moch et al, arXiv:1405.4781]

• MC mass is (may be) related to the  
low scale short-distance mass 
in the jet function [Hoang, arXiv:1412.3649]

• but: no quantitative statement available
• relating mtkin to mtpole : Δmt ≥ ΛQCD

‣ colour structure and hadronisation
• partly included in experimental uncertainties
• study on kinematic dependencies of mt

‣ calculating mt(mt) from mtpole

• QCD (three-loop): Δmt ≈ 0.02 GeV
• EW (two-loop): Δmt ≈ 0.1 GeV

Roman Kogler The global electroweak fit 

Interpreteation of mt measurements
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[CMS-TOP-12-029]

[Kniehl et al., arXiv:1401.1844]

Figure 2. Illustration of MC
components for the final state inter-
actions in top-antitop production.
Figure from D. Zeppenfeld.

parton shower evolution which describes the top decays and the continued splitting into higher
multiplicity partonic states having subsequently lower virtualities. The splitting probabilities
are calculated from perturbative QCD. Some MC’s use other shower evolution parameters such
pT or energy-weighted angles, but the principle is the same.
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Figure 3. Top invariant mass
distribution from kinematic fits
obtained in the CMS analysis [14].

For the matter of my argumentation let me view the parton shower evolution as a way
to sum up perturbative corrections (valid to leading order for the top decay and valid to
an approximate leading logarithmic accuracy for soft-collinear splitting) coming from energies
between the hard scale contained in the matrix element and the virtuality scale. The property
of the parton shower that is important for the conclusions below is that it does not account for
any top quark self-energy corrections. At some point in the evolution the parton shower reaches
particle virtualities of 1 GeV where the perturbative description of the splitting process begins
to fail. At this point, which is called the shower cut ⇤s, the parton shower terminates and a
hadronization model takes over to turn the partons into observable hadrons or jets of hadrons
that can be observed. Conceptually, the MC event generator follows the logic of factorization
which states that to a good approximation the various energy (or virtuality) ordered processes
can be described separately. For all MC event generators, however, the implementations (or
tunes) of the hadronization models are strongly tied to details of the implementations of the
parton-shower which are described by a probabilistic Markov chain. It is the result of the tunig
procedure (to a set of well known reference processes) that the resulting quality of MC generators
to describe hadron level data, particularly in the soft-collinear limit is frequently so high, and
that one does not have to worry about let’s say missing NLO virtual corrections in the parton
shower. The question on how to interpret the MC top mass mMC

t from the first principles QCD
point of view is therefore also a question on whether MC generators are more like very good

models or more related to first principles QCD.
From this set up it is straightforward to see how the templates used for fitting the MC top mass

depend on the di↵erent components of the MC event generator. Let’s take the reconstructed
top invariant mass distribution as a concrete example, see Fig. 3. The hard matrix elements

[D. Zeppenfeld]
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‣MH predictions 
from loop effects 
since the 
discovery of the 
top quark 1995

‣weaker 
constraints than 
for mt because 
of logarithmic 
dependence

‣ still, the fits have 
always predicted 
MH correctly!

Prediction of Higgs mass



fundamental insight in SM – 1 : Higgs 

!   most important SM result from LHC run1:  
 discovery of the Higgs 

!   clear signals, two independent experiments, 
several channels, various datasets 

!   best mass measurements H→γγ, H→4l 
!   ATLAS: 124.4±0.4 GeV [1406.3827] 

!   CMS:   125.0±0.3 GeV [CMS-PAS-HIG-14-009] 
–  weighted average: 125.14±0.24 GeV [1407.3792] 

!   accuracy: 0.2 % !     

J. Haller Standard Model 3 

ATLAS, arXiv:1406.3827 
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Table 11: The number of events expected and observed for a mH=125 GeV hypothesis for the four-lepton final states in a
window of 120 < m4` < 130 GeV. The second column shows the number of expected signal events for the full mass range,
without a selection on m4`. The other columns show for the 120–130 GeV mass range the number of expected signal events,
the number of expected ZZ⇤ and reducible background events, the signal-to-background ratio (S/B), together with the number
of observed events, for 4.5 fb�1 at

p
s = 7 TeV and 20.3 fb�1 at

p
s = 8 TeV as well as for the combined sample.

Final state Signal Signal ZZ⇤ Z + jets, tt̄ S/B Expected Observed
full mass range p

s = 7 TeV

4µ 1.00 ± 0.10 0.91 ± 0.09 0.46 ± 0.02 0.10 ± 0.04 1.7 1.47 ± 0.10 2
2e2µ 0.66 ± 0.06 0.58 ± 0.06 0.32 ± 0.02 0.09 ± 0.03 1.5 0.99 ± 0.07 2
2µ2e 0.50 ± 0.05 0.44 ± 0.04 0.21 ± 0.01 0.36 ± 0.08 0.8 1.01 ± 0.09 1
4e 0.46 ± 0.05 0.39 ± 0.04 0.19 ± 0.01 0.40 ± 0.09 0.7 0.98 ± 0.10 1

Total 2.62 ± 0.26 2.32 ± 0.23 1.17 ± 0.06 0.96 ± 0.18 1.1 4.45 ± 0.30 6p
s = 8 TeV

4µ 5.80 ± 0.57 5.28 ± 0.52 2.36 ± 0.12 0.69 ± 0.13 1.7 8.33 ± 0.6 12
2e2µ 3.92 ± 0.39 3.45 ± 0.34 1.67 ± 0.08 0.60 ± 0.10 1.5 5.72 ± 0.37 7
2µ2e 3.06 ± 0.31 2.71 ± 0.28 1.17 ± 0.07 0.36 ± 0.08 1.8 4.23 ± 0.30 5
4e 2.79 ± 0.29 2.38 ± 0.25 1.03 ± 0.07 0.35 ± 0.07 1.7 3.77 ± 0.27 7

Total 15.6 ± 1.6 13.8 ± 1.4 6.24 ± 0.34 2.00 ± 0.28 1.7 22.1 ± 1.5 31p
s = 7 TeV and

p
s = 8 TeV

4µ 6.80 ± 0.67 6.20 ± 0.61 2.82 ± 0.14 0.79 ± 0.13 1.7 9.81 ± 0.64 14
2e2µ 4.58 ± 0.45 4.04 ± 0.40 1.99 ± 0.10 0.69 ± 0.11 1.5 6.72 ± 0.42 9
2µ2e 3.56 ± 0.36 3.15 ± 0.32 1.38 ± 0.08 0.72 ± 0.12 1.5 5.24 ± 0.35 6
4e 3.25 ± 0.34 2.77 ± 0.29 1.22 ± 0.08 0.76 ± 0.11 1.4 4.75 ± 0.32 8

Total 18.2 ± 1.8 16.2 ± 1.6 7.41 ± 0.40 2.95 ± 0.33 1.6 26.5 ± 1.7 37
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Figure 13: The distribution of the four-lepton invariant mass, m4`, for the selected candidates (filled circles) compared to the
expected signal and background contributions (filled histograms) for the combined

p
s = 7 TeV and

p
s = 8 TeV data for the

mass ranges: (a) 80–170 GeV, and (b) 80–600 GeV. The signal expectation shown is for a mass hypothesis of mH = 125 GeV
and normalized to µ = 1.51 (see text). The expected backgrounds are shown separately for the ZZ⇤ (red histogram), and
the reducible Z + jets and tt̄ backgrounds (violet histogram); the systematic uncertainty associated to the total background
contribution is represented by the hatched areas.

signal strength at this value for mH is µ = 1.66 +0.39
�0.34 (stat) +0.21

�0.14 (syst). The other methods of Sec. 8.1,
1D and per-event resolution, yield similar results for the Higgs boson mass [9]. Figure 17(a) shows the best
fit values of µ and mH as well as the profile likelihood ratio contours in the (mH ,µ) plane corresponding
to the 68% and 95% confidence level intervals. Finally, the best fit value for mH obtained using the model
developed for the categorized analysis, described in Sec. 8.2, is within 90 MeV of the value found with the

28

ATLAS, arXiv:1408.5191 
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Measurements of MH

Discovery of a Higgs boson 
‣ cross section times branching ratios, spin,  

parity: compatible with SM Higgs boson
• assume it’s the SM Higgs boson

- (or a BSM Higgs boson h in the decoupling region)

• test the consistency of the SM including it
‣ best mass measurements: H→γγ, H→4l

• ATLAS: 125.4 ± 0.4 GeV 
• CMS:    125.0 ± 0.3 GeV 
• weighted average: 125.14 ± 0.24 GeV

- change between fully uncorrelated and  
fully correlated systematic uncertainties 
is minor: δMH : 0.24 → 0.32 GeV

• accuracy: 0.2% !
- sufficient for electroweak fit (more later)
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measurements of W boson mass 

!   MW: key parameter in the SM 
!   final LEP2 measurement, 2013: 

!   ΔMW = 33 MeV ADLO, Phys. Rept. 532:119, 2013, arXiv:1302.3415 
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TABLE VIII: Background fractions from various sources in the W →
eν data set, and the corresponding uncertainties on the mT , pµ

T , and
pνT fits for MW .

Fraction of δMW (MeV)
Source W → eν data (%) mT fit pe

T fit pνT fit
Z/γ∗ → ee 0.139±0.014 1.0 2.0 0.5
W → τν 0.93±0.01 0.6 0.6 0.6
Hadronic jets 0.39±0.14 3.9 1.9 4.3
Total 1.46±0.14 4.0 2.8 4.4

and pνT distributions. The fits minimize − lnL , where the
likelihood L is given by

L =
N

∏
i=1

e−mimni
i

ni!
, (36)

where the product is over N bins in the fit region with ni entries
(from data) and mi expected entries (from the template) in the
ith bin. The template is normalized to the data in the fit region.
The likelihood is a function of MW , where MW is defined by
the relativistic Breit-Wigner mass distribution

dσ
dm

∝
m2

(m2 −M2
W )2 +m4Γ2

W/M2
W
, (37)

where m is the invariant mass of the propagator. We assume
the standard model W boson width ΓW = 2094±2 MeV. The
uncertainty on MW resulting from δΓW = 2 MeV is negligible.

A. Fit Results

The mT fit is performed in the range 65 < mT < 90 GeV.
Figure 36 shows the results of the mT fit for the W → µν and
W → eν channels while a summary of the 68% confidence un-
certainty associated with the fit is shown in Table IX. The pℓT
and pνT fits are performed in the ranges 32< pℓT < 48 GeV and
32 < pνT < 48 GeV, respectively, and are shown in Figs. 37
and 38, respectively. The uncertainties for the pℓT and pνT
fits are shown in Tables X and XI, respectively. The differ-
ences between data and simulation for the three fits, divided
by the statistical uncertainties on the predictions, are shown in
Figs. 39-41 and the fit results are summarized in Table XII.

We utilize the best-linear-unbiased-estimator (BLUE) [61]
algorithm to combine individual fits. Each source of system-
atic uncertainty is assumed to be independent from all other
sources of uncertainty within a given fit. We perform sim-
ulated experiments [51] to estimate the statistical correlation
between fits to the mT , pℓT , and pνT distributions (Table XIII).

Combining the MW fits to the mT distributions in muon and
electron channels, we obtain

 (GeV)Tm
60 70 80 90 100

Ev
en

ts
 / 

0.
5 

G
eV

0

5000

10000

15000

 (GeV)Tm
60 70 80 90 100

Ev
en

ts
 / 

0.
5 

G
eV

0

5000

10000

15000 νµ →W 

/dof = 58 / 482χ

 (GeV)Tm
60 70 80 90 100

Ev
en

ts
 / 

0.
5 

G
eV

0

5000

10000

 (GeV)Tm
60 70 80 90 100

Ev
en

ts
 / 

0.
5 

G
eV

0

5000

10000
ν e→W 

/dof = 52 / 482χ

FIG. 36: Distributions of mT for W boson decays to µν (top) and
eν (bottom) final states in simulated (histogram) and experimen-
tal (points) data. The simulation corresponds to the maximum-
likelihood value of MW and includes backgrounds (shaded). The
likelihood is computed using events between the two arrows.

TABLE IX: Uncertainties on MW (in MeV) as resulting from
transverse-mass fits in the W → µν and W → eν samples. The last
column reports the portion of the uncertainty that is common in the
µν and eν results.

mT fit uncertainties
Source W → µν W → eν Common
Lepton energy scale 7 10 5
Lepton energy resolution 1 4 0
Lepton efficiency 0 0 0
Lepton tower removal 2 3 2
Recoil scale 5 5 5
Recoil resolution 7 7 7
Backgrounds 3 4 0
PDFs 10 10 10
W boson pT 3 3 3
Photon radiation 4 4 4
Statistical 16 19 0
Total 23 26 15

C
D

F,
 P

hy
s.

 R
ev

. D
 8

9,
 0

72
00

3 
(2

01
4)

, a
rX

iv
:1

31
1.

08
94

  

 
!   most precise results from Tevatron 

!   Jacobean peak in MT and pT,l in W→lνl  
!   ΔMW=16 MeV  
!   accuracy: 0.02% !! 
!   crucial: lepton energy scale and 

resolution, PDFs uncertainty 
!   LHC: no result so far 

!   (optimistic) scenarios: [arXiv:1310.6708] 

!   very challenging ! ?  
PDFs, momentum scale, hadronic recoil model, pile-up at high L? 

12 Study of Electroweak Interactions at the Energy Frontier

�MW [MeV] LHCp
s [TeV] 8 14 14

L[ fb�1] 20 300 3000

PDF 10 5 3

QED rad. 4 3 2

pT (W ) model 2 1 1

other systematics 10 5 3

W statistics 1 0.2 0

Total 15 8 5

Table 1-5. Current and target uncertainties in the measurement of MW at the LHC.

1.2.2.3 Experimental aspects: sin2 ✓`e↵

At hadron colliders, investigations around the Z resonance in single neutral-current vector-boson, qq̄ !
�, Z ! l+l�, with charged leptons l in the final state, allow a precise measurement of the electroweak mixing
angle from the forward-backward asymmetry AFB. The results of a measurement of sin2 ✓leff at the Tevatron
by the CDF and D0 collaborations and at the LHC by the ATLAS and CMS collaborations are presented
in Table 1-6 and Table 1-7, respectively.

At the Tevatron, because the quark direction is better defined for p̄p than for pp collisions, the measurement of
sin2 ✓le↵ is less sensitive to PDF uncertainties and higher order QCD corrections. In addition, three significant
improvements have been recently introduced in the analysis at CDF. The first is the introduction of the event
weighting technique [86], which to first order results in the cancellation of acceptance errors and also reduces
the statistical errors by 20%. The second is the introduction of momentum scale corrections [87], which
remove the bias in the determination of muon momenta, and the third is the consideration of electroweak
radiative corrections using Zfitter [88]. Therefore, smaller error bars are expected for the final analysis of
the full Run II Tevatron data as shown in Table 1-6. The errors in the e+e� channel are smaller than
in the µ+µ� channel, if forward electrons (i.e. large cos ✓) are included in the analysis. Based on the
recent improvements in the CDF analysis, we expect similar errors with the full Run II data set at D0.
The recent CDF measurement [88] with an e+e� sample corresponding to 2.1 fb�1 of integrated luminosity
yields (statistical and systematic errors are added linearly): sin2 ✓le↵ = 0.2328 ± 0.0011. D0 measures
sin2 ✓le↵ = 0.2309 ± 0.0008 (stat) ±0.0006 (syst) [89] using an e+e� sample corresponding to 5.0 fb�1 of
integrated luminosity.

At the LHC, the measurement of the forward-backward asymmetry AFB at the Z boson pole is complicated
by the fact that the pp initial state dilutes the AFB in the qq̄ collision. As a result, the measurement
is sensitive to the PDFs. Table 1-7 shows the uncertainties from the current LHC analyses. Systematic
uncertainties due to experimental e↵ects will very likely reduce with higher statistics as e�ciencies and
resolutions are better measured using control samples. In order to exploit this potential, however, a significant
improvement in the understanding of PDFs will be required. We note that the PDF uncertainty will need
to reduce by a factor of ⇠ 7 for the LHC measurement of sin2 ✓le↵ to have precision comparable to the LEP
and SLC measurements. A factor of 2 reduction in the systematic uncertainty due to missing higher order
corrections will also be required. In the following we discuss in more detail the challenges involved in reaching
the target uncertainties shown in Table 1-7 based on the experience from the recent ATLAS analysis.
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TABLE VIII: Background fractions from various sources in the W →
eν data set, and the corresponding uncertainties on the mT , pµ

T , and
pνT fits for MW .

Fraction of δMW (MeV)
Source W → eν data (%) mT fit pe

T fit pνT fit
Z/γ∗ → ee 0.139±0.014 1.0 2.0 0.5
W → τν 0.93±0.01 0.6 0.6 0.6
Hadronic jets 0.39±0.14 3.9 1.9 4.3
Total 1.46±0.14 4.0 2.8 4.4

and pνT distributions. The fits minimize − lnL , where the
likelihood L is given by

L =
N

∏
i=1

e−mimni
i

ni!
, (36)

where the product is over N bins in the fit region with ni entries
(from data) and mi expected entries (from the template) in the
ith bin. The template is normalized to the data in the fit region.
The likelihood is a function of MW , where MW is defined by
the relativistic Breit-Wigner mass distribution

dσ
dm

∝
m2

(m2 −M2
W )2 +m4Γ2

W/M2
W
, (37)

where m is the invariant mass of the propagator. We assume
the standard model W boson width ΓW = 2094±2 MeV. The
uncertainty on MW resulting from δΓW = 2 MeV is negligible.

A. Fit Results

The mT fit is performed in the range 65 < mT < 90 GeV.
Figure 36 shows the results of the mT fit for the W → µν and
W → eν channels while a summary of the 68% confidence un-
certainty associated with the fit is shown in Table IX. The pℓT
and pνT fits are performed in the ranges 32< pℓT < 48 GeV and
32 < pνT < 48 GeV, respectively, and are shown in Figs. 37
and 38, respectively. The uncertainties for the pℓT and pνT
fits are shown in Tables X and XI, respectively. The differ-
ences between data and simulation for the three fits, divided
by the statistical uncertainties on the predictions, are shown in
Figs. 39-41 and the fit results are summarized in Table XII.

We utilize the best-linear-unbiased-estimator (BLUE) [61]
algorithm to combine individual fits. Each source of system-
atic uncertainty is assumed to be independent from all other
sources of uncertainty within a given fit. We perform sim-
ulated experiments [51] to estimate the statistical correlation
between fits to the mT , pℓT , and pνT distributions (Table XIII).

Combining the MW fits to the mT distributions in muon and
electron channels, we obtain
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FIG. 36: Distributions of mT for W boson decays to µν (top) and
eν (bottom) final states in simulated (histogram) and experimen-
tal (points) data. The simulation corresponds to the maximum-
likelihood value of MW and includes backgrounds (shaded). The
likelihood is computed using events between the two arrows.

TABLE IX: Uncertainties on MW (in MeV) as resulting from
transverse-mass fits in the W → µν and W → eν samples. The last
column reports the portion of the uncertainty that is common in the
µν and eν results.

mT fit uncertainties
Source W → µν W → eν Common
Lepton energy scale 7 10 5
Lepton energy resolution 1 4 0
Lepton efficiency 0 0 0
Lepton tower removal 2 3 2
Recoil scale 5 5 5
Recoil resolution 7 7 7
Backgrounds 3 4 0
PDFs 10 10 10
W boson pT 3 3 3
Photon radiation 4 4 4
Statistical 16 19 0
Total 23 26 15
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!   most precise results from Tevatron 

!   Jacobean peak in MT and pT,l in W→lνl  
!   ΔMW=16 MeV  
!   accuracy: 0.02% !! 
!   crucial: lepton energy scale and 

resolution, PDFs uncertainty 
!   LHC: no result so far 

!   (optimistic) scenarios: [arXiv:1310.6708] 

!   very challenging ! ?  
PDFs, momentum scale, hadronic recoil model, pile-up at high L? 

12 Study of Electroweak Interactions at the Energy Frontier

�MW [MeV] LHCp
s [TeV] 8 14 14

L[ fb�1] 20 300 3000

PDF 10 5 3

QED rad. 4 3 2

pT (W ) model 2 1 1

other systematics 10 5 3

W statistics 1 0.2 0

Total 15 8 5

Table 1-5. Current and target uncertainties in the measurement of MW at the LHC.

1.2.2.3 Experimental aspects: sin2 ✓`e↵

At hadron colliders, investigations around the Z resonance in single neutral-current vector-boson, qq̄ !
�, Z ! l+l�, with charged leptons l in the final state, allow a precise measurement of the electroweak mixing
angle from the forward-backward asymmetry AFB. The results of a measurement of sin2 ✓leff at the Tevatron
by the CDF and D0 collaborations and at the LHC by the ATLAS and CMS collaborations are presented
in Table 1-6 and Table 1-7, respectively.

At the Tevatron, because the quark direction is better defined for p̄p than for pp collisions, the measurement of
sin2 ✓le↵ is less sensitive to PDF uncertainties and higher order QCD corrections. In addition, three significant
improvements have been recently introduced in the analysis at CDF. The first is the introduction of the event
weighting technique [86], which to first order results in the cancellation of acceptance errors and also reduces
the statistical errors by 20%. The second is the introduction of momentum scale corrections [87], which
remove the bias in the determination of muon momenta, and the third is the consideration of electroweak
radiative corrections using Zfitter [88]. Therefore, smaller error bars are expected for the final analysis of
the full Run II Tevatron data as shown in Table 1-6. The errors in the e+e� channel are smaller than
in the µ+µ� channel, if forward electrons (i.e. large cos ✓) are included in the analysis. Based on the
recent improvements in the CDF analysis, we expect similar errors with the full Run II data set at D0.
The recent CDF measurement [88] with an e+e� sample corresponding to 2.1 fb�1 of integrated luminosity
yields (statistical and systematic errors are added linearly): sin2 ✓le↵ = 0.2328 ± 0.0011. D0 measures
sin2 ✓le↵ = 0.2309 ± 0.0008 (stat) ±0.0006 (syst) [89] using an e+e� sample corresponding to 5.0 fb�1 of
integrated luminosity.

At the LHC, the measurement of the forward-backward asymmetry AFB at the Z boson pole is complicated
by the fact that the pp initial state dilutes the AFB in the qq̄ collision. As a result, the measurement
is sensitive to the PDFs. Table 1-7 shows the uncertainties from the current LHC analyses. Systematic
uncertainties due to experimental e↵ects will very likely reduce with higher statistics as e�ciencies and
resolutions are better measured using control samples. In order to exploit this potential, however, a significant
improvement in the understanding of PDFs will be required. We note that the PDF uncertainty will need
to reduce by a factor of ⇠ 7 for the LHC measurement of sin2 ✓le↵ to have precision comparable to the LEP
and SLC measurements. A factor of 2 reduction in the systematic uncertainty due to missing higher order
corrections will also be required. In the following we discuss in more detail the challenges involved in reaching
the target uncertainties shown in Table 1-7 based on the experience from the recent ATLAS analysis.
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sin2 ✓le↵ is less sensitive to PDF uncertainties and higher order QCD corrections. In addition, three significant
improvements have been recently introduced in the analysis at CDF. The first is the introduction of the event
weighting technique [86], which to first order results in the cancellation of acceptance errors and also reduces
the statistical errors by 20%. The second is the introduction of momentum scale corrections [87], which
remove the bias in the determination of muon momenta, and the third is the consideration of electroweak
radiative corrections using Zfitter [88]. Therefore, smaller error bars are expected for the final analysis of
the full Run II Tevatron data as shown in Table 1-6. The errors in the e+e� channel are smaller than
in the µ+µ� channel, if forward electrons (i.e. large cos ✓) are included in the analysis. Based on the
recent improvements in the CDF analysis, we expect similar errors with the full Run II data set at D0.
The recent CDF measurement [88] with an e+e� sample corresponding to 2.1 fb�1 of integrated luminosity
yields (statistical and systematic errors are added linearly): sin2 ✓le↵ = 0.2328 ± 0.0011. D0 measures
sin2 ✓le↵ = 0.2309 ± 0.0008 (stat) ±0.0006 (syst) [89] using an e+e� sample corresponding to 5.0 fb�1 of
integrated luminosity.

At the LHC, the measurement of the forward-backward asymmetry AFB at the Z boson pole is complicated
by the fact that the pp initial state dilutes the AFB in the qq̄ collision. As a result, the measurement
is sensitive to the PDFs. Table 1-7 shows the uncertainties from the current LHC analyses. Systematic
uncertainties due to experimental e↵ects will very likely reduce with higher statistics as e�ciencies and
resolutions are better measured using control samples. In order to exploit this potential, however, a significant
improvement in the understanding of PDFs will be required. We note that the PDF uncertainty will need
to reduce by a factor of ⇠ 7 for the LHC measurement of sin2 ✓le↵ to have precision comparable to the LEP
and SLC measurements. A factor of 2 reduction in the systematic uncertainty due to missing higher order
corrections will also be required. In the following we discuss in more detail the challenges involved in reaching
the target uncertainties shown in Table 1-7 based on the experience from the recent ATLAS analysis.

Community Planning Study: Snowmass 2013

[CDF, D0, Phys. Rev. D 88, 052018 (2013)]

[CDF, Phys. Rev. D 89, 072003 (2014)]

�r = � 3↵c2W
16⇡s4W

m2
t

M2
W

+
11↵

48⇡s2W
ln

M2
H

M2
W

+ . . .

Measurements of MW
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Fit is overconstrained 

‣ all free parameters measured

• most input from e+e− colliders

• but crucial input from  
hadron colliders:
- mt : 0.4%

- MW :  0.02%

- MH :   0.2%

• remarkable experimental  
precision (<1%)

‣ require precision calculations!

Roman Kogler The global electroweak fit 

2 Update of the global electroweak fit 6

Free w/o exp. input w/o exp. input
Parameter Input value

in fit
Fit Result

in line in line, no theo. unc

MH [GeV](�) 125.14± 0.24 yes 125.14± 0.24 93+25
�21 93+24

�20

MW [GeV] 80.385± 0.015 – 80.364± 0.007 80.358± 0.008 80.358± 0.006

�W [GeV] 2.085± 0.042 – 2.091± 0.001 2.091± 0.001 2.091± 0.001

MZ [GeV] 91.1875± 0.0021 yes 91.1880± 0.0021 91.200± 0.011 91.2000± 0.010

�Z [GeV] 2.4952± 0.0023 – 2.4950± 0.0014 2.4946± 0.0016 2.4945± 0.0016

�0
had [nb] 41.540± 0.037 – 41.484± 0.015 41.475± 0.016 41.474± 0.015

R0
` 20.767± 0.025 – 20.743± 0.017 20.722± 0.026 20.721± 0.026

A0,`
FB 0.0171± 0.0010 – 0.01626± 0.0001 0.01625± 0.0001 0.01625± 0.0001

A`
(?) 0.1499± 0.0018 – 0.1472± 0.0005 0.1472± 0.0005 0.1472± 0.0004

sin2✓`e↵(QFB) 0.2324± 0.0012 – 0.23150± 0.00006 0.23149± 0.00007 0.23150± 0.00005

Ac 0.670± 0.027 – 0.6680± 0.00022 0.6680± 0.00022 0.6680± 0.00016

Ab 0.923± 0.020 – 0.93463± 0.00004 0.93463± 0.00004 0.93463± 0.00003

A0,c
FB 0.0707± 0.0035 – 0.0738± 0.0003 0.0738± 0.0003 0.0738± 0.0002

A0,b
FB 0.0992± 0.0016 – 0.1032± 0.0004 0.1034± 0.0004 0.1033± 0.0003

R0
c 0.1721± 0.0030 – 0.17226+0.00009

�0.00008 0.17226± 0.00008 0.17226± 0.00006

R0
b 0.21629± 0.00066 – 0.21578± 0.00011 0.21577± 0.00011 0.21577± 0.00004

mc [GeV] 1.27+0.07
�0.11 yes 1.27+0.07

�0.11 – –

mb [GeV] 4.20+0.17
�0.07 yes 4.20+0.17

�0.07 – –

mt [GeV] 173.34± 0.76 yes 173.81± 0.85(5) 177.0+2.3
�2.4

(5) 177.0± 2.3

�↵
(5)
had(M

2
Z)

(†4) 2757± 10 yes 2756± 10 2723± 44 2722± 42

↵s(M2
Z) – yes 0.1196± 0.0030 0.1196± 0.0030 0.1196± 0.0028

(�)Average of the ATLAS [48] and CMS [49] measurements assuming no correlation of the systematic uncertainties.
(?)Average of the LEP and SLD A` measurements [12], used as two measurements in the fit.
(5)The theoretical top mass uncertainty of 0.5 GeV is excluded.
(†)In units of 10�5.
(4)Rescaled due to ↵s dependence.

Table 2: Input values and fit results for the observables used in the global electroweak fit. The first and
second columns list respectively the observables/parameters used in the fit, and their experimental values
or phenomenological estimates (see text for references). The third column indicates whether a parameter
is floating in the fit. The fourth column quotes the results of the fit including all experimental data. In
the fifth column the fit results are given without using the corresponding experimental or phenomenological
estimate in the given row (indirect determination). The last column shows for illustration the result using
the same fit setup as in the fifth column, but ignoring all theoretical uncertainties. The nuisance parameters
that are used to parameterise theoretical uncertainties are given in Table 1.

LHC

Tev.

Tev.+LHC

LEP

LEP

SLD

SLD

Experimental Input
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All observables calculated at 2-loop level 

‣MW : full EW one- and two-loop calculation  
of fermionic and bosonic contributions 
[M Awramik et al., PRD 69, 053006 (2004), PRL 89, 241801 (2002)] 
+ 4-loop QCD correction [Chetyrkin et al., PRL 97, 102003 (2006)]

‣ sin2θleff : same order as MW, calculations for leptons and all quark flavours 
[M Awramik et al, PRL 93, 201805 (2004), JHEP 11, 048 (2006), Nucl. Phys. B813, 174 (2009)]

‣ partial widths Γf : fermionic corrections known to two-loop level for all 
flavours (includes predictions for σ0had) [A. Freitas, JHEP04, 070 (2014)]

‣ Radiator functions: QCD corrections at N3LO [Baikov et al., PRL 108, 222003 (2012)]

‣ ΓW : only one-loop EW corrections available, negligible impact on fit  
[Cho et al, JHEP 1111, 068 (2011)]

‣ all calculations include one- and two-loop QCD corrections  
and leading terms of higher order corrections

Roman Kogler The global electroweak fit 

Calculations A. Freitas et al. / Physics Letters B 495 (2000) 338–346 341

Fig. 2. Two-loop vertex diagrams containing a triangle subgraph,
which require a careful treatment of γ5 in D dimensions.

a finite contribution, so that it can be evaluated in
four dimensions without further complications. 1 The
fermion line appearing in the second loop also yields
an ϵ-tensor contribution, which results, after contrac-
tion with the ϵ-tensor from the triangle subgraph, in a
non-vanishing contribution to the result for #r .

As mentioned above, we perform the renormaliza-
tion within the on-shell scheme. It involves a one-loop
subrenormalization of the Faddeev–Popov ghost sec-
tor of the theory, which is associated with the gauge-
fixing part. The gauge-fixing part is kept invariant un-
der renormalization. For technical convenience, we
manage this by a renormalization of the gauge pa-
rameters in such a way that it precisely cancels the
renormalization of the parameters and fields in the
gauge-fixing Lagrangian. 2 To this end we have al-
lowed two different bare gauge parameters for both W
and Z, ξW,Z

1 and ξ
W,Z
2 , and also mixing gauge parame-

ters, ξγ Z and ξZγ . The renormalized parameters com-
ply with the Rξ gauge, with one free gauge parameter
for each gauge boson. With this prescription no coun-

1 For recent discussions of practical ways of treating γ5 in
higher-order calculations, see also Refs. [28,29].

2 An alternative way of achieving that the gauge-fixing sector
does not give rise to counterterm contributions would have been to
add the gauge-fixing part to the Lagrangian only after renormaliza-
tion, in which case the renormalized gauge transformations would
have to be used.

terterm contributions arise from the gauge-fixing sec-
tor. Starting at the two-loop level, counterterm contri-
butions from the ghost sector have to be taken into ac-
count in the calculation of physical amplitudes. They
follow from the variation of the gauge-fixing terms Fa

under infinitesimal gauge transformations. We have
derived all the counterterms arising from the ghost
sector (extending the results of Ref. [30] to a gen-
eral Rξ gauge) and implemented them into the pro-
gram FeynArts. In this way we could verify the finite-
ness of individual (gauge-parameter-dependent) build-
ing blocks (e.g., the W- and the Z-boson self-energy)
as a further check of the calculation.

Concerning the mass renormalization of unstable
particles, from two-loop order on it makes a difference
whether the mass is defined according to the real part
of the complex pole of the S matrix,

(4)M2 = !M2 − i !M !Γ ,

or according to the pole of the real part of the
propagator. In Eq. (4) M denotes the complex pole
of the S matrix and !M , !Γ the corresponding mass and
width of the unstable particle. We use the symbol M̃

for the real pole.
In the context of the present calculation, these

considerations are relevant to the renormalization of
the gauge-boson masses, MW and MZ. The two-loop
mass counterterms according to the definition of the
mass as the real part of the complex pole are given by

δ !M2
W,(2) = Re

{
ΣW

T,(2)

(
M2

W
)}

− δM2
W,(1) δZ

W
(1)

(5)+ Im
{
ΣW′

T,(1)

(
M2

W
)}

Im
{
ΣW

T,(1)

(
M2

W
)}

,

δ !M2
Z,(2) = Re

{
ΣZZ

T,(2)

(
M2

Z
)} − δM2

Z,(1) δZ
ZZ
(1)

+ M2
Z

4
(
δZ

γ Z
(1)

)2 +
(
Im

{
Σ

γ Z
T,(1)

(
M2

Z
)})2

M2
Z

(6)+ Im
{
ΣZZ′

T,(1)

(
M2

Z
)}

Im
{
ΣZZ

T,(1)

(
M2

Z
)}

,

where ΣT,(1), ΣT,(2) denote the transverse parts of
the one-loop and two-loop self-energies (the terms
from subloop renormalization are understood to be
contained in the two-loop self-energies), and Σ ′

T,(1)
means the derivative of the one-loop self-energy with
respect to the external momentum squared. Field
renormalization constants are indicated as δZV . The
relations to the mass counterterms according to the
real-pole definition, δM̃2

W,(2) and δM̃2
Z,(2), are given

loop momenta. When both momenta are ‘‘soft’’ (! MW),
as in Fig. 1(b), the propagators of the W and Z bosons are
expanded leading to a correction of order !=M4

W in the
effective theory. For one momentum soft and one ‘‘hard’’
("MW), as in Figs. 1(c) and 1(d), corrections of either
order, !=M2

W or 1=M4
W in the effective theory, are gen-

erated. The contribution to the matching coefficient
comes only from the region where both momenta are
hard, as in Fig. 1(e). In this case, all of the light particle
masses and momenta should be put to zero. By these
arguments it can be shown that !r can be obtained by
simply taking the sum of all the diagrams and putting all
external momenta and light masses to zero. The proce-
dure should generate no spurious infrared divergences,
while the physical divergences connected with the photon
should be contained in the corrections of the effective
theory. As is known, the Fermi theory corrections are
finite; therefore, the !r correction obtained as above
should also be finite.

Previous calculations of !r have been based on a
different method of factorization originally devised in
[11]. This procedure consists of subtracting from the
infrared divergent SM diagrams the respective Fermi
theory diagrams in Pauli-Villars regularization. The dif-
ference is well defined in the limit of zero light masses
and external momenta. It turns out, however, that the
QEDWard identity, which is responsible for the finiteness
of the corrections in the Fermi theory, implies in this case
the vanishing of the sum of the subtracted diagrams. This
proves that both procedures are equivalent.

The evaluation of two loop corrections to a four-
fermion process requires the full second order renormali-
zation of the SM Lagrangian in all but the Higgs sector,
where first order suffices. The comparison with experi-
ment imposes the use of on-shell parameters for the final
result. Throughout this work the on-shell scheme was

used, with a procedure similar to the one described in
[5]. The only substantial difference concerns the treat-
ment of tadpoles.

It is known that gauge invariance of mass counterterms
requires inclusion of tadpoles [12,13] (at the two loop
level this has been explicitly shown in [14]). In this case,
however, one cannot use one-particle-irreducible (1PI)
Green functions. In order to have gauge invariant counter-
terms and 1PI Green functions only, a special procedure
was designed. An additional renormalization constant for
the bare vacuum expectation value v0, denoted Zv, has
been introduced and explicitly split from the bare masses

v0 ! v0Z
1=2
v ; (4)

M0
W;Z ! M0

W;ZZ
1=2
v : (5)

The term linear in the Higgs field H in the Lagrangian

T0H0 # M0
Ws

0
W

e0
$M0

H%2Z1=2
v $Zv & 1%H0 (6)

is then used to determine Zv, through the requirement that
tadpoles are canceled. It can be proved [12,15] that the
bare masses are gauge invariant in this case (an equiva-
lent procedure which makes use of the effective potential
has been used in [16]).

The calculation of the two loop bosonic contributions
to muon decay was performed by means of a completely
automated system. The diagram generation stage was
done by the C'' library DiaGen [17]. The tensor reduc-
tion of two loop propagator diagrams was accomplished
with the algorithm described in [18], whereas vacuum
diagrams were treated with integration by parts identities
[19]. For algebraic manipulations, the program FORM [20]
was used. The two loop two-point integrals were numeri-
cally evaluated with single integral representations of
the package S2LSE [21]. The latter was modified for qua-
druple precision, which was needed due to large cancel-
lations (independent terms grow as M8

H, while the result
behaves as M2

H).
The size of the software required several tests. The

following algebraic checks were performed: ultraviolet
and infrared finiteness, by cancellation of poles in dimen-
sional regularization; gauge invariance, by independence
of the three gauge parameters of the general R" gauge for
the SM; Slavnov-Taylor identities for two-point func-
tions, as given in [18], both for on-shell integrals and
by expansion in the external momentum to second order.

Several numerical tests were also done: (i) All of
the master integrals were evaluated independently by
means of deep mass difference and large-mass expan-
sions. (ii) Each of the two-point on-shell diagrams was
calculated separately with the help of small-momentum
and different large-mass expansions. (iii) The result of
[14] for the W and Z mass counterterms was reproduced
to precision dictated by the order of the expansions

FIG. 1. A typical muon decay diagram (a) and the contribu-
tions to its large mass expansion according to the momenta
(b) k1-soft, k2-soft; (c) soft-hard; (d) hard-soft; (e) hard-hard.
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Estimation 

‣ assume that perturbative expansion follows a geometric series (an = a rn) :  
 

‣ other methods (e.g. scale  
variation) not always feasible

• but give similar results 

‣ theoretical uncertainties 
smaller by a factor of 3-6 
than measurements

• for the first time,  
reasonable estimate  
for all observables

‣ important missing higher order terms:

• O(α3), O(α2αs), O(ααs2), O(α2bos) (in some cases), O(αs5) (rad. functions)
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Theoretical Uncertainties
J

H
E

P
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1
(

2
0

0
6

)
0

4
8

rections in ZFITTER, uses the MS definition for ∆ρ, which is numerically larger than the

leading m2
t term, so that the resummation effects of ∆ρMS are rather large. Finally, Zfit-

ter versions before 6.40 use an outdated implementation of the QCD corrections. Since

all these contributions are non-negligible at the current level of precision, it is interesting

to study them separately.

In particular, using the results of section 3.1 the effect of the truncated top-mass

expansion is shown in Tab. 3 (b)2. It turns out that the expansion converges quite well

for realistic values of mt and MH. However, the terms beyond the order m2
t induce a

difference of 4.3% in the two-loop corrections with top-bottom loops, corresponding to a

shift of about 0.2 × 10−4 in sin2 θlept
eff , which is roughly a quarter of the total difference

reported in Tab. 3 (a). As a cross-check, also the result for very large values of mt and MH

are shown in Tab. 3 (b), to illustrate that in this case the series converges much faster.

5.2 Error estimate

While the inclusion of the fermionic two-loop corrections is a substantial improvement of

the prediction of sin2 θlept
eff in the Standard Model, uncertainties from missing higher order

contributions can still be sizeable. Here we try to give an estimate of the error induced

by these unknown contributions. The most relevant missing higher order contributions are

corrections of the order O(α2αs) beyond the leading m4
t term, O(α3) beyond the leading

m6
t term and O(αα3

s ). Since the final prediction for sin2 θlept
eff is based on Gµ as input, the

loop effects in the both quantities ∆r (for the computation of MW) and ∆κ (for the Zl+l−

vertex corrections) need to be considered.

When combining the two form factors, it turns out that there are some cancellations

between the known corrections to MW and the Z vertex. It is expected that similar

cancellations occur when adding an additional QCD loop, since QCD corrections enter

with the same relative sign in the corrections to MW and the Z vertex. Since the dominant

missing higher order effects are contributions with an additional QCD loop, it is assumed in

the following that these cancellations are natural and it is justified to study the theoretical

error of both quantities ∆r and ∆κ in conjunction.

A simple method to estimate the higher order uncertainties is based on the assumption

that the perturbation series follows roughly a geometric progression. This presumption

implies relations like

O(α2αs) =
O(α2)

O(α)
O(ααs). (5.4)

From this one obtains the error estimates in the second column of Tab. 4 for the different

higher order contributions, which are given for a range of the Higgs MH mass between 10

GeV and 1000 GeV. To account for possible deviations from the geometric series behavior,

an ad-hoc overall factor
√

2 was included in all error determined via this method.

Alternatively, the error from a higher-order QCD loop can be assessed by varying the

scale of the strong coupling constant αs or the top-quark mass mt in the MS scheme in

2As a by-product of this comparison, we found a typo in Ref. [45], where a term 3

2
m2

t/(M
2
Zs2

W) log c2
W is

missing in the expression for MH ≫ mt.

– 21 –

for example: 
important

new in fit
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Free parameters 
‣MZ, Δαhad, MH, mc, mb, mt, αs

• GF is fixed to world average (PDG)
• αs is unconstrained → independent measurement

Treatment of theory uncertainties 
‣ included as additional free parameters (10 parameters)
‣ different ways on how to treat their effect on the likelihood

• Rfit : flat likelihood within uncertainties (box potential), corresponds to 
linear addition of uncertainties

• Gaussian likelihood : corresponds to quadratic sum of uncertainties
Minimization 
‣ pre-fitter : genetic algorithm (useful for many parameter fits)
‣Minuit (standard, others are used as well)
‣ test of results using MC toy data

Roman Kogler The global electroweak fit 

Fit method
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disclaimer:  
‣ there are several groups who routinely perform the electroweak fit 
‣ there are small differences in the methodology, the results agree very well
‣ I will focus on results from the Gfitter group (www.cern.ch/gfitter)
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The global electroweak fit
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2 Update of the global electroweak fit 6

Free w/o exp. input w/o exp. input
Parameter Input value

in fit
Fit Result

in line in line, no theo. unc

MH [GeV](�) 125.14± 0.24 yes 125.14± 0.24 93+25
�21 93+24

�20

MW [GeV] 80.385± 0.015 – 80.364± 0.007 80.358± 0.008 80.358± 0.006

�W [GeV] 2.085± 0.042 – 2.091± 0.001 2.091± 0.001 2.091± 0.001

MZ [GeV] 91.1875± 0.0021 yes 91.1880± 0.0021 91.200± 0.011 91.2000± 0.010

�Z [GeV] 2.4952± 0.0023 – 2.4950± 0.0014 2.4946± 0.0016 2.4945± 0.0016

�0
had [nb] 41.540± 0.037 – 41.484± 0.015 41.475± 0.016 41.474± 0.015

R0
` 20.767± 0.025 – 20.743± 0.017 20.722± 0.026 20.721± 0.026

A0,`
FB 0.0171± 0.0010 – 0.01626± 0.0001 0.01625± 0.0001 0.01625± 0.0001

A`
(?) 0.1499± 0.0018 – 0.1472± 0.0005 0.1472± 0.0005 0.1472± 0.0004

sin2✓`e↵(QFB) 0.2324± 0.0012 – 0.23150± 0.00006 0.23149± 0.00007 0.23150± 0.00005

Ac 0.670± 0.027 – 0.6680± 0.00022 0.6680± 0.00022 0.6680± 0.00016

Ab 0.923± 0.020 – 0.93463± 0.00004 0.93463± 0.00004 0.93463± 0.00003

A0,c
FB 0.0707± 0.0035 – 0.0738± 0.0003 0.0738± 0.0003 0.0738± 0.0002

A0,b
FB 0.0992± 0.0016 – 0.1032± 0.0004 0.1034± 0.0004 0.1033± 0.0003

R0
c 0.1721± 0.0030 – 0.17226+0.00009

�0.00008 0.17226± 0.00008 0.17226± 0.00006

R0
b 0.21629± 0.00066 – 0.21578± 0.00011 0.21577± 0.00011 0.21577± 0.00004

mc [GeV] 1.27+0.07
�0.11 yes 1.27+0.07

�0.11 – –

mb [GeV] 4.20+0.17
�0.07 yes 4.20+0.17

�0.07 – –

mt [GeV] 173.34± 0.76 yes 173.81± 0.85 177.0+2.3
�2.4

(5) 177.0± 2.3(5)

�↵
(5)
had(M

2
Z)

(†4) 2757± 10 yes 2756± 10 2723± 44 2722± 42

↵s(M2
Z) – yes 0.1196± 0.0030 0.1196± 0.0030 0.1196± 0.0028

(�)Average of the ATLAS [48] and CMS [49] measurements assuming no correlation of the systematic uncertainties.
(?)Average of the LEP and SLD A` measurements [12], used as two measurements in the fit.
(5)The theoretical top mass uncertainty of 0.5 GeV is excluded.
(†)In units of 10�5.
(4)Rescaled due to ↵s dependence.

Table 2: Input values and fit results for the observables used in the global electroweak fit. The first and
second columns list respectively the observables/parameters used in the fit, and their experimental values
or phenomenological estimates (see text for references). The third column indicates whether a parameter
is floating in the fit. The fourth column quotes the results of the fit including all experimental data. In
the fifth column the fit results are given without using the corresponding experimental or phenomenological
estimate in the given row (indirect determination). The last column shows for illustration the result using
the same fit setup as in the fifth column, but ignoring all theoretical uncertainties. The nuisance parameters
that are used to parameterise theoretical uncertainties are given in Table 1.

[Gfitter group, EPJC 74, 3046 (2014)]

20



totσ - O) / indirect(O
-3 -2 -1 0 1 2 3

)2
Z

(M(5)
hadα∆

)2
Z

(Msα

tm
b
0R
c
0R

0,b
FBA

0,c
FBA

bA
cA
)

FB
(Qlept

effΘ2sin
(SLD)lA
(LEP)lA

0,l
FBA
lep
0R

0
hadσ

ZΓ

ZM
WΓ

WM
HM

Global EW fit
Indirect determination
Measurement

Roman Kogler The global electroweak fit 

SM Fit Results
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black: direct measurement (data) 
orange: full fit  
light-blue: fit excluding input from row 

‣ goodness of fit, p-value: 
χ2min= 17.8  Prob(χ2min, 14) = 21% 
Pseudo experiments: 21 ± 2 (theo)%
• χ2min(Z widths in 1-loop) = 18.0

• χ2min(no theory uncertainties) = 18.2

‣ no individual value exceeds 3σ
‣ largest deviations in b-sector:

• A0,bFB with 2.5σ 
→ largest contribution to χ2

‣ small pulls for MH, MZ 
• input accuracies exceed fit requirements



 [GeV]HM
6 10 20 210 210×2 310

LHC average 

 HFit w/o M

 WM
 0,b

FBA

(SLD) lA

(LEP) lA

 0.2±125.1 
 -21
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 -34
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 -263
 +628503

 -24
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 -95
 +254143G fitter SM
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Higgs results
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Δχ2 profile vs MH 
‣ grey band: fit without MH measurement :

• MH = 93+25−21 GeV
• consistent with measurement at 1.3σ
‣ blue line: full SM fit

impact of most sensitive observables 
‣ determination of MH,  

removing all sensitive observables  
except the given one
‣ known tension (3σ)  

between Al(SLD), A0,bFB ,    
and MW clearly visible 



2 Update of the global electroweak fit 8

fit results (fourth column of Tab. 2) with the direct measurements (first column of Tab. 2) in units
of the measurement uncertainty. Also shown is the impact of the two-loop result for the Z partial
widths and the O(↵t↵

3
s) correction to MW , compared to the calculations previously used5 [8]. The

right-hand panel of Fig. 1 displays the comparison of both the global fit result and the direct
measurements with the indirect determination (fifth column of Tab. 2) for each observable in units
of the total uncertainty, defined as the uncertainty of the direct measurement and the indirect
determination added in quadrature. Note that in the case of ↵s(M2

Z) the direct measurement
displayed is the world average value [45], which is otherwise not used in the fit.

The availability of the two-loop corrections to the Z partial widths and �0
had allows the determi-

nation of ↵s(M2
Z) to full NNLO and partial NNNLO level. We find

↵s(M
2
Z) = 0.1196± 0.0028 exp ± 0.0006�

theo

RV,A
± 0.0006�

theo

�i
± 0.0002�

theo

�0

had

= 0.1196± 0.0030 tot , (1)

where the theoretical uncertainties due to missing higher order contributions are significantly larger
than previously estimated [8]. This is largely due to the variation of the full O(↵4

s) terms in the
radiator functions, and to the uncertainties on the Z partial widths and �0

had, not assigned before.

The fit indirectly determines the W mass to be

MW = 80.3584± 0.0046mt ± 0.0030�
theo

mt ± 0.0026MZ
± 0.0018�↵

had

± 0.0020↵S ± 0.0001MH
± 0.0040�

theo

MW
GeV ,

= 80.358± 0.008tot GeV . (2)

providing a result which exceeds the precision of the direct measurement. The di↵erent uncertainty
contributions originate from the uncertainties on the input values of the fit, as quoted in the second
column in Table 2. Simple error-propagation is applied to evaluate their impact on the prediction
of MW . At present, the largest uncertainties are due to mt, both experimental and theoretical,
followed by the theory and MZ uncertainties.

Likewise, the indirect determination of the e↵ective leptonic weak mixing angle, sin2✓`e↵ , gives

sin2✓`e↵ = 0.231488± 0.000024mt ± 0.000016�
theo

mt ± 0.000015MZ
± 0.000035�↵

had

± 0.000010↵S ± 0.000001MH
± 0.000047

�
theo

sin2✓f
e↵

,

= 0.23149± 0.00007tot , (3)

where the largest uncertainty is theoretical followed by the uncertainties on �↵
(5)
had(M

2
Z) and mt.

An important consistency test of the SM is the simultaneous indirect determination of mt and
MW . A scan of the confidence level (CL) profile of MW versus mt is shown in Fig. 2 (top) for
the scenarios where the direct MH measurement is included in the fit (blue) or not (grey). Both
contours agree with the direct measurements (green bands and ellipse for two degrees of freedom).
The bottom panel of Fig. 2 displays the corresponding CL profile for the observable pair sin2✓`e↵ and
MW . The coloured ellipses indicate: green for the direct measurements; grey for the electroweak

5With the exception of R0

b , which was previously taken from [26] and was later corrected. For this comparison
the one-loop result [33] is used.
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more precise than direct measurement (15 MeV)
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Jul '14Δχ2 profile vs MW 
‣ also shown: SM fit with  

minimal input: 
MZ, GF, Δαhad(5)(MZ), αs(MZ),  
MH, and fermion masses
• good consistency
‣MH measurement allows for  

precise constraint on MW

• agreement at 1.4σ
‣ fit result for indirect determination of MW (full fit w/o MW):  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fit results (fourth column of Tab. 2) with the direct measurements (first column of Tab. 2) in units
of the measurement uncertainty. Also shown is the impact of the two-loop result for the Z partial
widths and the O(↵t↵

3
s) correction to MW , compared to the calculations previously used5 [8]. The

right-hand panel of Fig. 1 displays the comparison of both the global fit result and the direct
measurements with the indirect determination (fifth column of Tab. 2) for each observable in units
of the total uncertainty, defined as the uncertainty of the direct measurement and the indirect
determination added in quadrature. Note that in the case of ↵s(M2

Z) the direct measurement
displayed is the world average value [45], which is otherwise not used in the fit.

The availability of the two-loop corrections to the Z partial widths and �0
had allows the determi-

nation of ↵s(M2
Z) to full NNLO and partial NNNLO level. We find
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Z) = 0.1196± 0.0028 exp ± 0.0006�

theo

RV,A
± 0.0006�

theo
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where the theoretical uncertainties due to missing higher order contributions are significantly larger
than previously estimated [8]. This is largely due to the variation of the full O(↵4

s) terms in the
radiator functions, and to the uncertainties on the Z partial widths and �0

had, not assigned before.

The fit indirectly determines the W mass to be
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± 0.0020↵S ± 0.0001MH
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providing a result which exceeds the precision of the direct measurement. The di↵erent uncertainty
contributions originate from the uncertainties on the input values of the fit, as quoted in the second
column in Table 2. Simple error-propagation is applied to evaluate their impact on the prediction
of MW . At present, the largest uncertainties are due to mt, both experimental and theoretical,
followed by the theory and MZ uncertainties.

Likewise, the indirect determination of the e↵ective leptonic weak mixing angle, sin2✓`e↵ , gives

sin2✓`e↵ = 0.231488± 0.000024mt ± 0.000016�
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where the largest uncertainty is theoretical followed by the uncertainties on �↵
(5)
had(M

2
Z) and mt.

An important consistency test of the SM is the simultaneous indirect determination of mt and
MW . A scan of the confidence level (CL) profile of MW versus mt is shown in Fig. 2 (top) for
the scenarios where the direct MH measurement is included in the fit (blue) or not (grey). Both
contours agree with the direct measurements (green bands and ellipse for two degrees of freedom).
The bottom panel of Fig. 2 displays the corresponding CL profile for the observable pair sin2✓`e↵ and
MW . The coloured ellipses indicate: green for the direct measurements; grey for the electroweak

5With the exception of R0

b , which was previously taken from [26] and was later corrected. For this comparison
the one-loop result [33] is used.
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Indirect determination of W mass
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more precise than direct measurement (15 MeV)
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Δχ2 profile vs MW 
‣ also shown: SM fit with  

minimal input: 
MZ, GF, Δαhad(5)(MZ), αs(MZ),  
MH, and fermion masses
• good consistency
‣MH measurement allows for  

precise constraint on MW

• agreement at 1.4σ
‣ fit result for indirect determination of MW (full fit w/o MW):  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Δχ2 profile vs sin2θleff 
‣ all measurements directly  

sensitive to sin2θleff  
removed from fit  
(asymmetries, partial widths)

• good agreement with min input

‣MH measurement allows for  
precise constraint

‣ fit result for indirect determination of sin2θleff : 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fit results (fourth column of Tab. 2) with the direct measurements (first column of Tab. 2) in units
of the measurement uncertainty. Also shown is the impact of the two-loop result for the Z partial
widths and the O(↵t↵

3
s) correction to MW , compared to the calculations previously used5 [8]. The

right-hand panel of Fig. 1 displays the comparison of both the global fit result and the direct
measurements with the indirect determination (fifth column of Tab. 2) for each observable in units
of the total uncertainty, defined as the uncertainty of the direct measurement and the indirect
determination added in quadrature. Note that in the case of ↵s(M2

Z) the direct measurement
displayed is the world average value [45], which is otherwise not used in the fit.

The availability of the two-loop corrections to the Z partial widths and �0
had allows the determi-

nation of ↵s(M2
Z) to full NNLO and partial NNNLO level. We find

↵s(M
2
Z) = 0.1196± 0.0028 exp ± 0.0006�

theo

RV,A
± 0.0006�

theo

�i
± 0.0002�

theo

�0

had

= 0.1196± 0.0030 tot , (1)

where the theoretical uncertainties due to missing higher order contributions are significantly larger
than previously estimated [8]. This is largely due to the variation of the full O(↵4

s) terms in the
radiator functions, and to the uncertainties on the Z partial widths and �0

had, not assigned before.

The fit indirectly determines the W mass to be

MW = 80.3584± 0.0046mt ± 0.0030�
theo

mt ± 0.0026MZ
± 0.0018�↵

had

± 0.0020↵S ± 0.0001MH
± 0.0040�

theo

MW
GeV ,

= 80.358± 0.008tot GeV . (2)

providing a result which exceeds the precision of the direct measurement. The di↵erent uncertainty
contributions originate from the uncertainties on the input values of the fit, as quoted in the second
column in Table 2. Simple error-propagation is applied to evaluate their impact on the prediction
of MW . At present, the largest uncertainties are due to mt, both experimental and theoretical,
followed by the theory and MZ uncertainties.

Likewise, the indirect determination of the e↵ective leptonic weak mixing angle, sin2✓`e↵ , gives

sin2✓`e↵ = 0.231488± 0.000024mt ± 0.000016�
theo

mt ± 0.000015MZ
± 0.000035�↵

had

± 0.000010↵S ± 0.000001MH
± 0.000047

�
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sin2✓f
e↵

,

= 0.23149± 0.00007tot , (3)

where the largest uncertainty is theoretical followed by the uncertainties on �↵
(5)
had(M

2
Z) and mt.

An important consistency test of the SM is the simultaneous indirect determination of mt and
MW . A scan of the confidence level (CL) profile of MW versus mt is shown in Fig. 2 (top) for
the scenarios where the direct MH measurement is included in the fit (blue) or not (grey). Both
contours agree with the direct measurements (green bands and ellipse for two degrees of freedom).
The bottom panel of Fig. 2 displays the corresponding CL profile for the observable pair sin2✓`e↵ and
MW . The coloured ellipses indicate: green for the direct measurements; grey for the electroweak

5With the exception of R0

b , which was previously taken from [26] and was later corrected. For this comparison
the one-loop result [33] is used.
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The effective weak mixing angle
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more precise than determination from LEP/SLD (1.6×10-4)
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Δχ2 profile vs αs(MZ) 
‣ determination of αs 

at full NNLO and partial NNNLO
‣ also shown: minimal input with  

two most sensitive  
measurements: Rl, σ0had

‣MH has no (visible) impact 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fit results (fourth column of Tab. 2) with the direct measurements (first column of Tab. 2) in units
of the measurement uncertainty. Also shown is the impact of the two-loop result for the Z partial
widths and the O(↵t↵

3
s) correction to MW , compared to the calculations previously used5 [8]. The

right-hand panel of Fig. 1 displays the comparison of both the global fit result and the direct
measurements with the indirect determination (fifth column of Tab. 2) for each observable in units
of the total uncertainty, defined as the uncertainty of the direct measurement and the indirect
determination added in quadrature. Note that in the case of ↵s(M2

Z) the direct measurement
displayed is the world average value [45], which is otherwise not used in the fit.

The availability of the two-loop corrections to the Z partial widths and �0
had allows the determi-

nation of ↵s(M2
Z) to full NNLO and partial NNNLO level. We find
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Z) = 0.1196± 0.0028 exp ± 0.0006�

theo

RV,A
± 0.0006�

theo
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theo
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= 0.1196± 0.0030 tot , (1)

where the theoretical uncertainties due to missing higher order contributions are significantly larger
than previously estimated [8]. This is largely due to the variation of the full O(↵4

s) terms in the
radiator functions, and to the uncertainties on the Z partial widths and �0

had, not assigned before.

The fit indirectly determines the W mass to be
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± 0.0018�↵
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± 0.0020↵S ± 0.0001MH
± 0.0040�
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GeV ,

= 80.358± 0.008tot GeV . (2)

providing a result which exceeds the precision of the direct measurement. The di↵erent uncertainty
contributions originate from the uncertainties on the input values of the fit, as quoted in the second
column in Table 2. Simple error-propagation is applied to evaluate their impact on the prediction
of MW . At present, the largest uncertainties are due to mt, both experimental and theoretical,
followed by the theory and MZ uncertainties.

Likewise, the indirect determination of the e↵ective leptonic weak mixing angle, sin2✓`e↵ , gives

sin2✓`e↵ = 0.231488± 0.000024mt ± 0.000016�
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where the largest uncertainty is theoretical followed by the uncertainties on �↵
(5)
had(M
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Z) and mt.

An important consistency test of the SM is the simultaneous indirect determination of mt and
MW . A scan of the confidence level (CL) profile of MW versus mt is shown in Fig. 2 (top) for
the scenarios where the direct MH measurement is included in the fit (blue) or not (grey). Both
contours agree with the direct measurements (green bands and ellipse for two degrees of freedom).
The bottom panel of Fig. 2 displays the corresponding CL profile for the observable pair sin2✓`e↵ and
MW . The coloured ellipses indicate: green for the direct measurements; grey for the electroweak

5With the exception of R0

b , which was previously taken from [26] and was later corrected. For this comparison
the one-loop result [33] is used.
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The strong coupling αs(MZ)
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More accurate estimation of theo. uncertainties 
(previously: δtheo = 0.0001 from scale variations)

good agreement with WA, dominated by exp. uncertainty
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Indirect determination of mt
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Δχ2 profile vs mt 
‣ determination of mt from  

Z-pole data (fully obtained  
from rad.  
corrections ~mt2)
‣ alternative to direct  

measurements
‣MH allows for significantly  

more precise determination  
of mt

‣ similar precision as determination from σtt , good agreement
‣ dominated by experimental precision
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sensitive probes of new physics 
‣ significant reduction of parameter space due to knowledge of MH

‣ predictions are more precise than the direct measurements

Roman Kogler The global electroweak fit 

State of the SM: MW vs sin2θleff
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impact of variation in δtheo mt between 0 and 1.5 GeV 
‣ better assessment of uncertainty on mt important for the fit
‣ uncertainty of 0.5 GeV small impact on result
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Theoretical uncertainty on mt
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Constraints on BSM models

‣ if energy scale of NP is high, BSM physics could appear dominantly through 
vacuum polarisation corrections

‣ described by STU parameters 
[Peskin and Takeuchi, Phys. Rev. D46, 1 (1991)]

‣ SM: MH = 125 GeV, mt = 173 GeV 
this defines (S,T,U) = (0,0,0)

‣ S, T depend logarithmically on MH

‣ Fit result: 
S = 0.05 ± 0.11 
T = 0.09 ± 0.13 
U = 0.01 ± 0.11

‣ no indication for new physics
‣ use this to constrain parameter space in BSM models 

29

S T U

S 1 +0.90 -0,59

T 1 -0,83

U 1

stronger constraints with U = 0:



Roman Kogler The global electroweak fit 

Constraints on BSM models

‣with MH unknown, changes in S, T and U could often be compensated by 
changes in MH

‣ rather weak limits: e.g. large parameter space for sequential fourth 
generation open

30

4.1 Models with a sequential fourth fermion generation 21
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Figure 12: Oblique parameters in a model with a fourth fermion generation. Shown are the S, T fit results
(leaving U free) compared with the prediction from the SM (dark grey) and the sequential fourth generation
model with vanishing flavour mixing (light grey). The symbols illustrate the predictions for three example
settings of the parameters mU4

, md4
, mν4 , ml4 and MH . The light grey area is obtained by varying the free

mass parameters in the ranges indicated in the figure.

down-type fermion mass splitting, while the S parameter logarithmically grows with MH from the
SM contribution, prevailing over the opposite trend from the increasing mu4 . The shaded area
in Fig. 12 depicts the allowed region when letting the fourth generation quark (lepton) masses
free to vary within the interval [200, 1000]GeV ([100, 1000]GeV), and MH within [100, 1000]GeV.
For specific parameter settings the fourth generation model is in agreement with the experimental
data, and large values of MH are allowed.

Because the oblique parameters are mainly sensitive to the mass differences between the up-type
and down-type fermions instead of their absolute mass values, we have derived in Fig. 13 the 68%,
95% and 99% CL allowed regions in the (mu4 −md4 ,ml4 −mν4) plane. Shown are the constraints
obtained for, from the top left to the bottom right panel, increasing values of MH . Large MH

values of up to 1 TeV can be accommodated by the data if the negative T shift induced by MH is
cancelled by a corresponding positive shift from a large fermion mass splitting. The data prefer a
heavier charged lepton to counterweight the S increase from the increasing MH .

A sequential fourth generation of heavy quarks would increase the gluon fusion to Higgs production
cross section, dominantly mediated by a triangular top loop, by approximately a factor of nine,
hence increasing the experimental Higgs boson discovery and exclusion potential. The Tevatron
experiments [93], ATLAS [55] and CMS [56] have reinterpreted their negative Higgs boson search
results in the channel H → WW in terms of four generations obtaining the 95% CL exclusion
bounds 131 < MH < 204 GeV, 140 < MH < 185 GeV and 144 < MH < 207 GeV, respectively.
Inserting these bounds into Fig. 12 does not alter the allowed (S, T ) region of the fourth generation
model. It also does not affect the allowed fermion mass parameters shown in Fig. 12, which were
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‣with MH unknown, changes in S, T and U could often be compensated by 
changes in MH

‣ rather weak limits: e.g. large parameter space for sequential fourth 
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Figure 12: Oblique parameters in a model with a fourth fermion generation. Shown are the S, T fit results
(leaving U free) compared with the prediction from the SM (dark grey) and the sequential fourth generation
model with vanishing flavour mixing (light grey). The symbols illustrate the predictions for three example
settings of the parameters mU4

, md4
, mν4 , ml4 and MH . The light grey area is obtained by varying the free

mass parameters in the ranges indicated in the figure.

down-type fermion mass splitting, while the S parameter logarithmically grows with MH from the
SM contribution, prevailing over the opposite trend from the increasing mu4 . The shaded area
in Fig. 12 depicts the allowed region when letting the fourth generation quark (lepton) masses
free to vary within the interval [200, 1000]GeV ([100, 1000]GeV), and MH within [100, 1000]GeV.
For specific parameter settings the fourth generation model is in agreement with the experimental
data, and large values of MH are allowed.

Because the oblique parameters are mainly sensitive to the mass differences between the up-type
and down-type fermions instead of their absolute mass values, we have derived in Fig. 13 the 68%,
95% and 99% CL allowed regions in the (mu4 −md4 ,ml4 −mν4) plane. Shown are the constraints
obtained for, from the top left to the bottom right panel, increasing values of MH . Large MH

values of up to 1 TeV can be accommodated by the data if the negative T shift induced by MH is
cancelled by a corresponding positive shift from a large fermion mass splitting. The data prefer a
heavier charged lepton to counterweight the S increase from the increasing MH .

A sequential fourth generation of heavy quarks would increase the gluon fusion to Higgs production
cross section, dominantly mediated by a triangular top loop, by approximately a factor of nine,
hence increasing the experimental Higgs boson discovery and exclusion potential. The Tevatron
experiments [93], ATLAS [55] and CMS [56] have reinterpreted their negative Higgs boson search
results in the channel H → WW in terms of four generations obtaining the 95% CL exclusion
bounds 131 < MH < 204 GeV, 140 < MH < 185 GeV and 144 < MH < 207 GeV, respectively.
Inserting these bounds into Fig. 12 does not alter the allowed (S, T ) region of the fourth generation
model. It also does not affect the allowed fermion mass parameters shown in Fig. 12, which were

4

In order to disentangle the impacts of the Higgs
searches and the electroweak precision observables we
perform a second fit, denoted as analysis A2. In this
analysis we only fit the Higgs data, ignoring the EWPOs
altogether. Here we only let m⌫4 and ml4 float, while
keeping mt0 fixed to 650GeV.

RESULTS

From Table I we see that the searches for V V ! H !
�� and pp̄ ! HV ! V bb̄ prefer an enhancement of the
SM signal while the searches for pp ! H ! WW ⇤ and
pp ! H ! ZZ⇤ prefer reduced signals. Thus, only
the pp ! H ! WW ⇤ and pp ! H ! ZZ⇤ searches
favour a large invisible Higgs decay width and our fits
must choose a neutrino mass that compromises between
the two tendencies. The result of our analysis A2 (fit-
ting Higgs signal strengths only) is m⌫4 = 59.5 GeV and
ml4 = 600 GeV (the latter being the upper end of the
range in which ml4 was allowed to float). So, the best-
fit neutrino mass is just below the H ! ⌫

4

⌫̄
4

threshold,
leading to B(H ! ⌫

4

⌫̄
4

) ⇡ 0.5. The minimum �2 value
in this fit is 14.8. This should be compared to the �2

value of 5.8, which is obtained in the SM3. These results
agree with a recent analysis of this type by Kuflik, Nir
and Volansky [46]. Their conversion of the �2 values to
confidence levels should however be taken with a grain of
salt since, in their analysis, some of the SM4 parameters
were scanned over but not counted as degrees of freedom
when converting �2 values into confidence levels. In gen-
eral, the number of degrees of freedom of a fit is ill-defined
when parameters are only allowed to float within a cer-
tain range (such as the fourth generation fermion masses)
and the relation between the �2 value and the confidence
level is no longer described by the normalised lower in-
complete gamma function. Due to the afore-mentioned
conceptual problems with the definition of a suitable test
statistic for the comparison of SM4 and SM3 we refrain
from converting our �2 values into p-values and only dis-
cuss the pulls of the individual signal strengths. We hope
to shed more light on the issue of a quantitative compar-
ison of the SM3 and SM4 in a future publication.
The best-fit charged lepton mass in the analysis A2 is

at the upper end of the range in which it was allowed
to float. Of course, such a large mass splitting within
the lepton doublet is ruled out by electroweak precision
data. In our analysis A1 (combination of EWPOs and
Higgs signal strengths) we obtain the following best-fit
values:

m⌫4 = 57.8 GeV , ml4 = 107.6 GeV ,

mt0 = 634 GeV , �2

SM4,min

= 30 . (4)

We see that the best-fit charged lepton mass is now
just above the LEP limit. The best-fit neutrino mass

gg ! H ! ��

V V ! H ! ��

pp ! H ! WW

pp ! H ! ZZ

pp̄ ! H ! bb̄

�3� �2� �1� +1� +2� +3�

Pulls of the Higgs signal strengths

SM3
SM4
SM4+EWPO

1

FIG. 1. Deviations (pulls) of the predicted signal strengths
from the measured signal strengths in units of the experimen-
tal errors. The pulls are shown for the SM3 and the two SM4
scenarios, corresponding to our analyses A1 (SM4 w. EWPO)
and A2 (SM4 w/o EWPO).

has moved to a slightly lower value, leading to B(H !
⌫
4

⌫̄
4

) ⇡ 0.7. The minimum �2 value should be compared
with the SM3 value �2

SM3,min

= 21.4.

Figure 1 shows the pulls of the signal strengths in the
SM3 and SM4 for our analyses A1 and A2. The pulls are
defined as (µ̂

pred

� µ̂
exp

)/�µ̂, where µ̂
exp

and �µ̂ are the
experimental values and errors of the signal strengths in
Table I and µ̂

pred

is obtained by removing the experimen-
tal input for the corresponding signal strength from the
fit and using the other observables to predict its value.
We see that the pulls for the analyses A1 and A2 are
essentially the same. This can be understood as follows:
the main e↵ect of including the EWPOs in the fit is that
the lepton mass is constrained to smaller values, but the
Higgs signal strengths are not sensitive enough to the
lepton mass for this to make a big di↵erence. With the
exception of pp ! H ! ZZ⇤, the pulls in the SM4 are
always bigger than in the SM3, their magnitude being
around 2�. For pp ! H ! ZZ⇤ the predicted SM4 sig-
nal strength is exactly equal to the measured one while
the pull in the SM3 is about 0.5�. This agreement of the
SM4 is however purely accidental.

In Fig. 2 we show the minimum �2 as a function of
m⌫4 and minimised with respect to the other parameters
in (2) for our analyses A1 and A2. The �2 value of the
SM3 is indicated by the dotted line. We see that the
SM3 has a smaller �2 value than the SM4 for any choice
of m⌫4 . In both analyses the best-fit value of m⌫4 is
near 60 GeV, i.e. just below the H ! ⌫

4

⌫̄
4

threshold.
For m⌫4 . 60 GeV the Higgs signal strengths favour
a small lepton mass while for m⌫4 & 60 GeV a large
charged lepton mass is preferred by direct Higgs searches.
Since EWPOs forbid too large mass splittings (of order
100 GeV or more) in the lepton doublet the increase of �2

at m⌫4 ⇡ 60 GeV is more pronounced in the analysis A1.

‣ after discovery of a SM-like 
Higgs boson:  
chiral 4th generation 
ruled out 
[O. Eberhard et al., PRL 109, 241802 (2012)]

‣ note: mostly from Higgs 
signal strength,  
small impact of EWPO
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‣ study of potential deviations of Higgs couplings from SM
‣ leading corrections only, parametrize deviations with effective couplings 
‣ LHC and Tevatron data included using HiggsSignals [P. Bechtle et al., JHEP11, 039 (2014)]

Roman Kogler The global electroweak fit 

Tree Level Higgs Couplings
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‣ no BSM contributions on tree-level to fermion or vector-boson coupling
‣ stronger constraints on κW than on κZ 

‣ custodial symmetry holds, κW = κZ = κV

κW

κ F

κZ

κ F



κV κV

Roman Kogler The global electroweak fit 

Constraints from EWPD

33

4 Status and prospects for the Higgs couplings determination 20

4 Status and prospects for the Higgs couplings determination

To test the validity of the SM and look for signs of new physics, precision measurements of the
properties of the Higgs boson are of critical importance. Key are the couplings to the SM fermions
and bosons, which are predicted to depend linearly on the fermion mass and quadratically on the
boson mass.

Modified Higgs couplings have been probed by ATLAS and CMS in various benchmark models [57–
64]. These employ an e↵ective theory approach, where higher-order modifiers to a phenomenolog-
ical Lagrangian are matched at tree-level to the SM Higgs boson couplings. In one popular model
all boson and all fermion couplings are modified in the same way, scaled by the constants V and
F , respectively, where V = F = 1 for the SM. This benchmark model uses the explicit assump-
tion that no other new physics is present, e.g., there are no additional loops in the production
or decay of the Higgs boson, and no invisible Higgs decays and undetectable contributions to its
decay width. For details see Ref. [65].

The combined analysis of electroweak precision data and Higgs signal-strength measurements has
been studied by several groups [5, 9, 66–71]. The main e↵ect of this model on the electroweak preci-
sion observables is from the modified Higgs coupling to gauge bosons, and manifests itself through
loop diagrams involving the longitudinal degrees of freedom of these bosons. The corrections to
the Z and W boson propagators can be expressed in terms of the S, T parameters [66],

S =
1

12⇡
(1� 2V ) ln

⇤2

M2
H

, T = � 3

16⇡ cos2✓`e↵
(1� 2V ) ln

⇤2

M2
H

, ⇤ =
�q

|1� 2V |
, (5)

and U = 0. The cut-o↵ scale ⇤ represents the mass scale of the new states that unitarise lon-
gitudinal gauge-boson scattering, as required in this model. Note that the less V deviates from
one, the higher the scale of new physics. Most BSM models with additional Higgs bosons giving
positive corrections to the W mass predict values of V smaller than 1. Here the nominator � is
varied between 1 and 10 TeV, and is nominally fixed to 3 TeV (4⇡v).

Figure 8 (top) shows the predictions for S and T , profiled over V and �, together with the allowed
regions for S and T from the current electroweak fit. The length of the predicted line covers a
variation in V between [0, 2], the width covers the variation in �.

The bottom panel of Fig. 8 shows V and F as obtained from a private combination of ATLAS
and CMS results using all publicly available information on the measured Higgs signal strength
modifiers µi. Also shown is the combined constraint on V (and F ) from the LHC experiments
and the electroweak fit.

The published Higgs coupling measurements of µggF+ttH versus µVBF+VH from ATLAS and CMS
used in this combination are summarised in Table 5. The measurements from the ATLAS Higgs to
di-boson channels are published likelihood scans [57]. The CMS results in Table 5 are approximate
values derived from public likelihood iso-contour lines. Correlations of the theory and detector
related uncertainties between the various µi are neglected in the combination, as these are not
provided by the experiments. We find that the individual experimental combinations of ATLAS and
CMS for V (and F ) are approximately reproduced by this simplified procedure. The measured
values from this combination are V = 1.026+0.042

�0.044 and F = 0.88+0.10
�0.09.
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‣ consider specific model in “κ parametrisation”:

• scaling of Higgs-vector boson (κV) and Higgs-fermion couplings (κF),  
with no invisible/undetectable widths

‣main effect on EWPD due to modified Higgs coupling to gauge bosons (κV)  
[Espinosa et al. arXiv:1202.3697, Falkowski et al. arXiv:1303.1812], etc 

‣ correlation between κV and MW

• slightly smaller values of MW  
preferred
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Higgs Coupling Results

Higgs coupling  
measurements: 
‣ κV = 0.99 ± 0.08
‣ κF = 1.01 ± 0.17

‣Combined result:  
‣ κV = 1.03 ± 0.02   

(λ = 3 TeV)

‣ implies NP-scale of  
Λ ≥ 13 TeV

34

‣ some dependency for κV in central value [1.02-1.04] and error [0.02-0.03] 
on cut-off scale λ [1-10 TeV]
• EW fit sofar more precise result for κV than current LHC experiments
• EW fit has positive deviation of κV from 1.0

- many BSM models: κV < 1
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68% 95% Correlations
W 1.00 ± 0.06 [0.88, 1.11] 1.00
Z 1.09 ± 0.10 [0.88, 1.27] �0.12 1.00
 f 0.94 ± 0.12 [0.72, 1.18] 0.35 �0.16 1.00

Table 10: SM-like solution in the fit of W , Z , and  f to the Higgs-
boson signal strengths.
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Figure 7: Two-dimensional probability distributions for W and  f
(left), for Z and  f (center), and for W and Z (right) at 68%, 95%,
and 99% (darker to lighter), obtained from the fit to the Higgs-boson
signal strengths.

power divergences in the oblique corrections. It means
that the detailed information on UV theory is necessary
for calculating the oblique corrections. The fit results
to the Higgs-boson signal strengths are summarized in
Table 10 and Fig. 7, which are consistent with custodial
symmetry.

We also consider the case where the universality in
the couplings to the fermions is relaxed by introducing
`, u and d for the couplings to the charged leptons,
to the up-type quarks, and to the down-type quarks. In
this case, the Higgs-boson signal strengths are symmet-
ric under the exchanges ` $ �` and/or {V , u, d}$
{�V , �u, �d}. Therefore, we consider only the pa-
rameter space where both V and ` are positive. The
constraints on the scale factors from the Higgs-boson
signal strengths are presented in Table 11 and Fig. 8.
By adding the EWPO to the fit, the constraints become
stronger as shown in Table 12 and Fig. 9.

5. Summary

We have updated the EW precision fits in the SM and
beyond taking into account the recent theoretical and
experimental developments. The results of the SM fit
are presented in Table 1, while the constraints on the
NP parameters (the oblique and epsilon parameters, and
the modified Zbb̄ and HVV couplings) are summarized
in Tables 2-7. Furthermore, we have performed fits of
the scale factors of the Higgs-boson couplings to the
Higgs-boson signal strengths and the EW precision data
as summarized in Tables 8-12. More detailed analyses
and results will be presented in a future publication [67].

68% 95% Correlations
V 1.07 ± 0.09 [0.87, 1.24] 1.00
` 1.13 ± 0.17 [0.80, 1.47] 0.54 1.00
u 0.89 ± 0.13 [0.65, 1.18] 0.37 0.36 1.00
d 1.01 ± 0.24 [0.52, 1.51] 0.79 0.60 0.75 1.00

Table 11: SM-like solution in the fit of V , `, u, and d to the Higgs-
boson signal strengths.
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Figure 8: Two-dimensional probability distributions for V and `
(top-left), for V and u (top-center), for V and d (top-right), for
` and u (bottom-left), for ` and d (bottom-center), and for u and
d (bottom-right) at 68%, 95%, and 99% (darker to lighter), obtained
from the fit to the Higgs-boson signal strengths.

68% 95% Correlations
V 1.03 ± 0.02 [0.99, 1.07] 1.00
` 1.10 ± 0.14 [0.82, 1.38] 0.14 1.00
u 0.88 ± 0.12 [0.66, 1.15] 0.09 0.23 1.00
d 0.92 ± 0.15 [0.65, 1.26] 0.28 0.35 0.81 1.00

Table 12: Same as Table 11, but considering both the Higgs-boson
signal strengths and the EWPO.
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Figure 9: Same as Fig. 8, but considering both the Higgs-boson signal
strengths and the EWPO.

Roman Kogler The global electroweak fit 

Higgs coupling results

35

‣ allowing for different 
couplings to up- and down-
type quarks κu and κd

‣ stricter constraints due to 
EWPO, some gain also in 
the fermion sector

‣ also possible to constrain 
coefficients of dimension-6 
operators
•contributions to EWPO 

have been worked out
• theoretically sounder than 

constraints from S,T,U 
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power divergences in the oblique corrections. It means
that the detailed information on UV theory is necessary
for calculating the oblique corrections. The fit results
to the Higgs-boson signal strengths are summarized in
Table 10 and Fig. 7, which are consistent with custodial
symmetry.

We also consider the case where the universality in
the couplings to the fermions is relaxed by introducing
`, u and d for the couplings to the charged leptons,
to the up-type quarks, and to the down-type quarks. In
this case, the Higgs-boson signal strengths are symmet-
ric under the exchanges ` $ �` and/or {V , u, d}$
{�V , �u, �d}. Therefore, we consider only the pa-
rameter space where both V and ` are positive. The
constraints on the scale factors from the Higgs-boson
signal strengths are presented in Table 11 and Fig. 8.
By adding the EWPO to the fit, the constraints become
stronger as shown in Table 12 and Fig. 9.

5. Summary

We have updated the EW precision fits in the SM and
beyond taking into account the recent theoretical and
experimental developments. The results of the SM fit
are presented in Table 1, while the constraints on the
NP parameters (the oblique and epsilon parameters, and
the modified Zbb̄ and HVV couplings) are summarized
in Tables 2-7. Furthermore, we have performed fits of
the scale factors of the Higgs-boson couplings to the
Higgs-boson signal strengths and the EW precision data
as summarized in Tables 8-12. More detailed analyses
and results will be presented in a future publication [67].

68% 95% Correlations
V 1.07 ± 0.09 [0.87, 1.24] 1.00
` 1.13 ± 0.17 [0.80, 1.47] 0.54 1.00
u 0.89 ± 0.13 [0.65, 1.18] 0.37 0.36 1.00
d 1.01 ± 0.24 [0.52, 1.51] 0.79 0.60 0.75 1.00

Table 11: SM-like solution in the fit of V , `, u, and d to the Higgs-
boson signal strengths.
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Figure 8: Two-dimensional probability distributions for V and `
(top-left), for V and u (top-center), for V and d (top-right), for
` and u (bottom-left), for ` and d (bottom-center), and for u and
d (bottom-right) at 68%, 95%, and 99% (darker to lighter), obtained
from the fit to the Higgs-boson signal strengths.

68% 95% Correlations
V 1.03 ± 0.02 [0.99, 1.07] 1.00
` 1.10 ± 0.14 [0.82, 1.38] 0.14 1.00
u 0.88 ± 0.12 [0.66, 1.15] 0.09 0.23 1.00
d 0.92 ± 0.15 [0.65, 1.26] 0.28 0.35 0.81 1.00

Table 12: Same as Table 11, but considering both the Higgs-boson
signal strengths and the EWPO.
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Figure 9: Same as Fig. 8, but considering both the Higgs-boson signal
strengths and the EWPO.
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68% 95% Correlations
W 1.00 ± 0.06 [0.88, 1.11] 1.00
Z 1.09 ± 0.10 [0.88, 1.27] �0.12 1.00
 f 0.94 ± 0.12 [0.72, 1.18] 0.35 �0.16 1.00

Table 10: SM-like solution in the fit of W , Z , and  f to the Higgs-
boson signal strengths.
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power divergences in the oblique corrections. It means
that the detailed information on UV theory is necessary
for calculating the oblique corrections. The fit results
to the Higgs-boson signal strengths are summarized in
Table 10 and Fig. 7, which are consistent with custodial
symmetry.

We also consider the case where the universality in
the couplings to the fermions is relaxed by introducing
`, u and d for the couplings to the charged leptons,
to the up-type quarks, and to the down-type quarks. In
this case, the Higgs-boson signal strengths are symmet-
ric under the exchanges ` $ �` and/or {V , u, d}$
{�V , �u, �d}. Therefore, we consider only the pa-
rameter space where both V and ` are positive. The
constraints on the scale factors from the Higgs-boson
signal strengths are presented in Table 11 and Fig. 8.
By adding the EWPO to the fit, the constraints become
stronger as shown in Table 12 and Fig. 9.

5. Summary

We have updated the EW precision fits in the SM and
beyond taking into account the recent theoretical and
experimental developments. The results of the SM fit
are presented in Table 1, while the constraints on the
NP parameters (the oblique and epsilon parameters, and
the modified Zbb̄ and HVV couplings) are summarized
in Tables 2-7. Furthermore, we have performed fits of
the scale factors of the Higgs-boson couplings to the
Higgs-boson signal strengths and the EW precision data
as summarized in Tables 8-12. More detailed analyses
and results will be presented in a future publication [67].
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V 1.07 ± 0.09 [0.87, 1.24] 1.00
` 1.13 ± 0.17 [0.80, 1.47] 0.54 1.00
u 0.89 ± 0.13 [0.65, 1.18] 0.37 0.36 1.00
d 1.01 ± 0.24 [0.52, 1.51] 0.79 0.60 0.75 1.00

Table 11: SM-like solution in the fit of V , `, u, and d to the Higgs-
boson signal strengths.
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d (bottom-right) at 68%, 95%, and 99% (darker to lighter), obtained
from the fit to the Higgs-boson signal strengths.
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V 1.03 ± 0.02 [0.99, 1.07] 1.00
` 1.10 ± 0.14 [0.82, 1.38] 0.14 1.00
u 0.88 ± 0.12 [0.66, 1.15] 0.09 0.23 1.00
d 0.92 ± 0.15 [0.65, 1.26] 0.28 0.35 0.81 1.00

Table 12: Same as Table 11, but considering both the Higgs-boson
signal strengths and the EWPO.
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Figure 9: Same as Fig. 8, but considering both the Higgs-boson signal
strengths and the EWPO.
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Table 10: SM-like solution in the fit of W , Z , and  f to the Higgs-
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Figure 7: Two-dimensional probability distributions for W and  f
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and 99% (darker to lighter), obtained from the fit to the Higgs-boson
signal strengths.

power divergences in the oblique corrections. It means
that the detailed information on UV theory is necessary
for calculating the oblique corrections. The fit results
to the Higgs-boson signal strengths are summarized in
Table 10 and Fig. 7, which are consistent with custodial
symmetry.

We also consider the case where the universality in
the couplings to the fermions is relaxed by introducing
`, u and d for the couplings to the charged leptons,
to the up-type quarks, and to the down-type quarks. In
this case, the Higgs-boson signal strengths are symmet-
ric under the exchanges ` $ �` and/or {V , u, d}$
{�V , �u, �d}. Therefore, we consider only the pa-
rameter space where both V and ` are positive. The
constraints on the scale factors from the Higgs-boson
signal strengths are presented in Table 11 and Fig. 8.
By adding the EWPO to the fit, the constraints become
stronger as shown in Table 12 and Fig. 9.

5. Summary

We have updated the EW precision fits in the SM and
beyond taking into account the recent theoretical and
experimental developments. The results of the SM fit
are presented in Table 1, while the constraints on the
NP parameters (the oblique and epsilon parameters, and
the modified Zbb̄ and HVV couplings) are summarized
in Tables 2-7. Furthermore, we have performed fits of
the scale factors of the Higgs-boson couplings to the
Higgs-boson signal strengths and the EW precision data
as summarized in Tables 8-12. More detailed analyses
and results will be presented in a future publication [67].

68% 95% Correlations
V 1.07 ± 0.09 [0.87, 1.24] 1.00
` 1.13 ± 0.17 [0.80, 1.47] 0.54 1.00
u 0.89 ± 0.13 [0.65, 1.18] 0.37 0.36 1.00
d 1.01 ± 0.24 [0.52, 1.51] 0.79 0.60 0.75 1.00

Table 11: SM-like solution in the fit of V , `, u, and d to the Higgs-
boson signal strengths.
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Figure 8: Two-dimensional probability distributions for V and `
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` and u (bottom-left), for ` and d (bottom-center), and for u and
d (bottom-right) at 68%, 95%, and 99% (darker to lighter), obtained
from the fit to the Higgs-boson signal strengths.

68% 95% Correlations
V 1.03 ± 0.02 [0.99, 1.07] 1.00
` 1.10 ± 0.14 [0.82, 1.38] 0.14 1.00
u 0.88 ± 0.12 [0.66, 1.15] 0.09 0.23 1.00
d 0.92 ± 0.15 [0.65, 1.26] 0.28 0.35 0.81 1.00

Table 12: Same as Table 11, but considering both the Higgs-boson
signal strengths and the EWPO.
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strengths and the EWPO.
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Z 1.09 ± 0.10 [0.88, 1.27] �0.12 1.00
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power divergences in the oblique corrections. It means
that the detailed information on UV theory is necessary
for calculating the oblique corrections. The fit results
to the Higgs-boson signal strengths are summarized in
Table 10 and Fig. 7, which are consistent with custodial
symmetry.

We also consider the case where the universality in
the couplings to the fermions is relaxed by introducing
`, u and d for the couplings to the charged leptons,
to the up-type quarks, and to the down-type quarks. In
this case, the Higgs-boson signal strengths are symmet-
ric under the exchanges ` $ �` and/or {V , u, d}$
{�V , �u, �d}. Therefore, we consider only the pa-
rameter space where both V and ` are positive. The
constraints on the scale factors from the Higgs-boson
signal strengths are presented in Table 11 and Fig. 8.
By adding the EWPO to the fit, the constraints become
stronger as shown in Table 12 and Fig. 9.

5. Summary

We have updated the EW precision fits in the SM and
beyond taking into account the recent theoretical and
experimental developments. The results of the SM fit
are presented in Table 1, while the constraints on the
NP parameters (the oblique and epsilon parameters, and
the modified Zbb̄ and HVV couplings) are summarized
in Tables 2-7. Furthermore, we have performed fits of
the scale factors of the Higgs-boson couplings to the
Higgs-boson signal strengths and the EW precision data
as summarized in Tables 8-12. More detailed analyses
and results will be presented in a future publication [67].

68% 95% Correlations
V 1.07 ± 0.09 [0.87, 1.24] 1.00
` 1.13 ± 0.17 [0.80, 1.47] 0.54 1.00
u 0.89 ± 0.13 [0.65, 1.18] 0.37 0.36 1.00
d 1.01 ± 0.24 [0.52, 1.51] 0.79 0.60 0.75 1.00

Table 11: SM-like solution in the fit of V , `, u, and d to the Higgs-
boson signal strengths.
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Figure 8: Two-dimensional probability distributions for V and `
(top-left), for V and u (top-center), for V and d (top-right), for
` and u (bottom-left), for ` and d (bottom-center), and for u and
d (bottom-right) at 68%, 95%, and 99% (darker to lighter), obtained
from the fit to the Higgs-boson signal strengths.

68% 95% Correlations
V 1.03 ± 0.02 [0.99, 1.07] 1.00
` 1.10 ± 0.14 [0.82, 1.38] 0.14 1.00
u 0.88 ± 0.12 [0.66, 1.15] 0.09 0.23 1.00
d 0.92 ± 0.15 [0.65, 1.26] 0.28 0.35 0.81 1.00

Table 12: Same as Table 11, but considering both the Higgs-boson
signal strengths and the EWPO.
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Figure 9: Same as Fig. 8, but considering both the Higgs-boson signal
strengths and the EWPO.

only Higgs signal strength

+ EWPO

[Marco Ciuchini et al, arXiv:1410.6940]



‣ extend the scalar sector by another doublet
‣ studies of Z2 Type-1 and Type-2 2HDMs

• difference in the coupling to down-type quarks
• Type-2 related to MSSM, but less constrained
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5

Type I and Type II Type I Type II

Higgs CV CU CD CU CD

h sin(� � ↵) cos↵/ sin� cos↵/ sin� cos↵/ sin� �sin↵/ cos�

H cos(� � ↵) sin↵/ sin� sin↵/ sin� sin↵/ sin� cos↵/ cos�

A 0 cot� � cot� cot� tan�

TABLE I: Tree-level vector boson couplings CV (V = W,Z) and fermionic couplings CF (F = U,D)

normalized to their SM values for the Type I and Type II 2HDMs.

A. Scan ranges and procedures

As in [29], we employ a modified version of the code 2HDMC [33, 34] for our numerical

calculations. All relevant contributions to loop-induced processes are taken into account,

in particular those with heavy quarks (t and b), W± and H±. A number of di↵erent input

sets can be used in the 2HDMC context. We have chosen to use the “physical basis” in which

the inputs are the physical Higgs masses (mh,mH ,mA,mH±), the vacuum expectation value

ratio (tan �), and the CP -even Higgs mixing angle, ↵, supplemented by m2
12. The additional

parameters �6 and �7 are assumed to be zero as a result of a Z2 symmetry being imposed

on the dimension-4 operators under which H1 ! H1 and H2 ! �H2. m2
12 6= 0 is allowed as

a “soft” breaking of the Z2 symmetry. With the above inputs, �1,2,3,4,5 as well as m2
11 and

m2
22 are determined (the latter two via the minimization conditions for a minimum of the

vacuum) [7]. We scan over the following ranges:3

↵ 2 [�⇡/2,+⇡/2] , tan � 2 [0.5, 60] , m2
12 2 [�(2 TeV)2, (2 TeV)2] ,

mA 2 [5 GeV, 2 TeV] , mH± 2 [m⇤, 2 TeV] , (2)

where m⇤ is the lowest value of mH± allowed by LEP direct production limits and B physics

constraints. The LEP limits on the H± are satisfied by requiring mH± � 90 GeV. The lower

bounds from B physics are shown as a function of tan � in Fig. 15 of [8] in the case of the

Type II model (roughly m⇤ ⇠ 300 GeV in this case) and in Fig. 18 of [8] in the case of the

3 The upper and lower bounds on tan� are chosen to ensure that the bottom and top Yukawa couplings,

respectively, lie within the perturbative region. Unlike the Z2 symmetric 2HDM which constrains tan � .
7 [22], high tan� values are allowed when the Z2 symmetry is softly broken. A safe upper limit, as adopted

here, is tan�  60.

Preliminary ‣ constraints derived 
from EWPD using 
S,T,U formalism

‣ lightest scalar  
Mh = 125.1 GeV

‣weak constraints 
on masses, since 
tanβ and cos(β-α) 
are unconstrained



‣ coupling measurements place important constraints on 2HDMs
‣ predictions of BRs using 2HDMC [D. Eriksson et al., CPC 181, 189 (2010)]

‣ 7 additional, unconstraint parameters (4 masses, 2 angles, soft breaking scale):  
importance sampling with MultiNest [F. Feroz et al., arXiv:1306.2144]

‣ additional constraints from flavour data
• B→Xs γ: tanβ > 1            • Bs→µµ : constraints depending on MH and MH±

Roman Kogler The global electroweak fit 
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‣ for given MH± tight constraints from H coupling measurements and EWPD
‣ expect improvement from direct searches at the LHC
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SM parameters at the LHC 

!   LHC could potentially contribute to 
 key parameters in the SM 

!   MW, mt, sin2θeff   (and MH) 

J. Haller Standard Model 20 

8.1 Analysis Strategy
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Figure 8.2: Probability that the incoming quark direction is equal to the direction of the Z/γ∗

boost as a function of the rapidity. Truth generator level information from Pythia Z → ee events

is used.
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2 Update of the global electroweak fit 9
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sin2θleff  measurements at the LHC

‣Drell-Yan: AFB sensitive to distribution of polar angle  
of lepton w.r.t. quark direction
• LHC: quark direction unknown!
‣ assume: dilepton boost is quark direction

• often: interaction of valence  
quark with sea antiquark

• important: reach in |yll|, ie. |ηl|
‣ ambiguity due to PDFs dilution of AFB

‣ sin2θeff from MC templates
• accuracy of 9.8×10-4

• consistent with LEP/SLD result  
(accuracy 1.6×10-4)

‣ prediction for LHC 14/300
• accuracy of 3.6×10-4

40

LHC measurements of weak mixing angle 
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Figure 2: Distributions of cos ✓⇤CS obtained from the event selections described in the text, for the CC
electron (a) and muon (b) channels in log scale. The CF electron channel is shown in both linear (c) and
log (d) scale. Data are shown in open circles and the total expectation is shown as a line with a band
representing the total uncertainty (statistical and systematic). Also shown are the data-driven estimates
for the multijet background and the MC-based estimates for all other backgrounds. The lower panel of
the plot shows the data/MC ratio with the total uncertainty.
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Figure 3: Raw AFB distributions for the CC electron (a), CF electron (b) and muon (c) channels,
after background subtraction. For the data, the boxed shaded region represents the total (statisti-
cal+systematic) uncertainty and the error bars represent the statistical uncertainty. The boxed shaded
regions for the MC represent only the statistical uncertainty. The ratio plots at the bottom of each figure
display the distribution of pulls (�/�) for each AFB distribution, where � is the di↵erence between data
and MC and � is the quadratic sum of the data and MC uncertainties.
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Figure 7: Comparison of the results of this analysis with other published results for sin2 ✓ e↵
W . The compar-

ison includes the two most accurate measurements from LEP and SLC, and the results from the leptonic
sin2 ✓ e↵

W measurements from the hadron collider experiments CMS, D0, and CDF. Also shown are the
values of sin2 ✓ e↵

W for the LEP+SLC global combination (which includes all sin2 ✓ e↵
W measurements per-

formed at the two colliders) and from the PDG global fit. A vertical dotted line illustrates the results
from the ATLAS combined measurement reported here and a vertical dashed line shows the results from
the current PDG global fit.

7 Conclusions

The Z/�⇤ forward–backward asymmetry has been measured using the data recorded with the ATLAS
detector in 2011 corresponding to an integrated luminosity of 4.7 - 4.8 fb�1. The data were analyzed
over a range of dilepton invariant masses from 66-1000 GeV in the central-central electron and muon
channels, and up to 250 GeV in the central-forward electron channel. The latter included events with
one lepton covering an unprecedented rapidity range (2.5 < |⌘| < 4.9). Raw spectra were measured and
subsequently unfolded to correct for detector e↵ects and radiative corrections. Additionally, a leading-
order interpretation which accounts for the e↵ects of dilution and full detector acceptance was presented.
All of the resulting AFB spectra were found to be consistent with the corresponding Standard Model
predictions.

A measurement of the leptonic e↵ective weak mixing angle, sin2 ✓ e↵
W was also presented. The method

used a �2 comparison of the raw AFB spectra to di↵erent templates, which were constructed using weights
produced at generator-level with di↵erent values of sin2 ✓ e↵

W . The result is compared directly with the
results from LEP, SLD, the Tevatron experiments and the CMS experiment. Results from the electron
and muon final states have been combined, assuming lepton universality, yielding

sin2 ✓ e↵
W = 0.2297 ± 0.0004(stat.) ± 0.0009(syst.) = 0.2297 ± 0.0010(tot.)

which is consistent with previous measurements, and as precise as the D0 result. The dominant uncer-
tainty comes from the knowledge of the PDFs. This result is the first from a hadron collider to combine
electron and muon final states in a measurement of sin2 ✓ e↵

W at the Z pole.

17

sin2θeff = 0.2297± 0.0004(stat.)± 0.0009(syst.)

sin2 θeff
l( )

exp
= 0.23153± 0.00016

ATLAS, ATLAS-CONF-2013-043 !   ATLAS: 4.8 fb-1  
!   electrons: central (C: |η|<2.47) + forward (F: 2.5<|η|<4.9) 

! muons:  only central (|η|<2.4) 

!   AFB in 3 categories: dielectron (CF, CC) and dimuon 

!   sin2θeff from MC templates with varying sin2θeff 

 

!   accuracy: 0.4 % 
!   consistent with e+e- result 

!   accuracy: 0.07% 

!   estimate LHC-14/300 
  [arXiv:1310.6708] 

!   Δsin2θeff  = 36.10-5 per exp. 

!   challenges: PDF, theory, 
trigger, energy scale, … 

!   substantial contribution from LHC is rather difficult. 

[ATLAS-CONF-2013-043]

sin

2 ✓`e↵(exp) = 0.23153± 0.00016

sin

2 ✓`e↵(fit) = 0.23149± 0.00007

[arXiv:1310.6708]

substantial contribution from LHC difficult



‣ theoretical uncertainties reduced by a factor of 4 (esp. MW and sin2θleff)
• implies three-loop calculations!
• exception: δtheo mt (LHC) = 0.25 GeV (factor 2)
‣ central values of input measurements adjusted to MH = 125 GeV

Roman Kogler The global electroweak fit 

Future improvements

41

3 Prospects of the electroweak fit with the LHC and ILC/GigaZ 13

Experimental input [±1�
exp

] Indirect determination [±1�
exp

, ±1�
theo

]

Parameter Present LHC ILC/GigaZ Present LHC ILC/GigaZ

MH [GeV] 0.2 < 0.1 < 0.1 +31
�26 ,

+10
�8

+20
�18 ,

+3.9
�3.2

+6.8
�6.5 ,

+2.5
�2.4

MW [MeV] 15 8 5 6.0, 5.0 5.2, 1.8 1.9, 1.3

MZ [MeV] 2.1 2.1 2.1 11, 4 7.0, 1.4 2.5, 1.0

mt [GeV] 0.8 0.6 0.1 2.4, 0.6 1.5, 0.2 0.7, 0.2

sin2✓`e↵ [10�5] 16 16 1.3 4.5, 4.9 2.8, 1.1 2.0, 1.0

�↵5
had(M

2
Z) [10�5] 10 4.7 4.7 42, 13 36, 6 5.6, 3.0

R0
l [10�3] 25 25 4 – – –

↵S(M2
Z) [10�4] – – – 40, 10 39, 7 6.4, 6.9

S|U=0 – – – 0.094, 0.027 0.086, 0.006 0.017, 0.006

T |U=0 – – – 0.083, 0.023 0.064, 0.005 0.022, 0.005

V (� = 3TeV) 0.05 0.03 0.01 0.02 0.02 0.01

Table 3: Current and extrapolated future uncertainties in the input observables (left), and the precision
obtained for the fit prediction (right). Where two uncertainties are given, the first is experimental and the
second theoretical. The value of ↵S(M2

Z) is not used directly as input in the fit. The uncertainty in the
direct MH measurements is not relevant for the fit and therefore not quoted. For all indirect determinations
shown (including the present MH determination) the assumed central values of the input measurements
have been adjusted to obtain a common fit value of MH = 125 GeV. The simplified fit setup used to derive
the numbers in this table leads in some cases to reduced constraints on observables as can be seen by
comparing the uncertainties of the present scenarios (fifth column) with the last column of Table 2. See
text for more details.

For both future scenarios we assume that the uncertainty in �↵
(5)
had(M

2
Z) will reduce from currently

10 · 10�5 down to 4.7 · 10�5. The improvement is expected due to updated e+e� ! hadrons cross
section measurements below the charm threshold from the completion of ongoing BABAR and
VEPP-2000 analyses, improved charmonium resonance data from BES-III, and a better knowledge
of ↵S from reliable Lattice QCD predictions [56].

The present and projected experimental uncertainties for the observables used in the simplified
electroweak fit are summarised in the left columns of Table 3.

To match the experimental precision significant theoretical progress is required. Leaving aside the
ambiguity in mt discussed above, the presently most important theoretical uncertainties a↵ecting
the fit are those related to the predictions of MW and sin2✓fe↵ . For the future scenarios, we assume

that the present uncertainties of �theoMW = 4 MeV and �theo sin2✓
f
e↵ = 4.7 · 10�5 reduce to 1 MeV

and 10�5, respectively. This reduction will require ambitious three-loop electroweak calculations.
The leading theoretical uncertainties on the partial Z decay widths, �0

had, and the radiator functions
play a smaller role in the present fit. For the future scenarios the uncertainty estimates given in
Table 1 are assumed to be reduced by a factor of four, similar to the uncertainties on MW and
sin2✓fe↵ .

δA0,fLR : 10−3 →10−4
tt threshold scan

low energy data, better αs

high statistics on Z-pole

WW threshold

3 Prospects of the electroweak fit with the LHC and ILC/GigaZ 13

Experimental input [±1�
exp

] Indirect determination [±1�
exp

, ±1�
theo

]

Parameter Present LHC ILC/GigaZ Present LHC ILC/GigaZ

MH [GeV] 0.2 < 0.1 < 0.1 +31
�26 ,

+10
�8

+20
�18 ,

+3.9
�3.2

+6.8
�6.5 ,

+2.5
�2.4

MW [MeV] 15 8 5 6.0, 5.0 5.2, 1.8 1.9, 1.3

MZ [MeV] 2.1 2.1 2.1 11, 4 7.0, 1.4 2.5, 1.0

mt [GeV] 0.8 0.6 0.1 2.4, 0.6 1.5, 0.2 0.7, 0.2

sin2✓`e↵ [10�5] 16 16 1.3 4.5, 4.9 2.8, 1.1 2.0, 1.0

�↵5
had(M

2
Z) [10�5] 10 4.7 4.7 42, 13 36, 6 5.6, 3.0

R0
l [10�3] 25 25 4 – – –

↵S(M2
Z) [10�4] – – – 40, 10 39, 7 6.4, 6.9

S|U=0 – – – 0.094, 0.027 0.086, 0.006 0.017, 0.006

T |U=0 – – – 0.083, 0.023 0.064, 0.005 0.022, 0.005

V (� = 3TeV) 0.05 0.03 0.01 0.02 0.02 0.01

Table 3: Current and extrapolated future uncertainties in the input observables (left), and the precision
obtained for the fit prediction (right). Where two uncertainties are given, the first is experimental and the
second theoretical. The value of ↵S(M2

Z) is not used directly as input in the fit. The uncertainty in the
direct MH measurements is not relevant for the fit and therefore not quoted. For all indirect determinations
shown (including the present MH determination) the assumed central values of the input measurements
have been adjusted to obtain a common fit value of MH = 125 GeV. The simplified fit setup used to derive
the numbers in this table leads in some cases to reduced constraints on observables as can be seen by
comparing the uncertainties of the present scenarios (fifth column) with the last column of Table 2. See
text for more details.

For both future scenarios we assume that the uncertainty in �↵
(5)
had(M

2
Z) will reduce from currently

10 · 10�5 down to 4.7 · 10�5. The improvement is expected due to updated e+e� ! hadrons cross
section measurements below the charm threshold from the completion of ongoing BABAR and
VEPP-2000 analyses, improved charmonium resonance data from BES-III, and a better knowledge
of ↵S from reliable Lattice QCD predictions [56].

The present and projected experimental uncertainties for the observables used in the simplified
electroweak fit are summarised in the left columns of Table 3.

To match the experimental precision significant theoretical progress is required. Leaving aside the
ambiguity in mt discussed above, the presently most important theoretical uncertainties a↵ecting
the fit are those related to the predictions of MW and sin2✓fe↵ . For the future scenarios, we assume

that the present uncertainties of �theoMW = 4 MeV and �theo sin2✓
f
e↵ = 4.7 · 10�5 reduce to 1 MeV

and 10�5, respectively. This reduction will require ambitious three-loop electroweak calculations.
The leading theoretical uncertainties on the partial Z decay widths, �0

had, and the radiator functions
play a smaller role in the present fit. For the future scenarios the uncertainty estimates given in
Table 1 are assumed to be reduced by a factor of four, similar to the uncertainties on MW and
sin2✓fe↵ .

direct measurement of BRs

[Baak et al, arXiv:1310.6708]

LHC = LHC with 300 fb−1

ILC/GigaZ = future e+e− 
collider, option to run on  
Z-pole (w polarized beams)
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Higgs mass

42

‣ Logarithmic dependency on MH → cannot compete with direct MH meas.
• no theory uncertainty:                 MH = 125 ± 7 GeV
• future theory uncertainty (Rfit):    MH = 125 +10 GeV
• present day theory uncertainty:    MH = 125 +20 GeV

‣ If EWPO central values unchanged (94 GeV), ~5σ discrepancy with 
measured Higgs mass

 −9

 −17

125 GeV 94 GeV

MHmeas = 125 GeV
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Higgs mass

42

‣ Logarithmic dependency on MH → cannot compete with direct MH meas.
• no theory uncertainty:                 MH = 125 ± 7 GeV
• future theory uncertainty (Rfit):    MH = 125 +10 GeV
• present day theory uncertainty:    MH = 125 +20 GeV

‣ If EWPO central values unchanged (94 GeV), ~5σ discrepancy with 
measured Higgs mass

 −9

 −17

present theory uncertaintypresent theory uncertainty

compromised by present theory uncertainty!

125 GeV 94 GeV

MHmeas = 125 GeV
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Prospects for MW

43

‣ improvement of a factor of 3 with the ILC (similar to measurement)
‣ stringent test of internal consistency of SM
‣moderate improvement with LHC (~30%)

• nevertheless, if at present values, theory uncertainties already important
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BSM Prospects of EW fit

44

‣ for STU parameters, improvement of factor of >3 is possible at ILC
‣ again, at ILC a deviation between the SM predictions and direct 

measurements would be prominently visible.
‣ competitive results between EW fit and Higgs coupling measurements!

• precision of about 1%
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3 Prospects of the electroweak fit with the LHC and ILC/GigaZ 13

Experimental input [±1�
exp

] Indirect determination [±1�
exp

, ±1�
theo

]

Parameter Present LHC ILC/GigaZ Present LHC ILC/GigaZ

MH [GeV] 0.2 < 0.1 < 0.1 +31
�26 ,

+10
�8

+20
�18 ,

+3.9
�3.2

+6.8
�6.5 ,

+2.5
�2.4

MW [MeV] 15 8 5 6.0, 5.0 5.2, 1.8 1.9, 1.3

MZ [MeV] 2.1 2.1 2.1 11, 4 7.0, 1.4 2.5, 1.0

mt [GeV] 0.8 0.6 0.1 2.4, 0.6 1.5, 0.2 0.7, 0.2

sin2✓`e↵ [10�5] 16 16 1.3 4.5, 4.9 2.8, 1.1 2.0, 1.0

�↵5
had(M

2
Z) [10�5] 10 4.7 4.7 42, 13 36, 6 5.6, 3.0

R0
l [10�3] 25 25 4 – – –

↵S(M2
Z) [10�4] – – – 40, 10 39, 7 6.4, 6.9

S|U=0 – – – 0.094, 0.027 0.086, 0.006 0.017, 0.006

T |U=0 – – – 0.083, 0.023 0.064, 0.005 0.022, 0.005

V (� = 3TeV) 0.05 0.03 0.01 0.02 0.02 0.01

Table 3: Current and extrapolated future uncertainties in the input observables (left), and the precision
obtained for the fit prediction (right). Where two uncertainties are given, the first is experimental and the
second theoretical. The value of ↵S(M2

Z) is not used directly as input in the fit. The uncertainty in the
direct MH measurements is not relevant for the fit and therefore not quoted. For all indirect determinations
shown (including the present MH determination) the assumed central values of the input measurements
have been adjusted to obtain a common fit value of MH = 125 GeV. The simplified fit setup used to derive
the numbers in this table leads in some cases to reduced constraints on observables as can be seen by
comparing the uncertainties of the present scenarios (fifth column) with the last column of Table 2. See
text for more details.

For both future scenarios we assume that the uncertainty in �↵
(5)
had(M

2
Z) will reduce from currently

10 · 10�5 down to 4.7 · 10�5. The improvement is expected due to updated e+e� ! hadrons cross
section measurements below the charm threshold from the completion of ongoing BABAR and
VEPP-2000 analyses, improved charmonium resonance data from BES-III, and a better knowledge
of ↵S from reliable Lattice QCD predictions [56].

The present and projected experimental uncertainties for the observables used in the simplified
electroweak fit are summarised in the left columns of Table 3.

To match the experimental precision significant theoretical progress is required. Leaving aside the
ambiguity in mt discussed above, the presently most important theoretical uncertainties a↵ecting
the fit are those related to the predictions of MW and sin2✓fe↵ . For the future scenarios, we assume

that the present uncertainties of �theoMW = 4 MeV and �theo sin2✓
f
e↵ = 4.7 · 10�5 reduce to 1 MeV

and 10�5, respectively. This reduction will require ambitious three-loop electroweak calculations.
The leading theoretical uncertainties on the partial Z decay widths, �0

had, and the radiator functions
play a smaller role in the present fit. For the future scenarios the uncertainty estimates given in
Table 1 are assumed to be reduced by a factor of four, similar to the uncertainties on MW and
sin2✓fe↵ .
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Summary of indirect predictions
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3 Prospects of the electroweak fit with the LHC and ILC/GigaZ 13

Experimental input [±1�
exp

] Indirect determination [±1�
exp
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]
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Table 3: Current and extrapolated future uncertainties in the input observables (left), and the precision
obtained for the fit prediction (right). Where two uncertainties are given, the first is experimental and the
second theoretical. The value of ↵S(M2

Z) is not used directly as input in the fit. The uncertainty in the
direct MH measurements is not relevant for the fit and therefore not quoted. For all indirect determinations
shown (including the present MH determination) the assumed central values of the input measurements
have been adjusted to obtain a common fit value of MH = 125 GeV. The simplified fit setup used to derive
the numbers in this table leads in some cases to reduced constraints on observables as can be seen by
comparing the uncertainties of the present scenarios (fifth column) with the last column of Table 2. See
text for more details.

For both future scenarios we assume that the uncertainty in �↵
(5)
had(M

2
Z) will reduce from currently

10 · 10�5 down to 4.7 · 10�5. The improvement is expected due to updated e+e� ! hadrons cross
section measurements below the charm threshold from the completion of ongoing BABAR and
VEPP-2000 analyses, improved charmonium resonance data from BES-III, and a better knowledge
of ↵S from reliable Lattice QCD predictions [56].

The present and projected experimental uncertainties for the observables used in the simplified
electroweak fit are summarised in the left columns of Table 3.

To match the experimental precision significant theoretical progress is required. Leaving aside the
ambiguity in mt discussed above, the presently most important theoretical uncertainties a↵ecting
the fit are those related to the predictions of MW and sin2✓fe↵ . For the future scenarios, we assume

that the present uncertainties of �theoMW = 4 MeV and �theo sin2✓
f
e↵ = 4.7 · 10�5 reduce to 1 MeV

and 10�5, respectively. This reduction will require ambitious three-loop electroweak calculations.
The leading theoretical uncertainties on the partial Z decay widths, �0

had, and the radiator functions
play a smaller role in the present fit. For the future scenarios the uncertainty estimates given in
Table 1 are assumed to be reduced by a factor of four, similar to the uncertainties on MW and
sin2✓fe↵ .
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‣ theory uncertainty needs to be reduced if we want to achieve the 
ultimate precision with the LHC!
‣ ILC/GigaZ offers fantastic possibilities to test the SM and constrain NP 
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0,3
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1,7

δMZ δΔαhadδmtop δsin2(θleff) δαs

Today 

δmeas = 15 MeV

δfit    =   8 MeV

LHC-300 

δmeas =   8 MeV

δfit    =   6 MeV

ILC/GigaZ 

δmeas =   5 MeV

δfit    =   2 MeV

Impact of individual uncertainties on δMW in fit (numbers in MeV)

‣ ILC/GigaZ: impact δMZ of will become important again!



Paradigm change 
‣ from the discovery of the Higgs 

boson to a probe of new physics 

‣ knowledge of MH and  
two-loop calculations  
unprecedented precision of EW fit

‣ cannot know MW and sin2θleff  
precise enough

LHC 14/300 
‣ΔMW (indirect) = 5.5 MeV 
ΔMW (exp)       = 8 MeV 

ILC with GigaZ 
‣Δmt (exp) = 100 MeV → ΔMW (indirect) = 2 MeV 

measurement of MZ will become important again (Δαhad as well)
‣ indirect determinations of MZ and Δαhad will match exp. precision
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More information and latest results: 
www.cern.ch/gfitter
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‣ Full EW one- and two-loop 
calculation of fermionic and bosonic 
contributions

‣ One- and two-loop QCD 
corrections and leading terms of 
higher order corrections

‣ Results for Δr include terms of order  
O(α), O(ααs), O(ααs2), O(α2ferm), 
O(α2bos), O(α2αsmt4), O(α3mt6) 

‣ Uncertainty estimate:
• missing terms of order O(α2αs): 

about 3 MeV (from O(α2αsmt4))
• electroweak three-loop  

correction O(α3): < 2 MeV 
• three-loop QCD corrections 

O(ααs3): < 2 MeV
• Total: δMW ≈ 4 MeV

Calculation of MW

[M Awramik et al., Phys. Rev. D69, 053006 (2004)]

[M Awramik et al., Phys. Rev. Lett. 89, 241801 (2002)]A. Freitas et al. / Physics Letters B 495 (2000) 338–346 341

Fig. 2. Two-loop vertex diagrams containing a triangle subgraph,
which require a careful treatment of γ5 in D dimensions.

a finite contribution, so that it can be evaluated in
four dimensions without further complications. 1 The
fermion line appearing in the second loop also yields
an ϵ-tensor contribution, which results, after contrac-
tion with the ϵ-tensor from the triangle subgraph, in a
non-vanishing contribution to the result for #r .

As mentioned above, we perform the renormaliza-
tion within the on-shell scheme. It involves a one-loop
subrenormalization of the Faddeev–Popov ghost sec-
tor of the theory, which is associated with the gauge-
fixing part. The gauge-fixing part is kept invariant un-
der renormalization. For technical convenience, we
manage this by a renormalization of the gauge pa-
rameters in such a way that it precisely cancels the
renormalization of the parameters and fields in the
gauge-fixing Lagrangian. 2 To this end we have al-
lowed two different bare gauge parameters for both W
and Z, ξW,Z

1 and ξ
W,Z
2 , and also mixing gauge parame-

ters, ξγ Z and ξZγ . The renormalized parameters com-
ply with the Rξ gauge, with one free gauge parameter
for each gauge boson. With this prescription no coun-

1 For recent discussions of practical ways of treating γ5 in
higher-order calculations, see also Refs. [28,29].

2 An alternative way of achieving that the gauge-fixing sector
does not give rise to counterterm contributions would have been to
add the gauge-fixing part to the Lagrangian only after renormaliza-
tion, in which case the renormalized gauge transformations would
have to be used.

terterm contributions arise from the gauge-fixing sec-
tor. Starting at the two-loop level, counterterm contri-
butions from the ghost sector have to be taken into ac-
count in the calculation of physical amplitudes. They
follow from the variation of the gauge-fixing terms Fa

under infinitesimal gauge transformations. We have
derived all the counterterms arising from the ghost
sector (extending the results of Ref. [30] to a gen-
eral Rξ gauge) and implemented them into the pro-
gram FeynArts. In this way we could verify the finite-
ness of individual (gauge-parameter-dependent) build-
ing blocks (e.g., the W- and the Z-boson self-energy)
as a further check of the calculation.

Concerning the mass renormalization of unstable
particles, from two-loop order on it makes a difference
whether the mass is defined according to the real part
of the complex pole of the S matrix,

(4)M2 = !M2 − i !M !Γ ,

or according to the pole of the real part of the
propagator. In Eq. (4) M denotes the complex pole
of the S matrix and !M , !Γ the corresponding mass and
width of the unstable particle. We use the symbol M̃

for the real pole.
In the context of the present calculation, these

considerations are relevant to the renormalization of
the gauge-boson masses, MW and MZ. The two-loop
mass counterterms according to the definition of the
mass as the real part of the complex pole are given by

δ !M2
W,(2) = Re

{
ΣW

T,(2)

(
M2

W
)}

− δM2
W,(1) δZ

W
(1)

(5)+ Im
{
ΣW′

T,(1)

(
M2

W
)}

Im
{
ΣW

T,(1)

(
M2

W
)}

,

δ !M2
Z,(2) = Re

{
ΣZZ

T,(2)

(
M2

Z
)} − δM2

Z,(1) δZ
ZZ
(1)

+ M2
Z

4
(
δZ

γ Z
(1)

)2 +
(
Im

{
Σ

γ Z
T,(1)

(
M2

Z
)})2

M2
Z

(6)+ Im
{
ΣZZ′

T,(1)

(
M2

Z
)}

Im
{
ΣZZ

T,(1)

(
M2

Z
)}

,

where ΣT,(1), ΣT,(2) denote the transverse parts of
the one-loop and two-loop self-energies (the terms
from subloop renormalization are understood to be
contained in the two-loop self-energies), and Σ ′

T,(1)
means the derivative of the one-loop self-energy with
respect to the external momentum squared. Field
renormalization constants are indicated as δZV . The
relations to the mass counterterms according to the
real-pole definition, δM̃2

W,(2) and δM̃2
Z,(2), are given

A. Freitas et al. / Physics Letters B 495 (2000) 338–346 343

contains the following contributions

!r = !r(α) + !r(ααs) + !r(αα2
s )

(9)+ !r(Nfα
2) + !r(N2

f α2),

where !r(α) is the one-loop result, Eq. (3), !r(ααs)

and !r(αα2
s ) are the two-loop [10] and three-loop [11]

QCD corrections, while !r(Nfα
2) is the new elec-

troweak two-loop result. The notation (Nfα
2) symbol-

izes the contribution of all diagrams containing one
fermion loop, where Nf stands both for the top/bottom
contribution and for all light-fermion species. The
term !r(N2

f α2) contains the pure fermion-loop contri-
butions in two-loop order. Since the pure fermion-loop
contributions in three- and four-loop order have been
found to be numerically small, as a consequence of
accidental numerical cancellations, with a net effect of
only about 1 MeV in MW (using the real-pole defi-
nition of the gauge-boson masses) [17], we have not
included them here.

In Fig. 3 the different contributions to !r are shown
as a function of MH. Here MW is kept fixed at its
experimental central value, MW = 80.419 GeV, and
mt = 174.3 GeV [34] is used. The effects of the QCD

corrections, of the two-loop corrections induced by a
resummation of !α, and of the purely electroweak
fermionic two-loop corrections are shown separately.
The purely electroweak two-loop contributions are
sizeable and amount to about 10% of the one-loop
result. We have compared the Higgs-mass dependence
of !r with the result previously obtained in Ref. [15]
and found perfect agreement.

The prediction for MW is obtained from the input
parameters by solving Eq. (2). Since !r itself depends
on MW this is technically done using an iterative
procedure. The prediction for MW based on the results
of Eq. (9) is shown in Fig. 4 as a function of MH
for mt = 174.3 ± 5.1 GeV [34] and !α = 0.05954 ±
0.00065 [35]. The current experimental value, Mexp

W =
80.419 ± 0.038 GeV [4], and the experimental 95%
C.L. lower bound on MH (MH = 107.9 GeV [36])
from the direct search are also indicated. The plot
shows the well-known preference for a light Higgs
boson within the SM. Confronting the theoretical
prediction (allowing a variation of mt, which at present
dominates the theoretical uncertainty, and !α within
1σ ) with the 1σ region of M

exp
W and the 95% C.L.

lower bound on MH, only a rather small region in the

Fig. 3. Different contributions to !r as a function of MH. The one-loop contribution, !r(α) , is supplemented by the two-loop and three-loop
QCD corrections, !r

(α)
QCD ≡ !r(ααs) + !r(αα2

s ), and the fermionic electroweak two-loop contributions, !r(α2) ≡ !r(Nfα2) + !r(N2
f α2). For

comparison, the effect of the two-loop corrections induced by a resummation of !α, !r
(α2)
!α , is shown separately.

A Freitas et al., Phys. Lett. B495, 338 (2000)]

loop momenta. When both momenta are ‘‘soft’’ (! MW),
as in Fig. 1(b), the propagators of the W and Z bosons are
expanded leading to a correction of order !=M4

W in the
effective theory. For one momentum soft and one ‘‘hard’’
("MW), as in Figs. 1(c) and 1(d), corrections of either
order, !=M2

W or 1=M4
W in the effective theory, are gen-

erated. The contribution to the matching coefficient
comes only from the region where both momenta are
hard, as in Fig. 1(e). In this case, all of the light particle
masses and momenta should be put to zero. By these
arguments it can be shown that !r can be obtained by
simply taking the sum of all the diagrams and putting all
external momenta and light masses to zero. The proce-
dure should generate no spurious infrared divergences,
while the physical divergences connected with the photon
should be contained in the corrections of the effective
theory. As is known, the Fermi theory corrections are
finite; therefore, the !r correction obtained as above
should also be finite.

Previous calculations of !r have been based on a
different method of factorization originally devised in
[11]. This procedure consists of subtracting from the
infrared divergent SM diagrams the respective Fermi
theory diagrams in Pauli-Villars regularization. The dif-
ference is well defined in the limit of zero light masses
and external momenta. It turns out, however, that the
QEDWard identity, which is responsible for the finiteness
of the corrections in the Fermi theory, implies in this case
the vanishing of the sum of the subtracted diagrams. This
proves that both procedures are equivalent.

The evaluation of two loop corrections to a four-
fermion process requires the full second order renormali-
zation of the SM Lagrangian in all but the Higgs sector,
where first order suffices. The comparison with experi-
ment imposes the use of on-shell parameters for the final
result. Throughout this work the on-shell scheme was

used, with a procedure similar to the one described in
[5]. The only substantial difference concerns the treat-
ment of tadpoles.

It is known that gauge invariance of mass counterterms
requires inclusion of tadpoles [12,13] (at the two loop
level this has been explicitly shown in [14]). In this case,
however, one cannot use one-particle-irreducible (1PI)
Green functions. In order to have gauge invariant counter-
terms and 1PI Green functions only, a special procedure
was designed. An additional renormalization constant for
the bare vacuum expectation value v0, denoted Zv, has
been introduced and explicitly split from the bare masses

v0 ! v0Z
1=2
v ; (4)

M0
W;Z ! M0

W;ZZ
1=2
v : (5)

The term linear in the Higgs field H in the Lagrangian

T0H0 # M0
Ws

0
W

e0
$M0

H%2Z1=2
v $Zv & 1%H0 (6)

is then used to determine Zv, through the requirement that
tadpoles are canceled. It can be proved [12,15] that the
bare masses are gauge invariant in this case (an equiva-
lent procedure which makes use of the effective potential
has been used in [16]).

The calculation of the two loop bosonic contributions
to muon decay was performed by means of a completely
automated system. The diagram generation stage was
done by the C'' library DiaGen [17]. The tensor reduc-
tion of two loop propagator diagrams was accomplished
with the algorithm described in [18], whereas vacuum
diagrams were treated with integration by parts identities
[19]. For algebraic manipulations, the program FORM [20]
was used. The two loop two-point integrals were numeri-
cally evaluated with single integral representations of
the package S2LSE [21]. The latter was modified for qua-
druple precision, which was needed due to large cancel-
lations (independent terms grow as M8

H, while the result
behaves as M2

H).
The size of the software required several tests. The

following algebraic checks were performed: ultraviolet
and infrared finiteness, by cancellation of poles in dimen-
sional regularization; gauge invariance, by independence
of the three gauge parameters of the general R" gauge for
the SM; Slavnov-Taylor identities for two-point func-
tions, as given in [18], both for on-shell integrals and
by expansion in the external momentum to second order.

Several numerical tests were also done: (i) All of
the master integrals were evaluated independently by
means of deep mass difference and large-mass expan-
sions. (ii) Each of the two-point on-shell diagrams was
calculated separately with the help of small-momentum
and different large-mass expansions. (iii) The result of
[14] for the W and Z mass counterterms was reproduced
to precision dictated by the order of the expansions

FIG. 1. A typical muon decay diagram (a) and the contribu-
tions to its large mass expansion according to the momenta
(b) k1-soft, k2-soft; (c) soft-hard; (d) hard-soft; (e) hard-hard.
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‣ Effective mixing angle: 

‣ Two-loop EW and QCD correction 
to Δκ known, leading terms of higher 
order QCD corrections

‣ fermionic two-loop correction about 
10−3, whereas bosonic one 10−5

‣ Uncertainty estimate obtained with 
different methods, geometric 
progression:

Calculation of sin2(θleff)
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Figure 1: Genuine fermionic two-loop Zl+l− vertex diagrams contributing to sin2 θlept
eff .

contributions to the ρ parameter of O(G3
µm6

t ) and O(G2
µαsm4

t ) for large top-quark mass

[14], as well as O(G3
µM4

H) for large Higgs mass [15] have been computed.

Higher order QCD corrections to sin2 θlept
eff have been calculated at O(ααs) [16] and for

the top-bottom contributions at O(αα2
s ) [17] and O(αα3

s ) [18]. The O(αα2
s ) contributions

with light quarks in the loops can be derived from eqs. (29)–(31) in [19] and turn out to

be completely negligible. For the electroweak two-loop contributions, only partial results

using large mass expansions in the Higgs mass [20] and top-quark mass [21 – 23] have

been known previously. Concerning the expansion in mt, the formally leading term of

O(G2
µm4

t ) [21, 22] and the next-to-leading term of O(G2
µm2

tM
2
Z) [23] were found to be

numerically significant and of similar magnitude. Therefore, a complete calculation of

electroweak two-loop corrections to sin2 θlept
eff beyond the leading terms of expansions is

desirable.

As a first step in this direction, exact results have been obtained for the Higgs-mass

dependence (i.e. the quantity sin2 θlept
eff,sub(MH) ≡ sin2 θlept

eff (MH)−sin2 θlept
eff (MH = 65 GeV))

of the two-loop corrections with at least one closed fermion loop to the precision observ-

ables [13, 24]. They were shown to agree well with the previous results of the top-quark

mass expansion [25].

This paper discusses the complete computation of all electroweak two-loop corrections

to sin2 θlept
eff . In addition to the corrections to the prediction of the W -boson mass, which

have been analyzed before [4, 5], this includes all two-loop diagrams contributing to the

Zl+l− vertex on the Z pole. The diagrams can be conveniently divided into two groups;

fermionic contributions with at least one closed fermion loop, and bosonic contributions

without closed fermion loops. The genuine fermionic two-loop vertex diagrams are repre-

sented by the generic topologies in figure 1 and some examples of bosonic two-loop diagrams

are given in figure 2.

Results for the complete two-loop corrections have been presented first in Ref. [26, 27].
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Figure 2: Examples of bosonic two-loop Zl+l− vertex diagrams contributing to sin2 θlept
eff .

The results for the fermionic contributions have been confirmed in Ref. [28] and partial

results for the bosonic contributions were also obtained in Ref. [29]. This paper describes

the computational methods and analysis in more detail.

The paper is organized as follows. In section 2, the process e+e− → l+l− is analyzed

at next-to-next-to-leading order near the Z-boson pole and the O(α2) definition of the

sin2 θlept
eff is extracted. Furthermore the general strategies for the calculation of two-loop

contributions to the form factor ∆κ are discussed. Sections 3 and 4 explain the calculation

of the fermionic and bosonic two-loop diagrams in detail. For two-loop vacuum and self-

energy diagrams, well-established techniques exist and have been used for the computation

of MW [4 – 6]. The new part in this project are the two-loop vertex topologies, which have

been treated with two conceptually independent methods. A discussion of the numerical

results and remaining theoretical uncertainties due to unknown higher orders can be found

in section 5. In addition to the effective leptonic weak mixing angle, results are given also

for the effective weak mixing angle for other final state flavors, i.e. for couplings of the Z

boson to other fermions. Finally the implementation of our new results into the program

Zfitter is described.

2. Outline of the calculation

The two-loop corrections to the effective weak mixing angle sin2 θf
eff are part of the next-

to-next-to-leading order corrections to the process e+e− → f f̄ for center-of-mass energies

near the Z-boson mass,
√

s ≈ MZ. To set the scene for this calculation, a framework

for the next-to-next-to-leading order analysis of f f̄ production needs to be established.

Furthermore it has to be checked whether sin2 θf
eff is a well-defined, i.e. gauge-invariant

and finite, quantity at this order in perturbation theory.
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Figure 1: Genuine fermionic two-loop Zl+l− vertex diagrams contributing to sin2 θlept
eff .

contributions to the ρ parameter of O(G3
µm6

t ) and O(G2
µαsm4

t ) for large top-quark mass

[14], as well as O(G3
µM4

H) for large Higgs mass [15] have been computed.

Higher order QCD corrections to sin2 θlept
eff have been calculated at O(ααs) [16] and for

the top-bottom contributions at O(αα2
s ) [17] and O(αα3

s ) [18]. The O(αα2
s ) contributions

with light quarks in the loops can be derived from eqs. (29)–(31) in [19] and turn out to

be completely negligible. For the electroweak two-loop contributions, only partial results

using large mass expansions in the Higgs mass [20] and top-quark mass [21 – 23] have

been known previously. Concerning the expansion in mt, the formally leading term of

O(G2
µm4

t ) [21, 22] and the next-to-leading term of O(G2
µm2

tM
2
Z) [23] were found to be

numerically significant and of similar magnitude. Therefore, a complete calculation of

electroweak two-loop corrections to sin2 θlept
eff beyond the leading terms of expansions is

desirable.

As a first step in this direction, exact results have been obtained for the Higgs-mass

dependence (i.e. the quantity sin2 θlept
eff,sub(MH) ≡ sin2 θlept

eff (MH)−sin2 θlept
eff (MH = 65 GeV))

of the two-loop corrections with at least one closed fermion loop to the precision observ-

ables [13, 24]. They were shown to agree well with the previous results of the top-quark

mass expansion [25].

This paper discusses the complete computation of all electroweak two-loop corrections

to sin2 θlept
eff . In addition to the corrections to the prediction of the W -boson mass, which

have been analyzed before [4, 5], this includes all two-loop diagrams contributing to the

Zl+l− vertex on the Z pole. The diagrams can be conveniently divided into two groups;

fermionic contributions with at least one closed fermion loop, and bosonic contributions

without closed fermion loops. The genuine fermionic two-loop vertex diagrams are repre-

sented by the generic topologies in figure 1 and some examples of bosonic two-loop diagrams

are given in figure 2.

Results for the complete two-loop corrections have been presented first in Ref. [26, 27].
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from asymmetries measured at center-of-mass energies away from the Z pole, requiring

a theoretical extrapolation in order to match it to sin2 θlept
eff on the Z pole. The current

experimental accuracy, sin2 θlept
eff = 0.23147 ± 0.00017 [1], could be improved by an order

of magnitude at a future high-luminosity linear collider running in a low-energy mode at

the Z boson pole (GigaZ) [2]. This offers the prospect for highly sensitive tests of the

electroweak theory [3], provided that the accuracy of the theoretical prediction matches

the experimental precision.

Typically, the theoretical prediction of sin2 θlept
eff within the Standard Model is given in

terms of the following input parameters: the fine structure constant α, the Fermi constant

Gµ, the Z-boson mass MZ and the top-quark mass mt (and other fermion masses whenever

they are numerically relevant). The W -boson mass MW is calculated from the Fermi

constant, which is precisely derived from the muon decay lifetime. As a consequence, the

computation of sin2 θlept
eff involves two major parts: the radiative corrections to the relation

between Gµ and MW, and the corrections to the Z-lepton vertex form factors. The latter

can be incorporated into the quantity κ = 1 + ∆κ, defined in the on-shell scheme,

sin2 θlept
eff =

(

1 − M2
W/M2

Z

)

(1 + ∆κ) , (1.2)

At tree-level, ∆κ = 0 and the sine of the effective mixing angle is identical to the sine of

the on-shell weak mixing angle sin2 θW ≡ sW = 1 − M2
W/M2

Z. The quantity ∆κ is only

weakly sensitive to MW.

For the computation of the W -boson mass, the complete electroweak two-loop correc-

tions, including partial higher-order corrections, have been carried out in Ref. [4 – 7]. In

this report, the calculation of the corresponding contributions for the form factor ∆κ and

combined predictions for sin2 θlept
eff will be discussed.

The quantum corrections to sin2 θlept
eff have been under extensive theoretical study over

the last two decades. The one-loop result [8, 9] involves large fermionic contributions from

the leading contribution to the ρ parameter, ∆ρ, which is quadratically dependent on the

top-quark mass mt, resulting from the top-bottom mass splitting [10]. The correction ∆ρ

enters both in the computation of MW from the Fermi constant (for a discussion see e.g.

Ref. [4, 5]), as well as into the vertex correction factor ∆κ,

1 + ∆κ(α) = 1 +
c2
W

s2
W

∆ρ + ∆κrem(MH), (1.3)

with c2
W = M2

W/M2
Z, s2

W = 1−M2
W/M2

Z. The remainder part ∆κrem contains in particular

the dependence on the Higgs-boson mass, MH.

Beyond the one-loop order, resummations of the leading one-loop contribution ∆ρ

have been derived [11, 12]. They correctly take into account the terms of the form (∆ρ)2

and (∆α∆ρ). Here ∆α is the shift in the fine structure constant due to light fermions,

∆α ∝ log mf , which enters through the corrections to the relation between Gµ and MW,

since ∆κ = ∆κ(MW) is a function of MW. These resummation results have been confirmed

and extended by an explicit calculation of the pure fermion-loop corrections at O(α2)

(i.e. contributions containing two fermion loops) [13]. Recently, the leading three-loop
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Figure 8: Contribution of several orders of radiative corrections to the effective leptonic weak

mixing angle sin2 θlept
eff as a function of the Higgs mass MH. The tree-level value is not shown.

(a)

MH
[

∆ sin2 θlept
eff

]

ZFITTER

[

∆ sin2 θlept
eff

]

[70]

[GeV] [10−4] [10−4]

100 -0.45 -0.40

200 -0.69 -0.72

600 -1.17 -0.94

1000 -1.60 -1.28

(b)

mt,MH ∆[m4
t ] ∆[m2

t ] ∆[m−4
t ]

[GeV]

175,400 20% 4.3% 0.02%

800,1800 5% 1.9% 0.00002%

Table 3: (a) Difference between the new result of eq. (5.3) and the previous result from ref. [23],
as implemented in Zfitter (left column) and from the fitting formula in ref. [70] (right column).
(b) Convergence of the expansion in m−2

t for the two-loop diagrams with top propagators. Here
∆[mk

t ] = [sin2 θlept
eff ](α2mk

t
)/[sin2 θlept

eff ](α2exact) − 1 is the relative difference between the exact and
the expanded result at the given order.

Ref. [23] introduces higher-order terms that can be sizeable. Here it is important to note

that the OSI scheme in Ref. [23], which is the basis for the implementation of these cor-
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Geometric progression Scale dependence Leading mt terms

O(α2αs) beyond leading m4
t 3.3 . . . 2.8 × 10−5 0.8 . . . 2.1 × 10−5 1.2 . . . 4.3 × 10−5

O(αα3
s ) 1.5 . . . 1.4 0.3 . . . 0.2

O(α3) beyond leading m6
t 2.5 . . . 3.5 0.3 . . . 0.8

Sum 4.4 . . . 4.7 × 10−5

Table 4: Estimation of the uncertainty from different higher order contributions for sin2 θlept
eff , with

the quadratic sum of all error sources. Where applicable, two or three different methods for the
error estimate have been used.

the highest available perturbation order. By varying thus the scale µ of mt,MS in the

O(α2) contributions between m2
t/2 < µ2 < 2m2

t one obtains an error estimate for the

O(α2αs) contributions between 0.1 and 3.9 × 10−5, depending on the value of MH for

10 GeV < MH < 1000 GeV. Similarly, by varying αs(µ) in the O(αα2
s ) corrections between

m2
t/2 < µ2 < 2m2

t leads to an error estimate for the O(αα3
s ) contributions of less than 10−6,

see Tab. 4.

An independent third estimate of the error of the O(α2αs) and O(α3) contributions

can be obtained from the existing leading terms in the expansion for large top quark mass.

Experience from the O(α2) corrections suggests that for moderate values of MH, the leading

mt-term and the remaining non-leading terms are of similar order. These contributions are

shown in the last column of Tab. 4.

As evident from the table, all methods give results of similar order of magnitude, while

the geometric progression method tends to lead to the largest error evaluation. The total

estimated error is therefore computed by summing in quadrature the error from different

contributions obtained by this method. It is found to amount to δthsin2 θlept
eff = 4.7× 10−5.

5.3 Parametrization formulae

Following Ref. [26], the numerical results are expressed in terms of a fitting formula, which

reproduces the exact calculation with maximal and average deviations of 4.5 × 10−6 and

1.2 × 10−6, respectively, as long as the input parameters stay within their 2σ ranges and

the Higgs boson mass in the range 10 GeV ≤ MH ≤ 1 TeV. For the sake of comparability

with the result of Ref. [26], the slightly outdated central values for the experimental input

parameters used there are also kept in the formula

sin2 θf
eff = s0 + d1LH + d2L

2
H + d3L

4
H + d4(∆

2
H − 1) + d5∆α

+ d6∆t + d7∆
2
t + d8∆t(∆H − 1) + d9∆αs + d10∆Z ,

(5.5)

with

LH = log

(

MH

100 GeV

)

, ∆H =
MH

100 GeV
, ∆α =

∆α

0.05907
− 1,

∆t =
( mt

178.0 GeV

)2
− 1, ∆αs =

αs(MZ)

0.117
− 1, ∆Z =

MZ

91.1876 GeV
− 1.

(5.6)
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rections in ZFITTER, uses the MS definition for ∆ρ, which is numerically larger than the

leading m2
t term, so that the resummation effects of ∆ρMS are rather large. Finally, Zfit-

ter versions before 6.40 use an outdated implementation of the QCD corrections. Since

all these contributions are non-negligible at the current level of precision, it is interesting

to study them separately.

In particular, using the results of section 3.1 the effect of the truncated top-mass

expansion is shown in Tab. 3 (b)2. It turns out that the expansion converges quite well

for realistic values of mt and MH. However, the terms beyond the order m2
t induce a

difference of 4.3% in the two-loop corrections with top-bottom loops, corresponding to a

shift of about 0.2 × 10−4 in sin2 θlept
eff , which is roughly a quarter of the total difference

reported in Tab. 3 (a). As a cross-check, also the result for very large values of mt and MH

are shown in Tab. 3 (b), to illustrate that in this case the series converges much faster.

5.2 Error estimate

While the inclusion of the fermionic two-loop corrections is a substantial improvement of

the prediction of sin2 θlept
eff in the Standard Model, uncertainties from missing higher order

contributions can still be sizeable. Here we try to give an estimate of the error induced

by these unknown contributions. The most relevant missing higher order contributions are

corrections of the order O(α2αs) beyond the leading m4
t term, O(α3) beyond the leading

m6
t term and O(αα3

s ). Since the final prediction for sin2 θlept
eff is based on Gµ as input, the

loop effects in the both quantities ∆r (for the computation of MW) and ∆κ (for the Zl+l−

vertex corrections) need to be considered.

When combining the two form factors, it turns out that there are some cancellations

between the known corrections to MW and the Z vertex. It is expected that similar

cancellations occur when adding an additional QCD loop, since QCD corrections enter

with the same relative sign in the corrections to MW and the Z vertex. Since the dominant

missing higher order effects are contributions with an additional QCD loop, it is assumed in

the following that these cancellations are natural and it is justified to study the theoretical

error of both quantities ∆r and ∆κ in conjunction.

A simple method to estimate the higher order uncertainties is based on the assumption

that the perturbation series follows roughly a geometric progression. This presumption

implies relations like

O(α2αs) =
O(α2)

O(α)
O(ααs). (5.4)

From this one obtains the error estimates in the second column of Tab. 4 for the different

higher order contributions, which are given for a range of the Higgs MH mass between 10

GeV and 1000 GeV. To account for possible deviations from the geometric series behavior,

an ad-hoc overall factor
√

2 was included in all error determined via this method.

Alternatively, the error from a higher-order QCD loop can be assessed by varying the

scale of the strong coupling constant αs or the top-quark mass mt in the MS scheme in

2As a by-product of this comparison, we found a typo in Ref. [45], where a term 3

2
m2

t/(M
2
Zs2

W) log c2
W is

missing in the expression for MH ≫ mt.
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[M Awramik et al, Phys. Rev. Lett. 93, 201805 (2004)]

[M Awramik et al., JHEP 11, 048 (2006)]
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‣ Calculation of sin2θeff  for b-quarks 
more involved, because of top quark 
propagators in the Z→bb vertex

‣ Investigation of known discrepancy 
between sin2θeff from leptonic and 
hadronic asymmetry measurements

‣ Two-loop EW correction only 
recently completed, effect of O(10−4)

‣ Now sin2θbbeff known at the same 
order as sin2θeff for leptons and light 
quarks

‣ Uncertainty assumed to be of same 
size as for sin2θeff :

Calculation of sin2(θbbeff)
[M Awramik et al, Nucl. Phys. B813, 174 (2009)]

178 M. Awramik et al. / Nuclear Physics B 813 (2009) 174–187

Fig. 1. Set of Feynman diagrams required for the calculation of the fermionic two-loop corrections to the Zbb̄ vertex, but
absent in the sin2 θ

lept
eff case. Thick solid lines denote top-quark propagators, while thin lines represent light fermions.

For any two-loop problem, there are four regions to consider. Let k1 and k2 represent the internal
momenta in the loops and p stand for any external momentum, while m generically denotes all
masses that are small compared to mt , m < mt . In our case, m = MW,MZ . Then the four regions
can be identified as follows:

(1) k1 ∼ mt and k2 ∼ mt (expansions in small parameters: p and m),
(2) k1 ∼ m and k2 ∼ mt (expansions in small parameters: p, k1 and m),
(3) k1 ∼ mt and k2 ∼ m (expansions in small parameters: p, k2 and m),
(4) k1 ∼ m and k2 ∼ m (expansions in small parameters: p, k1, k2 and m).

This method allows us to represent two-loop vertex diagrams by a sum of simpler integrals,
namely two-loop propagator and vacuum integrals, plus one-loop integrals. However, higher
orders in the expansion lead to higher powers of propagator denominators in these integrals.
This is not a problem for one-loop or vacuum integrals, as analytic relations are well known;
for relations and references, see, for example, Ref. [16]. For two-loop propagator integrals, we
employ the Laporta algorithm, as proposed in Ref. [22]. This algorithm allows us to automatically
reduce complicated multi-loop integrals with non-trivial numerators to a smaller set of master
integrals with unit numerators. In addition to the well-known integration by parts relations [23],
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Calculation of R0b

Full two-loop calculation of Z→bb ¯

‣ The branching ratio R0b:  partial decay width of Z→bb and Z→qq¯ ¯
The branching ratio Rb is defined as the ratio of the partial decay widths of the Z-boson

decay into bottom quarks and into all quarks:

Rb ≡
Γb

Γhad
=

Γb

Γd + Γu + Γs + Γc + Γb
=

1

1 + 2(Γd + Γu)/Γb
, (3)

where Γf stands for the partial decay width into the f f̄ final state. In the last step in (3), the
relationships Γu ≈ Γc and Γd ≈ Γs have been used, which hold to very good approximation.

Up to next-to-next-to-leading order (q = u, d),

Γq

Γb
=

G(0)
q

G(0)
b

+
2

(G(0)
b )2

ℜe
{

G(0)
b G(1)

q −G(0)
q G(1)

b

}

+
1

(G(0)
b )2

[

G(0)
b R(1)

q −G(0)
q R(1)

b

]

+
1

(G(0)
b )3

ℜe
{

(G(0)
b )2

[

2G(2)
q + (a(1)q )2 + (v(1)q )2

]

−G(0)
b G(0)

q

[

2G(2)
b + (a(1)b )2 + (v(1)b )2

]

− 4G(0)
b G(1)

q G(1)
b + 4G(0)

q (G(1)
b )2

}

+
1

(G(0)
b )2

[

G(0)
b R(2)

q −G(0)
q R(2)

b −G(0)
b R(1)

q R(1)
b +G(0)

q (R(1)
b )2

]

(4)

+
2

(G(0)
b )3

[

(G(0)
b )2(a(0)q a(1)q R(1)

q,A + v(0)q v(1)q R(1)
q,V)−G(0)

b G(1)
b R(1)

q

+G(0)
q G(1)

b R(1)
b +G(0)

q a(0)b v(0)b (a(0)b v(1)b + v(0)b a(1)b )(R(1)
b,A −R(1)

b,V)

−G(0)
b G(1)

q R(1)
b

]

,

with
G(n)

q = a(0)q a(n)q + v(0)q v(n)q , R(n)
q = (a(0)q )2R(n)

q,A + (v(0)q )2R(n)
q,V. (5)

Here R(n)
q,V and R(n)

q,A incorporate the n-loop QED and QCD corrections to the vector and
axial-vector form factors, which have been calculated already several years ago [23, 24], see
also Ref. [25]. The relevant parts for this calculation are given by

R(1)
d,V = R(1)

d,A = R(1)
b,V = α

12π + αs
π , (6)

R(1)
u,V = R(1)

u,A = α
3π + αs

π , (7)

R(1)
b,A = R(1)

b,V − 6
m2

b

M2
Z
, (8)

R(2)
d,V = − ααs

36π2 + C2

(

αs
π

)2
+ C3

(

αs
π

)3
, (9)

R(2)
d,A = R(2)

d,V − I2
(M2

Z

m2
t

) (

αs
π

)2 − I3
(M2

Z

m2
t

) (

αs
π

)3
, (10)

R(2)
u,V = R(2)

d,V − ααs
12π2 , (11)

R(2)
u,A = R(2)

d,A − ααs
12π2 , (12)

R(2)
b,V = R(2)

d,V + 12
m2

b

M2
Z

αs
π +O(m4

bαs, m
2
bα

2
s ), (13)

R(2)
b,A = R(2)

d,A − 22
m2

b

M2
Z

αs
π − 6

m4
b

M4
Z
+O(m4

bαs, m
2
bα

2
s ). (14)

3

‣ Two-loop corrections small compared to experimental uncertainty (6.6⋅10−4)

1-loop EW and 
QCD correction 

to FSR

2-loop EW 
correction

2-loop EW and 
2+3-loop QCD 

correction to FSR

1+2-loop QCD 
correction to gauge 
boson selfenergies

[A. Freitas et al., JHEP 1208, 050 (2012)
 Erratum ibid. 1305 (2013) 074]

‣ Contribution of same terms as in the calculation of sin2θbbeff  
→ cross-check the two results, found good agreement

MH O(α) + FSRα,αs,α2
s

O(α2
ferm) O(α2

ferm) + FSRα3
s ,ααs,m2

bαs,m4
b

O(ααs,αα2
s)

[GeV] [10−4] [10−4] [10−4] [10−4]

100 −35.66 −0.856 −2.496 −0.407

200 −35.85 −0.851 −2.488 −0.407

400 −36.09 −0.846 −2.479 −0.406

600 −36.24 −0.836 −2.468 −0.406

1000 −36.45 −0.813 −2.441 −0.406

Table 3: Results for electroweak one- and two-loop corrections to Rb, as defined in eqs. (3,4),
for different values of MH. The other input values are taken from Tab. 1, with a fixed value
for MW. Also shown are the effects of two- and three-loop QCD corrections to the final state
(fourth column) and to gauge-boson selfenergies (fifth column). Here “FSR” stands for the
final-state radiative QCD and QED corrections described by the radiator functions R(n).

tree-level +O(α) O(α2
ferm) + FSRα3

s ,ααs,m2
bαs,m4

b

MH + FSRα,αs,α2
s

+O(ααs,αα2
s) total

[GeV] [10−4]

100 0.21569 −1.923 0.21549

200 0.21570 −1.919 0.21551

400 0.21572 −1.916 0.21553

600 0.21573 −1.918 0.21554

1000 0.21574 −1.927 0.21555

Table 4: Results for Rb, as in Table 3, but now with MW calculated from Gµ using the SM
prediction. The other input values are taken from Tab. 1.

by a simple parametrization formula:

Rb = R0
b + c1LH + c2L

2
H + c3L

4
H + c4(∆

2
H − 1) + c5∆α

+ c6∆t + c7∆tLH + c8∆αs + c9∆
2
αs

+ c10∆Z ,
(21)

with

LH = ln
MH

100 GeV
, ∆H =

MH

100 GeV
, ∆t =

( mt

173.2 GeV

)2
− 1,

∆α =
∆α

0.05900
− 1, ∆αs =

αs(MZ)

0.1184
− 1, ∆Z =

MZ

91.1876 GeV
− 1. (22)

The numerical coefficients are determined by a fit to the full numerical result, which includes
all radiative corrections mentioned above: the complete O(α) and fermionic O(α2) contri-
butions to the Zff̄ vertex form factors, as well as virtual O(ααs) and O(αα2

s ) corrections
and final-state radiation of order O(αn

s ), (n = 1, 2, 3) and O(ααs). For the W -boson mass

8
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‣ Partial widths are defined inclusively: they contain QCD and QED 
contributions

Radiator Functions

‣ Corrections can be expressed as radiator functions RA,f and RV,f

�ff̄ = Nf
c
GFM3

Z

6
p
2⇡

�
|gA,f |2RA,f + |gV,f |2RV,f

�2

‣ High sensitivity to the strong 
coupling αs

‣ Full four-loop calculation of QCD 
Adler function available (N3LO)

‣ Much reduced scale dependence
‣ Theoretical uncertainty of 0.1 MeV, 

compare to experimental 
uncertainty of 2.0 MeV

[P. Baikov et al., Phys. Rev. Lett. 108, 222003 (2012)]
[P. Baikov et al Phys. Rev. Lett. 104, 132004 (2010)]

3

with s2W = 0.231. The three terms in the brackets dis-
play separately non-singlet, axial singlet and vector sin-
glet contributions.

Let us now evaluate the impact of the newly calcu-
lated terms on the αs-determination from Z-decays. Fol-
lowing our approach for the non-singlet terms (where
a shift δαs = 0.0005 had been obtained [3], consis-
tent with an analysis [31] based on results of the elec-
troweak working group [1] and a modified interface to
ZFITTER v. 6.42 [32, 33] and confirmed by the G-fitter
collaboration [32,30,31]), we consider the quantity Rnc

as “pseudo-observable”. With a starting value Rnc =
20.9612, if evaluated for αs = 0.1190 and without the α4

s

singlet terms, a shift δαs = −0.00008 is obtained after
including the newly calculated contributions.

As discussed in [3], the non-singlet α4
s term leads to a

considerable stabilization of the theory prediction, and,
correspondingly, to a reduction of the theory error. A
similar statement holds true for the singlet contribution.
To illustrate this aspect, the dependence on the renor-
malization scale µ is shown in Fig. 2 for rNS, rVS and
rAS;t,b. The relative variation is significantly reduced in
all three cases. In particular for the vector singlet case
we observe a shift of the result by about a factor 1.45
(for µ = MZ) and a considerable flattening of the result.
Using for example the Principle of Minimal Sensitivity
(PMS) [35] as a guidance for the proper choice of scale,
µ = 0.3MZ seems to be favoured, leading to an amplifi-
cation of the LO result by a factor 1.68 (if the latter is
evaluated for µ = MZ , as done traditionally).

Let us assume that the remaining theory uncertainties
from rNS, rVS and rAS;t,b can be estimated by varying µ be-
tween MZ/3 and 3MZ and using the maximal variation
as twice the uncertainty δr. This leads to δΓNS = 0.101
MeV, δΓV

S = 0.0027 MeV and δΓA
S = 0.042 MeV. Even

adding these terms linearly, they are far below the exper-
imental error of δΓexp = 2.0 MeV [36]. In combination
with the quadratic and quartic mass terms, which are
known to O(α4

s) and O(α3
s) respectively, this analysis

completes the QCD corrections to the Z decay rate.

Let us also comment on the impact of the α4
s singlet

result on the measurement of Rem at low energies, i.e. in
the region accessible at BESS or at B-factories, say be-
tween 3 GeV and 10 GeV. Considering the large luminosi-
ties collected at these machines, a precise αs determina-
tion from Rem seems possible [38]. In the low energy re-
gion only rVS and rVNS contribute. Since

∑

f=u,d,s qf = 0,
the singlet contribution vanishes in the three flavour case.
If we consider the region above charm and below bottom
threshold, say at 10 GeV, only u, d, s and c quarks con-
tribute, the relative weight of the rVS in eq. (1) is given by
(
∑

qf )2/(
∑

q2f ) = 2/5, and thus is fairly suppressed. At
energy of 10 GeV, in the absence of open bottom quark
contribution, it seems appropriate to analyze the results

in an effective four flavour theory with

rVS = −0.41318 a3s(µ)− (5.1757 + 2.5824 lnµ2/s) a4s(µ).

As shown in Fig. 3, it is evident that the scale depen-
dence is softened in NLO. Again a scale µ around 0.3
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FIG. 2: Scale dependence of (a) non-singlet rNS, (b) vector
singlet rVS and (c) axial vector singlet rAS;t,b. Dotted, dash-
dotted, dashed and solid curves refer to O(αs) up to O(α4

s)
predictions. αs(MZ) = 0.1190 and nl = 5 is adopted in all
these curves.

O(αs3) O(αs4)

O(αs)

O(αs2)

[D. Bardin, G. Passarino, “The Standard  
Model in the Making”, Clarendon Press (1999)]
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Modified Higgs couplings 

!  Study of potential deviations of Higgs couplings from SM. 
!  BSM modeled as extension of SM through effective Lagrangian. 

•  Consider leading corrections only. 

!  Popular benchmark model: 
•  Scaling of Higgs-vector boson (κV)  

and Higgs-fermion couplings (κF)  
•  No additional loops in the  

production or decay of the Higgs,  
no invisible Higgs decays and undetectable width. 

!  Main effect on EWPO due to  
modified Higgs coupling  
to gauge bosons (κV) 

•  Involving the longitudinal d.o.f. 

!  Most BSM models: κV < 1 
•  Additional Higgses typically give positive contribution to MW. 

The ElectroWeak fit of Standard Model 36 
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• Leading corrections only
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and Higgs-fermion couplings (κF)
• No additional loops in the production or decay of the Higgs,  

no invisible Higgs decays and undetectable width
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