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Precision measurements at the LHC
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Sub-percent accuracy  
over large range of energies and 

many orders of cross section!

transverse momentum of the lepton pair

A huge challenge for theory!
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Higgs interactions: the fifth force

A rich program of Higgs-boson physics, probing its 
interactions and searching for deviations from the SM.
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e.g. Higgs coupling to b-quarks

Last year, ATLAS and CMS observed              for the 
first time. Extremely challenging due to the huge 
background from QCD processes.
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List of LHC measurements observing 
direct signals of New Physics
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… and there were a lot of searches!
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q̃q̃, q̃→qχ̃
0
1 0 2-6 jets Yes 36.1 m(χ̃

0
1)<100 GeV 1712.023321.55q̃ [2×, 8× Degen.] 0.9q̃ [2×, 8× Degen.]

mono-jet 1-3 jets Yes 36.1 m(q̃)-m(χ̃
0
1)=5 GeV 1711.033010.71q̃ [1×, 8× Degen.] 0.43q̃ [1×, 8× Degen.]

g̃g̃, g̃→qq̄χ̃
0
1 0 2-6 jets Yes 36.1 m(χ̃

0
1)<200 GeV 1712.023322.0g̃

m(χ̃
0
1)=900 GeV 1712.023320.95-1.6g̃̃g Forbidden

g̃g̃, g̃→qq̄(ℓℓ)χ̃
0
1

3 e, µ 4 jets - 36.1 m(χ̃
0
1)<800 GeV 1706.037311.85g̃

ee, µµ 2 jets Yes 36.1 m(g̃)-m(χ̃
0
1 )=50 GeV 1805.113811.2g̃

g̃g̃, g̃→qqWZχ̃
0
1 0 7-11 jets Yes 36.1 m(χ̃

0
1) <400 GeV 1708.027941.8g̃

3 e, µ 4 jets - 36.1 m(g̃)-m(χ̃
0
1)=200 GeV 1706.037310.98g̃

g̃g̃, g̃→tt̄χ̃
0
1

0-1 e, µ 3 b Yes 36.1 m(χ̃
0
1)<200 GeV 1711.019012.0g̃

3 e, µ 4 jets - 36.1 m(g̃)-m(χ̃
0
1)=300 GeV 1706.037311.25g̃

b̃1b̃1, b̃1→bχ̃
0
1/tχ̃

±
1

Multiple 36.1 m(χ̃
0
1)=300 GeV, BR(bχ̃

0
1)=1 1708.09266, 1711.033010.9b̃1b̃1 Forbidden

Multiple 36.1 m(χ̃
0
1)=300 GeV, BR(bχ̃

0
1)=BR(tχ̃

±
1 )=0.5 1708.092660.58-0.82b̃1b̃1 Forbidden

Multiple 36.1 m(χ̃
0
1)=200 GeV, m(χ̃

±
1 )=300 GeV, BR(tχ̃

±
1 )=1 1706.037310.7b̃1b̃1 Forbidden

b̃1b̃1, t̃1 t̃1, M2 = 2 × M1 Multiple 36.1 m(χ̃
0
1)=60 GeV 1709.04183, 1711.11520, 1708.032470.7t̃1

Multiple 36.1 m(χ̃
0
1)=200 GeV 1709.04183, 1711.11520, 1708.032470.9t̃1t̃1 Forbidden

t̃1 t̃1, t̃1→Wbχ̃
0
1 or tχ̃

0
1

0-2 e, µ 0-2 jets/1-2 b Yes 36.1 m(χ̃
0
1)=1 GeV 1506.08616, 1709.04183, 1711.115201.0t̃1

t̃1 t̃1, H̃ LSP Multiple 36.1 m(χ̃
0
1)=150 GeV, m(χ̃

±
1 )-m(χ̃

0
1)=5 GeV, t̃1 ≈ t̃L 1709.04183, 1711.115200.4-0.9t̃1t̃1

Multiple 36.1 m(χ̃
0
1)=300 GeV, m(χ̃

±
1 )-m(χ̃

0
1)=5 GeV, t̃1 ≈ t̃L 1709.04183, 1711.115200.6-0.8t̃1t̃1 Forbidden

t̃1 t̃1, Well-Tempered LSP Multiple 36.1 m(χ̃
0
1)=150 GeV, m(χ̃

±
1 )-m(χ̃

0
1)=5 GeV, t̃1 ≈ t̃L 1709.04183, 1711.115200.48-0.84t̃1t̃1

t̃1 t̃1, t̃1→cχ̃
0
1 / c̃c̃, c̃→cχ̃

0
1 0 2c Yes 36.1 m(χ̃

0
1)=0 GeV 1805.016490.85t̃1

m(t̃1,c̃)-m(χ̃
0
1 )=50 GeV 1805.016490.46t̃1

0 mono-jet Yes 36.1 m(t̃1,c̃)-m(χ̃
0
1)=5 GeV 1711.033010.43t̃1

t̃2 t̃2, t̃2→t̃1 + h 1-2 e, µ 4 b Yes 36.1 m(χ̃
0
1)=0 GeV, m(t̃1)-m(χ̃

0
1)= 180 GeV 1706.039860.32-0.88t̃2

χ̃±
1
χ̃0

2 via WZ 2-3 e, µ - Yes 36.1 m(χ̃
0
1)=0 1403.5294, 1806.022930.6χ̃±

1 /χ̃
0

2
ee, µµ ≥ 1 Yes 36.1 m(χ̃

±
1 )-m(χ̃

0
1)=10 GeV 1712.081190.17χ̃±

1 /χ̃
0

2

χ̃±
1
χ̃0

2 via Wh ℓℓ/ℓγγ/ℓbb - Yes 20.3 m(χ̃
0
1)=0 1501.07110χ̃±

1 /χ̃
0

2 0.26

χ̃±
1
χ̃∓

1 /χ̃
0
2, χ̃

+

1→τ̃ν(τν̃), χ̃
0
2→τ̃τ(νν̃) 2 τ - Yes 36.1 m(χ̃

0
1)=0, m(τ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1708.078750.76χ̃±

1 /χ̃
0

2

m(χ̃
±
1 )-m(χ̃

0
1 )=100 GeV, m(τ̃, ν̃)=0.5(m(χ̃

±
1 )+m(χ̃

0
1)) 1708.078750.22χ̃±

1 /χ̃
0

2

ℓ̃L,R ℓ̃L,R, ℓ̃→ℓχ̃
0
1

2 e, µ 0 Yes 36.1 m(χ̃
0
1)=0 1803.027620.5ℓ̃

2 e, µ ≥ 1 Yes 36.1 m(ℓ̃)-m(χ̃
0
1 )=5 GeV 1712.081190.18ℓ̃

H̃H̃, H̃→hG̃/ZG̃ 0 ≥ 3b Yes 36.1 BR(χ̃
0
1 → hG̃)=1 1806.040300.29-0.88H̃ 0.13-0.23H̃

4 e, µ 0 Yes 36.1 BR(χ̃
0
1 → ZG̃)=1 1804.036020.3H̃

Direct χ̃
+

1
χ̃−

1 prod., long-lived χ̃
±
1 Disapp. trk 1 jet Yes 36.1 Pure Wino 1712.021180.46χ̃±

1

Pure Higgsino ATL-PHYS-PUB-2017-0190.15χ̃±
1

Stable g̃ R-hadron SMP - - 3.2 1606.051291.6g̃

Metastable g̃ R-hadron, g̃→qqχ̃
0
1

Multiple 32.8 m(χ̃
0
1)=100 GeV 1710.04901, 1604.045202.4g̃ [τ( g̃) =100 ns, 0.2 ns] 1.6g̃ [τ( g̃) =100 ns, 0.2 ns]

GMSB, χ̃
0
1→γG̃, long-lived χ̃

0
1

2 γ - Yes 20.3 1<τ(χ̃
0
1)<3 ns, SPS8 model 1409.5542χ̃0

1 0.44

g̃g̃, χ̃
0
1→eeν/eµν/µµν displ. ee/eµ/µµ - - 20.3 6 <cτ(χ̃

0
1)< 1000 mm, m(χ̃

0
1)=1 TeV 1504.05162g̃ 1.3

LFV pp→ν̃τ + X, ν̃τ→eµ/eτ/µτ eµ,eτ,µτ - - 3.2 λ′
311

=0.11, λ132/133/233=0.07 1607.080791.9ν̃τ

χ̃±
1
χ̃∓

1 /χ̃
0
2 → WW/Zℓℓℓℓνν 4 e, µ 0 Yes 36.1 m(χ̃

0
1)=100 GeV 1804.036021.33χ̃±

1 /χ̃
0

2 [λi33 ! 0, λ12k ! 0] 0.82χ̃±
1 /χ̃

0

2 [λi33 ! 0, λ12k ! 0]

g̃g̃, g̃→qqχ̃
0
1, χ̃

0
1 → qqq 0 4-5 large-R jets - 36.1 Large λ′′

112 1804.035681.9g̃ [m(χ̃
0

1)=200 GeV, 1100 GeV] 1.3g̃ [m(χ̃
0

1)=200 GeV, 1100 GeV]
Multiple 36.1 m(χ̃

0
1)=200 GeV, bino-like ATLAS-CONF-2018-0032.0g̃ [λ′′

112
=2e-4, 2e-5] 1.05g̃ [λ′′

112
=2e-4, 2e-5]

g̃g̃, g̃→ tbs / g̃→tt̄χ̃
0
1, χ̃

0
1 → tbs Multiple 36.1 m(χ̃

0
1)=200 GeV, bino-like ATLAS-CONF-2018-0032.1g̃ [λ′′

323
=1, 1e-2] 1.8g̃ [λ′′

323
=1, 1e-2]

t̃t̃, t̃→tχ̃
0
1, χ̃

0
1 → tbs Multiple 36.1 m(χ̃

0
1)=200 GeV, bino-like ATLAS-CONF-2018-0031.05g̃ [λ′′

323
=2e-4, 1e-2] 0.55g̃ [λ′′

323
=2e-4, 1e-2]

t̃1 t̃1, t̃1→bs 0 2 jets + 2 b - 36.7 1710.071710.61t̃1 [qq, bs] 0.42t̃1 [qq, bs]

t̃1 t̃1, t̃1→bℓ 2 e, µ 2 b - 36.1 BR(t̃1→be/bµ)>20% 1710.055440.4-1.45t̃1

Mass scale [TeV]10−1 1

√
s = 7, 8 TeV

√
s = 13 TeV

ATLAS SUSY Searches* - 95% CL Lower Limits
July 2018

ATLAS Preliminary
√

s = 7, 8, 13 TeV

*Only a selection of the available mass limits on new states or
phenomena is shown. Many of the limits are based on
simplified models, c.f. refs. for the assumptions made.

CMS Exotica Physics Group Summary – ICHEP, 2016!
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Multijet 
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SSM Z'(ττ)
SSM Z'(jj)

SSM Z'(ee)+Z'(µµ)
SSM W'(jj)
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Heavy Gauge 
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CMS Preliminary
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b*

QBH (jj), nED=4, MD=4 TeV
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ADD (γγ), nED=4, MS
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dielectrons, Λ- LLIM

single e,  Λ HnCM
single μ, Λ HnCM
inclusive jets, Λ+
inclusive jets, Λ-



In the absence of direct signals, the focus shifts 
more and more on indirect searches, looking for 
small deviations from SM predictions. 

Motivates work on precision predictions.

Effective field theory provides a systematic 
framework to study deviations from the SM.
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1 Introduction

The Standard Model (SM) of strong and electroweak interactions has been successfully tested
to a great precision [1]. Nevertheless, it is commonly accepted that it constitutes merely an
effective theory which is applicable up to energies not exceeding a certain scale Λ. A field
theory valid above that scale should satisfy the following requirements:

(i) its gauge group should contain SU(3)C × SU(2)L × U(1)Y of the SM,

(ii) all the SM degrees of freedom should be incorporated either as fundamental or composite
fields,

(iii) at low-energies, it should reduce to the SM, provided no undiscovered but weakly coupled
light particles exist, like axions or sterile neutrinos.

In most of beyond-SM theories that have been considered to date, reduction to the SM at
low energies proceeds via decoupling of heavy particles with masses of order Λ or larger. Such
a decoupling at the perturbative level is described by the Appelquist-Carazzone theorem [2].
This inevitably leads to appearance of higher-dimensional operators in the SM Lagrangian that
are suppressed by powers of Λ

LSM = L(4)
SM +

1

Λ

∑

k

C(5)
k Q(5)

k +
1

Λ2

∑

k

C(6)
k Q(6)

k +O

(
1

Λ3

)
, (1.1)

where L(4)
SM is the usual “renormalizable” part of the SM Lagrangian. It contains dimension-two

and -four operators only.1 In the remaining terms, Q(n)
k denote dimension-n operators, and

C(n)
k stand for the corresponding dimensionless coupling constants (Wilson coefficients). Once

the underlying high-energy theory is specified, all the coefficients C(n)
k can be determined by

integrating out the heavy fields.
Our goal in this paper is to find a complete set of independent operators of dimension 5 and 6

that are built out of the SM fields and are consistent with the SM gauge symmetries. We do not
rely on the original analysis of such operators by Buchmüller and Wyler [3] but rather perform
the full classification once again from the outset. One of the reasons for repeating the analysis
is the fact that many linear combinations of operators listed in Ref. [3] vanish by the Equations
Of Motion (EOMs). Such operators are redundant, i.e. they give no contribution to on-shell
matrix elements, both in perturbation theory (to all orders) and beyond [4–9]. Although the
presence of several EOM-vanishing combinations in Ref. [3] has been already pointed out in
the literature [10–13], no updated complete list has been published to date. Our final operator
basis differs from Ref. [3] also in the four-fermion sector where the EOMs play no role.

The article is organized as follows. Our notation and conventions are specified in Sec. 2. The
complete operator list is presented in Sec. 3. Comparison with Ref. [3] is outlined in Sec. 4.
Details of establishing operator bases in the zero-, two- and four-fermion sectors are described
in Secs. 5, 6 and 7, respectively. We conclude in Sec. 8.

1 Canonical dimensions of operators are determined from the field contents alone, excluding possible dimen-

sionful coupling constants. The only dimension-two operator in L(4)
SM is ϕ†ϕ in the Higgs mass term.

1

standard, renormalizable 
textbook SM Lagrangian

additional operators 
induced by new heavy physics  

at scale ΛWilson coefficients



Effective theory for LHC processes

Many scale hierarchies! 

  
→ Soft-Collinear Effective Theory (SCET)

p
s � pTJet � MJet � Eout � mproton ⇠ ⇤QCD

Bauer, Pirjol, Stewart et al. 2001, 2002; Beneke, Diehl et al. 2002; …
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pp scattering

 11

Z

The challenge are QCD (strong interaction) effects
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What can be computed in  
perturbation theory in QCD?
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What can be computed in  
perturbation theory in QCD?

Nothing. 
PhD  student (working on lattice QCD) at 
Bern University during his thesis defense 
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What can be computed in  
perturbation theory in QCD?
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What can be computed in  
perturbation theory in QCD?

More educated answer: High-energy processes.  
QCD coupling becomes weak at high energy because of 

asymptotic freedom.

9. Quantum chromodynamics 39

They are well within the uncertainty of the overall world average quoted above. Note,
however, that the average excluding the lattice result is no longer as close to the value
obtained from lattice alone as was the case in the 2013 Review, but is now smaller by
almost one standard deviation of its assigned uncertainty.

Notwithstanding the many open issues still present within each of the sub-fields
summarised in this Review, the wealth of available results provides a rather precise and
reasonably stable world average value of αs(M2

Z), as well as a clear signature and proof of
the energy dependence of αs, in full agreement with the QCD prediction of Asymptotic
Freedom. This is demonstrated in Fig. 9.3, where results of αs(Q2) obtained at discrete
energy scales Q, now also including those based just on NLO QCD, are summarized.
Thanks to the results from the Tevatron and from the LHC, the energy scales at which
αs is determined now extend up to more than 1 TeV♦.

QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)  

0.1

0.2

0.3

αs (Q2)

1 10 100Q [GeV]

Heavy Quarkonia (NLO)
e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2016

τ decays (N3LO)

1000

 (NLO
pp –> tt (NNLO)

)(–)

Figure 9.3: Summary of measurements of αs as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of αs is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading
order; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:
next-to-NNLO).

♦ We note, however, that in many such studies, like those based on exclusive states of
jet multiplicities, the relevant energy scale of the measurement is not uniquely defined.
For instance, in studies of the ratio of 3- to 2-jet cross sections at the LHC, the relevant
scale was taken to be the average of the transverse momenta of the two leading jets [434],
but could alternatively have been chosen to be the transverse momentum of the 3rd jet.

June 5, 2018 19:47
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49. Plots of cross sections and related quantities 5

σ and R in e+e− Collisions
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Figure 49.5: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of
this Review, Eq. (9.7) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)). Breit-Wigner
parameterizations of J/ψ, ψ(2S), and Υ(nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the details of
the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, May 2010.)
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Dashed green: LO perturbation theory 
Solid red: N3LO perturbation theory 

Remarkable agreement with data!
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The Operator Product Expansion (OPE) explains 
why the computation using quarks and gluons 
works. Factorizes low and high energy contributions 

!16
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σ(e+e− → γ∗ → µ+µ−)

Rpert =
σ(e+e− → Z/γ∗ → qq̄)

σ(e+e− → γ∗ → µ+µ−)

R(s) = C1(s) ⟨0| 1 |0⟩+ Cqq̄(s) ⟨0|mq q̄q |0⟩+ CGG(s) ⟨0|G
2 |0⟩+ . . .

see e.g. Peskin & Schröder  p.615 *

*



e�
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

e+
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

q
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

q̄
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Wilson coefficients:

high-energy physics 

independent of states

The Operator Product Expansion (OPE) explains 
why the computation using quarks and gluons 
works. Factorizes low and high energy contributions 

!16

R =
σ(e+e− → Z/γ∗ → hadrons)

σ(e+e− → γ∗ → µ+µ−)

Rpert =
σ(e+e− → Z/γ∗ → qq̄)

σ(e+e− → γ∗ → µ+µ−)

R(s) = C1(s) ⟨0| 1 |0⟩+ Cqq̄(s) ⟨0|mq q̄q |0⟩+ CGG(s) ⟨0|G
2 |0⟩+ . . .

see e.g. Peskin & Schröder  p.615 *

*



e�
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

e+
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

q
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

q̄
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Wilson coefficients:

high-energy physics 

independent of states

The Operator Product Expansion (OPE) explains 
why the computation using quarks and gluons 
works. Factorizes low and high energy contributions 

!16

R =
σ(e+e− → Z/γ∗ → hadrons)

σ(e+e− → γ∗ → µ+µ−)

Rpert =
σ(e+e− → Z/γ∗ → qq̄)

σ(e+e− → γ∗ → µ+µ−)

R(s) = C1(s) ⟨0| 1 |0⟩+ Cqq̄(s) ⟨0|mq q̄q |0⟩+ CGG(s) ⟨0|G
2 |0⟩+ . . .

Matrix elements:

non-perturbative, 

hadronisation effects

see e.g. Peskin & Schröder  p.615 *

*



e�
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

e+
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

q
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

q̄
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Wilson coefficients:

high-energy physics 

independent of states

The Operator Product Expansion (OPE) explains 
why the computation using quarks and gluons 
works. Factorizes low and high energy contributions 

!16

R =
σ(e+e− → Z/γ∗ → hadrons)

σ(e+e− → γ∗ → µ+µ−)

Rpert =
σ(e+e− → Z/γ∗ → qq̄)

σ(e+e− → γ∗ → µ+µ−)

R(s) = C1(s) ⟨0| 1 |0⟩+ Cqq̄(s) ⟨0|mq q̄q |0⟩+ CGG(s) ⟨0|G
2 |0⟩+ . . .

Matrix elements:

non-perturbative, 

hadronisation effects

= 1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⇠ mq ⇤
3
QCD

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⇠ ⇤4
QCD

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

see e.g. Peskin & Schröder  p.615 *

*



e�
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

e+
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

q
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

q̄
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Wilson coefficients:

high-energy physics 

independent of states

The Operator Product Expansion (OPE) explains 
why the computation using quarks and gluons 
works. Factorizes low and high energy contributions 

!16

R =
σ(e+e− → Z/γ∗ → hadrons)

σ(e+e− → γ∗ → µ+µ−)

Rpert =
σ(e+e− → Z/γ∗ → qq̄)

σ(e+e− → γ∗ → µ+µ−)

R(s) = C1(s) ⟨0| 1 |0⟩+ Cqq̄(s) ⟨0|mq q̄q |0⟩+ CGG(s) ⟨0|G
2 |0⟩+ . . .

Matrix elements:

non-perturbative, 

hadronisation effects

= 1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⇠ mq ⇤
3
QCD

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⇠ ⇤4
QCD

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>( <latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
⇠ 1/s2

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

see e.g. Peskin & Schröder  p.615 *

*



The computation of the R-ratio is based on an 
expansion in the scale ratio ΛQCD2/Q2. 
A systematic method to separate physics at different 
scales and perform expansions in scale ratios is 
Effective Field Theory (EFT) 

• Construct general effective Lagrangian describing 
low energy physics. 

• High energy physics enters the Wilson 
coefficients (``couplings’’) of the effective 
Lagrangian.  

Soft-Collinear Effective Theory (SCET) is the EFT for 
collider processes 

• A family of EFTs for different kinematic situations

!17



Soft-Collinear Effective Theory (SCET)

Implements interplay between soft and energetic collinear 
particles into effective field theory 

Hard 

Collinear fields 

Soft fields 

  

Allows one to analyze factorization of cross sections and 
perform resummations of large Sudakov logarithms.

}  high-energy

} low-energy part

Bauer, Pirjol, Stewart et al. 2001, 2002; Beneke, Diehl et al. 2002; ...

soft

jet

hard
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This picture can be misleading: it depends on the 
observable to which aspect of QCD one is 
sensitive! 

For inclusive observables, sensitive only to a 
single high-energy scale Q, we have

σ =
∑

a,b

∫ 1

0
dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)

σ =
∑

a,b

∫ 1

0
dx1dx2 Cab(Q, x1, x2, µf )⟨P (p1)|Oa(x1)|P (p1)⟩ ⟨P (p2)|Ob(x2)|P (p2)⟩+O(ΛQCD/Q)

(2)

for Z-production: Collins, Soper and Sterman ‘84*

*
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The right way to look at this formula is (soft-
collinear) effective field theory

!22

σ =
∑

a,b

∫ 1

0
dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)

σ =
∑

a,b

∫ 1

0
dx1dx2 Cab(Q, x1, x2, µ)⟨P (p1)|Oa(x1)|P (p1)⟩ ⟨P (p2)|Ob(x2)|P (p2)⟩+O(ΛQCD/Q)

(2)



The right way to look at this formula is (soft-
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Studying matter at the highest energies possible has transformed 
our understanding of the microscopic world. CERN’s Large 
Hadron Collider (LHC), which generates proton collisions at the 
highest energy ever produced in a laboratory (13 TeV), provides a 
controlled environment in which to search for new phenomena and 
to address fundamental questions about the nature of the interac-
tions between elementary particles. Specifically, the L+C·s main 
detectors – ATLAS, CMS, LHCb and ALICE – allow us to meas-
ure the cross-sections of elementary processes with remarkable 
precision. A great challenge for theorists is to match the experi-
mental precision with accurate theoretical predictions. This is 
necessary to establish the Higgs sector of the Standard Model of 
particle physics and to look for deviations that could signal the 
existence of new particles or forces. Pushing our current capabili-
ties further is key to the success of the LHC physics programme.

Underpinning the prediction of LHC observables at the highest 
levels of precision are perturbative computations of cross-sections. 
Perturbative calculations have been carried out since the early days 
of quantum electrodynamics (QED) in the 1940s. Here, the small-
ness of the QED coupling constant is exploited to allow the expres-
sions for physical quantities to be expanded in terms of the coupling 
constant – giving rise to a series of terms with decreasing magnitude. 
7he first e[ample of such a calculation was the one�loop 4E' cor-
rection to the magnetic moment of the electron, which was carried 
out by Schwinger in ����. It demonstrated for the first time that 4E' 
was in agreement with the experimental discovery of the anomalous 
magnetic moment of the electron, ge-2 (the latter quantity was dubbed 
“anomalous” precisely because, prior to Schwinger’s calculation, it 
did not agree with predictions from Dirac’s theory). In 1957, Som-
merfeld and Petermann computed the two-loop correction, and it 

The two-loop 
explosion
During the past two years there has been a 
burst of activity in next-to-next-to-leading 
order calculations to ensure that theory 
keeps up with the increasing precision of LHC 
measurements.

s

Next-to-next-to-leading order (NNLO) Feynman diagrams 
relevant to the LHC physics programme. (Image credit: Daniel 
Dominguez, CERN.)
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all calculations were essentially limited to “2 A 1” scattering pro-
cesses, in essence Higgs and Drell–Yan production, as well as Higgs 
production in association with a Drell–Yan pair. From a QCD point 
of view, the latter process is simply off-shell Drell–Yan production 
in which the vector boson radiates a Higgs. A few 2 A 2 calculations 
started to appear in 2012, most notably top-pair production and the 
production of a pair of vector bosons. It is only in the past two years, 
however, that we have witnessed an explosion of NNLO calcula-
tions (figure �). 7oday, all � A 2 Standard Model LHC scattering 
processes are known to NNLO, thanks to remarkable progress in 
the calculation of two-loop integrals and in the development of pro-
cedures to handle intermediate divergences. 

Compared to NLO calculations, NNLO calculations are substan-
tially more comple[. 7wo main difficulties must be faced� loop inte-
grals and divergences. 7wo�loop integrals have been calculated in 
the past by explicitly performing the multi-dimensional integration, 
in which each loop gives rise to a “D-dimensional” integration. For 
simple cases, analytical expressions can be found, but in many cases 
only numerical results can be obtained for these integrals. 7he com-
plexity increases with the number of dimensions (i.e. the number of 
loops) and with the number of Lorent]�invariant scales involved in 
the process (i.e. the number of particles involved, and in particular 
the number of massive particles). 

Recently, new approaches to these loop integrals have been sug-
gested. In particular, it has been known since the late 1990s that 
integrals can be treated as variables entering a set of differential 
equations, but solutions to those equations remained complicated 
and could be found only on a case-by-case basis. A revolution 
came about just three years ago when it was realised that the dif-

ferential equations can be organised in a simple form that makes 
finding solutions, i.e. finding e[pressions for the wanted two�loop 
integrals, a manageable problem. Practically, the set of multi-
loop integrals to be computed can be regarded as a set of vectors. 
Decomposing these vectors in a convenient set of basis vectors can 
lead to significant simplifications of the differential eTuations, and 
concrete criteria were proposed for finding an optimal basis. 7he 
very important NNLO calculations of diboson production have 
benefitted from this technology.

Currently, when only virtual massless particles are involved and 
up to a total of four external particles are considered, the two-loop 
integral problem is considered solved, or at least solvable. How-
ever, when massive particles circulate in the loop, as is the case for 
a number of LHC processes, the integrals give rise to a new class 
of functions, elliptic functions, and it is not yet understood how to 
solve the associated differential equations. Hence, for processes 
with internal masses we still face a conceptual bottleneck. Over-
coming this will be very important for Higgs studies at large trans-
verse momentum, where the top loop to which the Higgs couples 
is resolved. 7he calculation of these integrals is today an area with 
tight connections to more formal and mathematical areas, leading 
to close collaborations between the high-energy physics and the 
mathematical/formal-oriented communities. 

7he second main difficulty in NNL2 calculations is that, as 
at NLO, individual contributions  are divergent in the infrared 
region, i.e. when particles have a very small momentum or become 
collinear with respect to one another, and the structure of these 
singularities is now considerably more complex because of the 
extra particle radiated at NNLO. All singularities cancel when s
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Fig. 2. The completion date and main authors of various NNLO calculations, with vertical separations for display purposes. 
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took another 40 years until, in 1996, Laporta and Remiddi computed 
analytically the three-loop corrections to ge-2 and, 10 years later, 
even the four� and five�loop corrections were computed numerically 
by Kinoshita et al. The calculation of QED corrections is supple-
mented with predictions for electroweak and hadronic effects, and 
makes ge�� one of the best known Tuantities today. Since ge-2 is also 
measured with remarkable precision, it provides the best determi-
nation of the fine�structure constant with an error of about �.�� ppb. 
7his determination agrees with other determinations, which reach 
an accuracy of �.�� ppb, showcasing the remarkable success of Tuan-
tum field theory in describing material reality. 

In the case of proton–proton collisions at the LHC, the dominant 
processes involve Tuantum chromodynamics (4C'). Although in 
general the calculations are more complex than in QED due to 
the non�abelian nature of this interaction, i.e. the self�coupling of 
gluons, the fact that the QCD coupling constant is small at the high 
energies relevant to the LHC means that perturbative methods are 
possible. In practice, all of the )eynman diagrams that correspond 
to the lowest�order process are drawn by considering all possible 
ways in which a given final state can be produced. )or instance, in 
the case of 'rell²<an production at the L+C, the only lowest�order 
diagram involves an incoming Tuark and an incoming antiTuark 
from the proton beams, which annihilate to produce a =, a* or a 
W boson, which then decays into leptons. 8sing the )eynman rules, 
such pictorial descriptions can be turned into Tuantum�mechanical 
amplitudes. 7he cross�section can then be computed as the sTuare 
of the amplitude, integrated over the phase space and appropriately 
summing and averaging over Tuantum numbers. 

7his lowest�order description is very crude, however, since it 
does not account for the fact that Tuarks tend to radiate gluons. 7o 
incorporate such higher�order Tuantum corrections, ne[t�to�leading 
order (NL2) calculations that describe the radiation of one addi-
tional gluon are reTuired. 7his gluon can either be real, giving rise 
to a particle that is recorded by a detector, or virtual, corresponding 
to a Tuantum�mechanical Áuctuation that is emitted and reabsorbed. 
%oth contributions are divergent because they become infinite in the 
limit when the energy of the gluon is infinitesimally small, or when 
the gluon is e[actly collinear to one of the emitting Tuarks. When 
real and virtual corrections are combined, however, these diver-
gences cancel out. 7his is a conseTuence of the so�called .inoshita²
Lee²Nauenberg theorem, which states that low�energy (infrared) 
divergences must cancel in physical (measurable) Tuantities. 

Even if divergences cancel in the final result, a procedure to han-
dle divergences in intermediate steps of the calculations is still 
needed. +ow to do this at the level of NL2 corrections has been 
well understood for a number of years. 7he first successes of NL2 
4C' calculations came in the ����s with the comparison of 'rell²

Yan particle-production data 
recorded by CERN·s SPS and 
)ermilab·s 7evatron e[peri-
ments to leading�order and NL2 
4C' predictions, which had 
first been computed in ���� by 
Altarelli, Ellis and 0artinelli. 
The comparison revealed une-
Tuivocally that NL2 corrections 

are reTuired to describe 'rell²<an data, and marked the first great 
success of perturbative 4C' (figure �). 

7hings have changed a lot since then. 7oday, NL2 corrections 
have been calculated for a large class of processes relevant to the 
LHC programme, and several tools have been developed to even 
compute them in a fully automated way. As a result, the problem of 
NL2 4C' calculations is considered solved and comparing these 
to data has become standard in current L+C data analysis. 7hanks 
to the impressive precision now being attained by the L+C e[peri-
ments, however, we are now being taken into the comple[ realm of 
higher�order calculations. 

The NNLO explosion
7he new frontier in perturbative 4C' is the calculation of ne[t�
to�ne[t�to�leading order (NNL2) corrections. At the level of dia-
grams, the picture is once again pretty simple� at NNL2 level, it 
is not just one e[tra particle emission but two e[tra emissions that 
are accounted for. 7hese emissions can be two real partons (Tuarks 
or gluons), a real parton and a virtual one, or two virtual partons. 

7he first NNL2 computation for a collider process concerned 
“inclusiveµ 'rell²<an production, by +amberg, 9an Neerven and 
0atsuura in ����. 0otivated by the SPS and 7evatron data, and also 
by the planned L+C and SSC e[periments, this was a pioneering 
calculation that was performed analytically. 7he second NNL2 cal-
culation, in ����, was for inclusive +iggs production in gluon²gluon 
fusion by +arlander and .ilgore. Inclusive calculations refer only to 
the total cross-section for producing a Higgs boson or a Drell–Yan 
pair without any restriction on where these particles end up, which is 
not measurable because detectors do not cover the entire phase space 
such as the region close to the beam. 

7he first “e[clusiveµ NNL2 calculations, which allow kinematic 
cuts to be applied to the final state, started to appear in ���� for 
'rell²<an and +iggs production. 7hese calculations were motivated 
by the need to predict Tuantities that can be directly measured, rather 
then relying on extrapolations to describe the effects of experimental 
cuts. 7he years ����²���� saw more activity, but limited progress� 
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Studying matter at the highest energies possible has transformed 
our understanding of the microscopic world. CERN’s Large 
Hadron Collider (LHC), which generates proton collisions at the 
highest energy ever produced in a laboratory (13 TeV), provides a 
controlled environment in which to search for new phenomena and 
to address fundamental questions about the nature of the interac-
tions between elementary particles. Specifically, the L+C·s main 
detectors – ATLAS, CMS, LHCb and ALICE – allow us to meas-
ure the cross-sections of elementary processes with remarkable 
precision. A great challenge for theorists is to match the experi-
mental precision with accurate theoretical predictions. This is 
necessary to establish the Higgs sector of the Standard Model of 
particle physics and to look for deviations that could signal the 
existence of new particles or forces. Pushing our current capabili-
ties further is key to the success of the LHC physics programme.

Underpinning the prediction of LHC observables at the highest 
levels of precision are perturbative computations of cross-sections. 
Perturbative calculations have been carried out since the early days 
of quantum electrodynamics (QED) in the 1940s. Here, the small-
ness of the QED coupling constant is exploited to allow the expres-
sions for physical quantities to be expanded in terms of the coupling 
constant – giving rise to a series of terms with decreasing magnitude. 
7he first e[ample of such a calculation was the one�loop 4E' cor-
rection to the magnetic moment of the electron, which was carried 
out by Schwinger in ����. It demonstrated for the first time that 4E' 
was in agreement with the experimental discovery of the anomalous 
magnetic moment of the electron, ge-2 (the latter quantity was dubbed 
“anomalous” precisely because, prior to Schwinger’s calculation, it 
did not agree with predictions from Dirac’s theory). In 1957, Som-
merfeld and Petermann computed the two-loop correction, and it 

The two-loop 
explosion
During the past two years there has been a 
burst of activity in next-to-next-to-leading 
order calculations to ensure that theory 
keeps up with the increasing precision of LHC 
measurements.

s

Next-to-next-to-leading order (NNLO) Feynman diagrams 
relevant to the LHC physics programme. (Image credit: Daniel 
Dominguez, CERN.)
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all calculations were essentially limited to “2 A 1” scattering pro-
cesses, in essence Higgs and Drell–Yan production, as well as Higgs 
production in association with a Drell–Yan pair. From a QCD point 
of view, the latter process is simply off-shell Drell–Yan production 
in which the vector boson radiates a Higgs. A few 2 A 2 calculations 
started to appear in 2012, most notably top-pair production and the 
production of a pair of vector bosons. It is only in the past two years, 
however, that we have witnessed an explosion of NNLO calcula-
tions (figure �). 7oday, all � A 2 Standard Model LHC scattering 
processes are known to NNLO, thanks to remarkable progress in 
the calculation of two-loop integrals and in the development of pro-
cedures to handle intermediate divergences. 

Compared to NLO calculations, NNLO calculations are substan-
tially more comple[. 7wo main difficulties must be faced� loop inte-
grals and divergences. 7wo�loop integrals have been calculated in 
the past by explicitly performing the multi-dimensional integration, 
in which each loop gives rise to a “D-dimensional” integration. For 
simple cases, analytical expressions can be found, but in many cases 
only numerical results can be obtained for these integrals. 7he com-
plexity increases with the number of dimensions (i.e. the number of 
loops) and with the number of Lorent]�invariant scales involved in 
the process (i.e. the number of particles involved, and in particular 
the number of massive particles). 

Recently, new approaches to these loop integrals have been sug-
gested. In particular, it has been known since the late 1990s that 
integrals can be treated as variables entering a set of differential 
equations, but solutions to those equations remained complicated 
and could be found only on a case-by-case basis. A revolution 
came about just three years ago when it was realised that the dif-

ferential equations can be organised in a simple form that makes 
finding solutions, i.e. finding e[pressions for the wanted two�loop 
integrals, a manageable problem. Practically, the set of multi-
loop integrals to be computed can be regarded as a set of vectors. 
Decomposing these vectors in a convenient set of basis vectors can 
lead to significant simplifications of the differential eTuations, and 
concrete criteria were proposed for finding an optimal basis. 7he 
very important NNLO calculations of diboson production have 
benefitted from this technology.

Currently, when only virtual massless particles are involved and 
up to a total of four external particles are considered, the two-loop 
integral problem is considered solved, or at least solvable. How-
ever, when massive particles circulate in the loop, as is the case for 
a number of LHC processes, the integrals give rise to a new class 
of functions, elliptic functions, and it is not yet understood how to 
solve the associated differential equations. Hence, for processes 
with internal masses we still face a conceptual bottleneck. Over-
coming this will be very important for Higgs studies at large trans-
verse momentum, where the top loop to which the Higgs couples 
is resolved. 7he calculation of these integrals is today an area with 
tight connections to more formal and mathematical areas, leading 
to close collaborations between the high-energy physics and the 
mathematical/formal-oriented communities. 

7he second main difficulty in NNL2 calculations is that, as 
at NLO, individual contributions  are divergent in the infrared 
region, i.e. when particles have a very small momentum or become 
collinear with respect to one another, and the structure of these 
singularities is now considerably more complex because of the 
extra particle radiated at NNLO. All singularities cancel when s
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took another 40 years until, in 1996, Laporta and Remiddi computed 
analytically the three-loop corrections to ge-2 and, 10 years later, 
even the four� and five�loop corrections were computed numerically 
by Kinoshita et al. The calculation of QED corrections is supple-
mented with predictions for electroweak and hadronic effects, and 
makes ge�� one of the best known Tuantities today. Since ge-2 is also 
measured with remarkable precision, it provides the best determi-
nation of the fine�structure constant with an error of about �.�� ppb. 
7his determination agrees with other determinations, which reach 
an accuracy of �.�� ppb, showcasing the remarkable success of Tuan-
tum field theory in describing material reality. 

In the case of proton–proton collisions at the LHC, the dominant 
processes involve Tuantum chromodynamics (4C'). Although in 
general the calculations are more complex than in QED due to 
the non�abelian nature of this interaction, i.e. the self�coupling of 
gluons, the fact that the QCD coupling constant is small at the high 
energies relevant to the LHC means that perturbative methods are 
possible. In practice, all of the )eynman diagrams that correspond 
to the lowest�order process are drawn by considering all possible 
ways in which a given final state can be produced. )or instance, in 
the case of 'rell²<an production at the L+C, the only lowest�order 
diagram involves an incoming Tuark and an incoming antiTuark 
from the proton beams, which annihilate to produce a =, a* or a 
W boson, which then decays into leptons. 8sing the )eynman rules, 
such pictorial descriptions can be turned into Tuantum�mechanical 
amplitudes. 7he cross�section can then be computed as the sTuare 
of the amplitude, integrated over the phase space and appropriately 
summing and averaging over Tuantum numbers. 

7his lowest�order description is very crude, however, since it 
does not account for the fact that Tuarks tend to radiate gluons. 7o 
incorporate such higher�order Tuantum corrections, ne[t�to�leading 
order (NL2) calculations that describe the radiation of one addi-
tional gluon are reTuired. 7his gluon can either be real, giving rise 
to a particle that is recorded by a detector, or virtual, corresponding 
to a Tuantum�mechanical Áuctuation that is emitted and reabsorbed. 
%oth contributions are divergent because they become infinite in the 
limit when the energy of the gluon is infinitesimally small, or when 
the gluon is e[actly collinear to one of the emitting Tuarks. When 
real and virtual corrections are combined, however, these diver-
gences cancel out. 7his is a conseTuence of the so�called .inoshita²
Lee²Nauenberg theorem, which states that low�energy (infrared) 
divergences must cancel in physical (measurable) Tuantities. 

Even if divergences cancel in the final result, a procedure to han-
dle divergences in intermediate steps of the calculations is still 
needed. +ow to do this at the level of NL2 corrections has been 
well understood for a number of years. 7he first successes of NL2 
4C' calculations came in the ����s with the comparison of 'rell²

Yan particle-production data 
recorded by CERN·s SPS and 
)ermilab·s 7evatron e[peri-
ments to leading�order and NL2 
4C' predictions, which had 
first been computed in ���� by 
Altarelli, Ellis and 0artinelli. 
The comparison revealed une-
Tuivocally that NL2 corrections 

are reTuired to describe 'rell²<an data, and marked the first great 
success of perturbative 4C' (figure �). 

7hings have changed a lot since then. 7oday, NL2 corrections 
have been calculated for a large class of processes relevant to the 
LHC programme, and several tools have been developed to even 
compute them in a fully automated way. As a result, the problem of 
NL2 4C' calculations is considered solved and comparing these 
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grams, the picture is once again pretty simple� at NNL2 level, it 
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Fig. 1. Comparison of inclusive W-production (left) and 
Z-production (right) data with leading-order (blue) and NLO 
(red, with uncertainty in pink) predictions.

Compared to NLO 
calculations, NNLO 
are substantially 
more complex.
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from G. Salam, LHCP 2016

Note: Many computations based on effective field 
theory (qT and N-jettiness subtractions): 

NNLO (QCD) ≈ NNLO (SCET) + NLO (QCD)



If disparate hard scales are present, one 
encounters large logarithms in the matching 
coefficient.  

• Can spoil convergence of perturbation 
theory 

Solution: use a tower of effective theories. 
Integrate out the contributions at the different 
scales, one after another. 

• Resummation  by RG evolution 

Challenges  

• Need the EFT relevant for the given 
kinematics. By now, we know how to 
handle many kinematic situations. 

• Need to compute and match the results 
in different hierarchies, e.g. for Q1→Q2
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Figure 1: Structure and kinematics of the factorization theorem for boson production. [V ’s
can also be leptons.]

with momenta qi, accompanied by hadronic radiation with total momentum pX . so that

⇠1p1 + ⇠2p2 = q + pX , (2)

where q = q1 + q2 + · · · + qN is the total electroweak momentum and ⇠1 and ⇠2 are the
momentum fractions of the incoming partons with momenta p̂i = ⇠ipi. We define the usual
kinematic quantities,

ŝ = (⇠1p1 + ⇠2p2)
2 = ⇠1⇠2 s , Q

2 = q
2
, (3)

and s = (p1 + p2)2 = 4E2

beam
.

The factorization theorem arises at small transverse momentum q
µ
? and we use the notation

qT =
p
�q

2

? to denote the positive scalar quantity associated with it. The factorized cross
section has the form [8,17, 25]

d� =
X

ij2{q̄,q̄,g}

Z
1

0

d⇠1

Z
1

0

d⇠2 d�
0

ij Hij(p̂1, p̂2, q1, ..., qN , µ)

· 1

4⇡

Z 1

�1
d
2
x? e

�iq?·x?

✓
x
2

TQ
2

b
2

0

◆�Fij(x?,µ)

Bi(⇠1, x?, µ)Bj(⇠2, x?, µ) .

(4)

We sum over partonic channels and integrate over the momentum fractions ⇠1 and ⇠2 of the
partons entering the hard scattering process, and b0 = 2e��E , where �E is the Euler-Mascheroni
constant. The formula involves a Fourier convolution over the transverse sepration x?, whose
ingredients will be discussed below, and holds up to terms suppressed by powers of q2T/Q

2.
The cross section d� is inclusive in the hadronic radiation but completely di↵erential in the
electroweak momenta q1, . . . , qN . To compute a specific cross section, such as the transverse
momentum spectrum, one imposes suitable constraints on these momenta and integrates (4)
over the electroweak phase space. For brevity we suppress the momentum dependence of the
Born-level partonic cross section d�

0

ij ⌘ d�
0

ij(p̂1, p̂2, q1, ..., qN).

3

Example: Two-step factorization in SCET for EW-
boson production at small transverse momentum qT 

1.)  qT ≪ M

2.) ΛQCD ≪qT
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M

qT

ΛQCD⇠p

B̄i

�i Īi j

⇠/zp

Figure 2: Schematic representation of the beam functions that encode the collinear emissions.

Let us now discuss the Fourier integral. An interesting feature of the integral is that it
depends on the large scale Q2 through the collinear anomaly [8]. This dependence exponenti-
ates in (4) and is driven by the anomaly exponent Fij, who was derived to two loops in [8] and
has now even been determined at O(↵3

s) in [30, 31]. The remaining ingredient are the beam
functions Bi, which are given by a convolution of a perturbative part describing collinear and
soft emissions at small transverse momentum 5 with the usual PDFs. In perturbation theory,
the functions Bi are polynomials in the logarithm

L? = ln
x
2

Tµ
2

b
2

0

(10)

and it is convenient to factor out their double logarithmic dependence by rewriting [25]

Bi(⇠i, x?, µ) ⌘ e
hF (L?,as) B̄i(⇠i, x?, µ) , (11)

where we have introduced the abbreviation as = ↵s(µ)/4⇡. The functions B̄ are single loga-
rithmic and it is convenient to combine the double logarithmic part with the anomaly into a
single exponent

e
gF (⌘,L?,as) =

✓
x
2

TQ
2

b
2

0

◆�Fij(L?,as)

e
hF (L?,as) (12)

The exponent gF (⌘, L?, as) was given in [25] and is listed in the Appendix (D1), and we have
introduced the variable

⌘ ⌘ ⌘(Q2
, µ) =

Ci↵s(µ)

⇡
ln

Q
2

µ2
⇠ 1 (13)

to capture the large anomaly logarithms. For quark-induced processes Ci = CF , while we have
Ci = CA in the gluon case. [Monika, you had µf instead of Q which is not correct!]

The Fourier integral in the factorization formula has some rather remarkable properties
at very low transverse momentum. One would naively expect that the relevant scale for the
integral tends to zero as qT ! 0 but this is not the case, as was noted by Parisi and Petronzio
[32] already before the all-order factorization of the cross section was fully understood. For very
low qT , the Fourier factor becomes ine↵ective and it is instead the Sudakov double logarithms
inside the exponent gF which regularize the integration of the transverse separation. Analyzing
the corresponding Gaussian integral, one finds that the associated scale q⇤ is given by the value

5

Hard function

beam function 
collinear fields

standard PDF

in SCET: TB, Neubert ’10; diagrammatically: CSS ‘85

Wilson coefficient 
 perturbative



Resummation
Using RG evolution between the different scales resums 
large logarithms in the cross section of the form 

  

which spoil the perturbative expansion. 

N3LL resummation: four-loop cusp anomalous dimension 
Moch et al. ’18, Henn et al. ’19, Lee et al. ‘19  three-loop 
regular anomalous dimensions Li, Zhu ’16; Vladimirov, ’16 
and two-loop results for beam functions Catani, Grazzini et 
al. ‘12; Gehrmann, Lübbert, Yang ’12 ’14.
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R =
σ(e+e− → Z/γ∗ → hadrons)

σ(e+e− → γ∗ → µ+µ−)

Rpert =
σ(e+e− → Z/γ∗ → qq̄)

σ(e+e− → γ∗ → µ+µ−)

R(s) = C1(s) ⟨0| 1 |0⟩+ Cqq̄(s) ⟨0|mq q̄q |0⟩+ CGG(s) ⟨0|G
2 |0⟩+ . . .

αn
s ln

m

(
q2T
M2

) LL:        m=2n
NLL:     m=2n-1
NNLL:  m=2n-2



Z production qT ≪ MZ,H

State of the art result from RadISH generator on the right includes 
• resummation to N3LL accuracy, 
• matching to O(αs3) fixed order result at higher qT, 

• and takes into account all experimental cuts.
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Confront with data
Conclusions

VS Z ATLAS 8 TeV

Good agreement with data: [Becher,TL,Neubert,Wilhelm]pgr.

ATLAS hep-ex/1512.0219 Z/�⇤ 20.3 fb�1 at 8TeV.
Cuts for d�fiducial/dqT : 66 < Mll/GeV < 116,

pT ,l > 20GeV, |⌘l | < 2.4, excluding 1.37 < |⌘l | < 1.52

Suppressed tail and overshoot �exp
Z/�⇤!l+ l�

= 537.10pb by ⇠ +6%.

At this precision, potentially relevant �n and �0 log0 � ↵3
s contributions:

KqT/GeV2[10,20] ⇠ 0.9 , KqT/GeV2[20,40] ⇠ 0.95
[Gehrmann-De Ridder, Gehrmann, Glover, Huss, Morgan].

All three experiments well described. No specific tuning.

Thomas Lübbert qT spectra at NNLL’+NNLO with CuTe 17

CuTe 2.0 TB, Lübbert, Neubert, Wilhelm
Bizon, Monni, Re, Rottoli and Torrielli, ‘17
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Figure 10. Comparison of the normalised transverse momentum distribution for Drell-Yan pair production
at NNLO (green), NNLL+NLO (blue) and N3LL+NNLO (red) at

p
s = 8 TeV integrated over the full

lepton-pair rapidity range (0 < |Y``| < 2.4), in three different lepton-pair invariant-mass windows. For
reference, the ATLAS data is also shown, and the lower panel shows the ratio of each prediction to data.

In Figure 11 we focus our analysis on the central lepton-pair invariant-mass window defined in
Eq. (6.2) and show predictions for the normalised p

Z
t

distribution in six different lepton-pair rapidity
slices:

(a) 0.0 < |Y``| < 0.4, (b) 0.4 < |Y``| < 0.8, (c) 0.8 < |Y``| < 1.2,

(d) 1.2 < |Y``| < 1.6, (e) 1.6 < |Y``| < 2.0, (f) 2.0 < |Y``| < 2.4. (6.3)

The comments relevant to Figure 10 by far and large apply in this case as well, with our
best prediction at N3LL+NNLO affected by an uncertainty that is of order 3–5% in the whole p

Z
t

range, regardless of the considered rapidity slice. It is moreover in very good agreement with the
experimental data, hence significantly improving on both the NNLL+NLO, in the whole p

Z
t

range,
and the pure NNLO, in the p

Z
t
. 20 GeV region.

6.2 Matched predictions for fiducial �
⇤
⌘

distributions

Figure 12 shows the �⇤
⌘

distribution for three different lepton-pair invariant-mass windows as defined
in Eq. (6.2).

– 20 –

Bizon et al. ‘18



Z production qT ≪ MZ,H

State of the art result from RadISH generator on the right includes 
• resummation to N3LL accuracy, 
• matching to O(αs3) fixed order result at higher qT, 

• and takes into account all experimental cuts.
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reference, the ATLAS data is also shown, and the lower panel shows the ratio of each prediction to data.
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(d) 1.2 < |Y``| < 1.6, (e) 1.6 < |Y``| < 2.0, (f) 2.0 < |Y``| < 2.4. (6.3)
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best prediction at N3LL+NNLO affected by an uncertainty that is of order 3–5% in the whole p

Z
t

range, regardless of the considered rapidity slice. It is moreover in very good agreement with the
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• few per-cent theoretical precision 
• resummation is crucial



Event-based qT resummation
While fixed-order computations have been automated 
up to NLO, resummations are typically done analytically, 
observable by observable. 

Have automated qT resummation 

• Generate hard function as event file using 
Madgraph tree-level event generator. 

• Reweight to obtain a sample of resummed 
events with different qT values. 

• Analyze sample, putting cuts on vector bosons 
and their decay products.

!28

TB, Hager, in preparation



• Include ATLAS cuts on the final state leptons 

• Obtain also related observables such as φ* (right plot) 

• Same code also computes W, ZW, WW, ZZ, …
!29
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Figure 11: Comparison of the matched NNLL result to ATLAS data. The experimental
uncertainties (green dots) are invisibly small, the theoretical ones (blue bands) are obtained
from scale variation, see text.

Figure 12: Matched NNLL result for the electron momentum. ATLAS imposes peT > 20GeV,
so that the distribution vanishes below this value.

5.5 Error estimation

TODO: scale uncertainties: rewight w. di↵. values of µ and µh

TODO: scale dependence and scale invariance, general remarks

6 Conclusions

TODO: conclude

Acknowledgments: Part of this research ...
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NLO ⌘ O(↵s)



Automation
There are several more examples for automated resummations, 
both based on SCET and other methods 

• Hadronic event-shapes, CAESAR Banfi, Salam, 
Zanderighi ’04; ARES Banfi, McAslan, Monni, Zanderighi 
’15;  CAESAR+SCET Bauer, Monni ‘18 

• Jet-veto cross sections, TB, Frederix, Neubert, Rothen ‘15 

• Threshold resummations for top production Broggio, 
Ferroglia, Ossola, Pecjak, Signer, Yang, … ’16-’19 

• Automated computation of soft functions SOFTSERVE 
Bell, Rahn, Talbert ‘18 
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Jet Effective Theory



Hadronically inclusive observables are insensitive to 
hadronisation effects. More exclusive observables 
with the same property?

!32
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Figure

1. Pictorial representations of factorization
form

ulas for interjet energy
flow

(left) and
jet

m
ass (right), see (1.1) and

(1.4). The black
lines represent hard

radiation
with

typical scale
Q
which

is constrained
to
be
inside the

cones, and
the red

lines depict soft radiation
with

a
low

energy
scale

Q
0 which

is allowed
to
populate

the
full phase

space.
In
the

right figure, the
blue

lines in
the

left

hem
isphere

represent collinear radiation
which

is described
by
the

inclusive
jet function

in
(1.4).

four-vector
n µ

=
(1
, 0
, 0
, 1)

pointing
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the

right
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the
thrust

axis
and

an
opposite

vector
n̄ µ

=
(1
, 0
, 0
,�
1)
pointing

to
the

left.
The

hard
partons

in
the

right
hem

isphere

then
generate

the
com

plicated
pattern

of soft
radiation

and
associated

NG
Ls.

The
m
ain

di↵erence
to
form

ula
(1.1)

is
that

one
also

needs
the

standard
inclusive

jet
functions

to

describe
collinear

radiation
in
the

left
hem

isphere.
Resum

m
ation

e↵ects
in
the

jet
m
ass

distribution
have

been
discussed

in
Refs. [17–21], however

only
in
[17] the

leading
NG

Ls

were
resum

m
ed.

O
ur
work

is
based

on
the

factorization
theorem

for
jet

m
ass

derived
in

[10]. The
invariant m

ass of the
left jet is obtained

from
the

m
om
entum

p
c̄ of the

energetic

particles collinear to
n̄
and

the
soft partons in

the
left hem

isphere,
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p
s ) 2

=
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O
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(1.3)

In
the factorization

theorem
, the sum

results in
a
convolution

of the soft and
jet functions.

To
avoid

this,
one

can
work

in
Laplace

space,
where

the
factorization

form
ula

has
the

product form
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where
⌧
is the

Laplace
conjugate

variable
of
⇢, and

j̃
i is the

inclusive
jet function

[22, 23],

which
by
now

is known
to
three

loops [24, 25]. In
(1.4) the

index
m

indicates the
num

ber

of partons in
the

inclusive
(right) hem

isphere, so
that

m
=
1
at leading

order (LO
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of O

(1), the
leading-logarithm

s
(LLs)

in

interjet energy
flow

at a
lepton

collider are
of the

form
↵ n
s ln n

�.
The

interjet energy
flow

is a
single logarithm

ic observable, because collinear logarithm
s cancel inside the large cone

region
and

only
soft

logarithm
s
rem

ain.
These

logarithm
s
arise

from
the

m
ulti-W

ilson-

line
operators

S
m

in
(1.1)

and
one

needs
to
use

parton
shower

m
ethods

to
resum

the

enhanced
logarithm

s already
at the

LL
level.

In
[15] we

have
written

a
dedicated

parton-

shower code
to
perform

the
resum

m
ation

for such
observables and

have
interfaced

it with
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Jet cross sections Event shapes

1 Introduction

Lepton colliders, such as the Large Electron-Positron collider lep which ran from 1989-2000
at cern, provide an optimal environment for precision studies in high energy physics. Lacking
the complications of strongly interacting initial states, which plague hadron colliders, lep has
been able to provide extremely accurate measurements of standard model quantities such as
the Z-boson mass, and its results tightly constrain beyond-the-standard model physics. The
precision lep data is also used for QCD studies, for example to determine the strong coupling
constant αs. With the variation of αs known to 4-loops, one should be able to confirm in
great detail the running of the coupling, or use it to establish a discrepancy which might
indicate new physics. Even at fixed center-of-mass energy, differential distributions for event
shapes, such as thrust probe several energy scales and are extremely sensitive to the running
coupling. Moreover, event shape variables are designed to be infrared safe, so that they can be
calculated in perturbation theory and so the theoretical predictions should be correspondingly
clean. Nevertheless, extractions of αs from event shapes at lep have until now been limited
by theoretical uncertainty from unknown higher order terms in the perturbative expansion.

One difficulty in achieving an accurate theoretical prediction from QCD has been the
complexity of the relevant fixed-order calculations. Indeed, while the next-to-leading-order
(NLO) results for event shapes have been known since 1980 [1], the relevant next-to-next-
to-leading order (NNLO) calculations were completed only in 2007 [2, 3]. In addition to the
loop integrals, the subtraction of soft and collinear divergencies in the real emission diagrams
presented a major complication. In fact, this is the first calculation where a subtraction scheme
has been successfully implemented at NNLO [4]. However, even with these new results at hand,
the corresponding extraction of αs continues to be limited by perturbative uncertainty. The
result of [5] was αs(mZ) = 0.1240 ± 0.0033, with a perturbative uncertainty of 0.0029. This
NNLO result for the strong coupling constant comes out lower than at NLO, but 2σ higher
than the PDG average αs(mZ) = 0.1176± 0.0020 [6]. Actually, the most precise values of αs

are currently determined not from lep but at low energies using lattice simulations [7] and
τ -decays [8]. An extensive review of αs determinations is given in [9], new determinations
since its publication include [10, 11].

To further reduce the theoretical uncertainty of event shape calculations, it is important
to resum the dominant perturbative contributions to all orders in αs. To see this, consider
thrust, which is defined as

T = max
n

∑
i |pi · n|∑

i |pi|
, (1)

where the sum is over all momentum 3-vectors pi in the event, and the maximum is over all
unit 3-vectors n. In the endpoint region, T → 1 or τ = (1−T ) → 0, no fixed-order calculation
could possibly describe the full distribution due to the appearance of large logarithms. For
example, at leading order in perturbation theory the thrust distribution has the form

1

σ0

dσ

dτ
= δ(τ) +

2αs

3π

[
−4 ln τ − 3

τ
+ . . .

]
, (2)

where the ellipsis denotes terms that are regular in the limit τ → 0. Upon integration over

1

R

e.g. thrust

scales: Q, Q0, QR, Q0R 

collision energy

scales: Q, Q(1-T), … 

T . 1



Higher-logarithmic resummations up to N3LL for event 
shapes, but jet observables exhibit a much more 
complicated pattern of  

non-global logarithms

discovered by Dasgupta and Salam ’01. A lot of recent 
progress towards higher logarithmic resummation 

• Color density matrix, Caron-Huot, JHEP 1803, 036 (2018) 
[1501.03754], …  

• Dressed gluon exponentiation, Larkoski, Moult and Neill, 
JHEP 1509, 143 (2015), … 

• Jet Effective Theory, TB, Neubert, Rothen and Shao, PRL 
116,192001 (2016), …
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Figure 1. Pictorial representation of the factorization theorems for the differential cross sections
with respect to the hemisphere jet masses in the limit ML ≪ MR ≪ Q (left), and to the left-jet mass
when ML ≪ MR ∼ Q (right). Blue lines correspond to collinear partons inside the jet functions,
the red lines represent soft emissions. The green lines in the left picture correspond to the hard
part of the hemisphere soft function, while the black lines in the right picture correspond to hard
emission into the right hemisphere.

2 Factorization

The derivation of the factorization formula follows the same steps in both cases and is

similar to the one relevant for wide-angle cone-jet cross sections presented in [20]. We will

first sketch the derivations of the theorems and specify the ingredients. We then relate the

soft functions to the ones which arise in the case of the narrow-cone jet cross sections. Due

to this relation, we can use the results [20] for these and only the hard functions need to

be computed.

2.1 Hemisphere soft function

The hemisphere soft function describes radiation originating from a quark and an anti-

quark along the directions n and n̄ of the two jets. Their soft radiation is described by

Wilson lines. The one generated by the outgoing quark along the n direction is

S(n) = P exp

(
igs

∫ ∞

0
ds n · Aa(sn)ta

)
, (2.1)

and the soft function is defined as

S(ωL,ωR) =
1

Nc

∑

X

Tr⟨0|S(n̄)S†(n)|X⟩⟨X|S(n)S†(n̄)|0⟩δ(ωR − n · PR) δ(ωL − n̄ · PL) ,

(2.2)

where the trace is over color indices. We call the hemisphere which contains the thrust

vector the right hemisphere. The right-moving particles therefore have n̄ · p > n · p and

PR(L) is the total momentum in the right (left) hemisphere. Usually, the function S(ωL,ωR)

is defined in terms of the soft gluon field in SCET. However, the soft SCET Lagrangian

is equivalent to the full QCD one so for our discussion we will consider (2.2) as a matrix

element in QCD. In the asymmetric case ωL ≪ ωR the function S(ωL,ωR) develops large,

non-global logarithms (NGLs) in the ratio κ ≡ ωL/ωR ≪ 1. It is these logarithms which

we seek to resum using effective-field-theory methods.
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Figure 3. Momentum modes and associated scales for wide-angle (left) and narrow-angle (right)
jet production.

of logarithmically-enhanced contributions to all orders in perturbation theory. This re-

summation is achieved by evolving the Wilson coefficients of these operators from the high

scale µ ∼ Q down to the scale where the low-energy physics takes place. Let us first

discuss the wide-angle cross section for which the factorization theorem has been given in

(2.15). In our effective theory, the hard functions Hm are the Wilson coefficients of the

Wilson-line matrix elements Sm and we regularize both quantities in d = 4−2ϵ dimensions.

The effective field theory matrix elements contain UV divergences since the short-distance

structure of the full theory is not resolved. The corresponding 1/ϵ poles can be removed

by renormalizing the hard Wilson coefficients according to

Hm({n}, Q, δ, ϵ) =
m∑

l=2

Hl({n}, Q, δ, µ)ZH
lm({n}, Q, δ, ϵ, µ) . (2.35)

In practice, it is easiest to obtain the bare Wilson coefficients from on-shell matching

calculations, where the poles arise from IR divergences. However, these IR poles are in

one-to-one correspondence to UV divergences since the effective-theory loop-integrals in

such matching computations are scaleless, see e.g. [13] for a detailed explanation of this

point within SCET. We have discussed this correspondence after (2.15). It implies that

we can understand the UV divergences of Hm from the structure of the IR divergences

in the real and virtual diagrams which contribute to these quantities. Given that the

coefficients Hm are fixed-multiplicity QCD amplitudes squared, integrated over energy, it

is clear that the matrix ZH
lm({n}, Q, δ, ϵ, µ) cannot be diagonal: lower-multiplicity virtual

diagrams are needed to cancel the divergences of real-emission diagrams. In order to achieve

this cancellation, the renormalization matrix must have the form

Z
H({n}, Q, δ, ϵ, µ) ∼

⎛

⎜⎜⎜⎜⎜⎜⎝

1 αs α2
s α3

s . . .

0 1 αs α2
s . . .

0 0 1 αs . . .

0 0 0 1 . . .
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎠
, (2.36)

where we indicate the perturbative order of each element. At each higher order in per-

turbation theory, more off-diagonal contributions fill in. We have anticipated the upper
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of logarithmically-enhanced contributions to all orders in perturbation theory. This re-

summation is achieved by evolving the Wilson coefficients of these operators from the high

scale µ ∼ Q down to the scale where the low-energy physics takes place. Let us first

discuss the wide-angle cross section for which the factorization theorem has been given in

(2.15). In our effective theory, the hard functions Hm are the Wilson coefficients of the

Wilson-line matrix elements Sm and we regularize both quantities in d = 4−2ϵ dimensions.

The effective field theory matrix elements contain UV divergences since the short-distance

structure of the full theory is not resolved. The corresponding 1/ϵ poles can be removed

by renormalizing the hard Wilson coefficients according to

Hm({n}, Q, δ, ϵ) =
m∑

l=2

Hl({n}, Q, δ, µ)ZH
lm({n}, Q, δ, ϵ, µ) . (2.35)

In practice, it is easiest to obtain the bare Wilson coefficients from on-shell matching

calculations, where the poles arise from IR divergences. However, these IR poles are in

one-to-one correspondence to UV divergences since the effective-theory loop-integrals in

such matching computations are scaleless, see e.g. [13] for a detailed explanation of this

point within SCET. We have discussed this correspondence after (2.15). It implies that

we can understand the UV divergences of Hm from the structure of the IR divergences

in the real and virtual diagrams which contribute to these quantities. Given that the

coefficients Hm are fixed-multiplicity QCD amplitudes squared, integrated over energy, it

is clear that the matrix ZH
lm({n}, Q, δ, ϵ, µ) cannot be diagonal: lower-multiplicity virtual

diagrams are needed to cancel the divergences of real-emission diagrams. In order to achieve

this cancellation, the renormalization matrix must have the form

Z
H({n}, Q, δ, ϵ, µ) ∼

⎛

⎜⎜⎜⎜⎜⎜⎝

1 αs α2
s α3

s . . .

0 1 αs α2
s . . .

0 0 1 αs . . .

0 0 0 1 . . .
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎠
, (2.36)

where we indicate the perturbative order of each element. At each higher order in per-

turbation theory, more off-diagonal contributions fill in. We have anticipated the upper
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Effective field theory for (non-global) jet observables! 



Soft radiation in jet processes has in general a very 
complicated structure. 

  

  

Hard partons (quarks and gluons) inside jets act 
as sources: soft radiation pattern depends on 
color-charges and directions of all hard partons!

!35

veto:

 Eout < Q0

unrestricted Ein ~ Q

→ large logs αsn lnn(Q0 / Q) 



Hard function
m hard partons along  

fixed directions {n1, …, nm} 

Factorization for interjet energy flow

Soft function 
squared amplitude with 

with m Wilson lines

integration over directions color trace

TB, Neubert, Rothen, Shao ’15 ’16, see also Caron-Huot ‘15

Figure 1. Pictorial representations of factorization formulas (1.1) and (1.4) for interjet energy flow
(left) and jet mass (right). The black lines represent hard radiation with typical scale Q which is
constrained to be inside the cones, and the red lines depict soft radiation with a low energy scale
Q0 which is allowed to populate the full phase space. In the right figure, the blue lines in the left
hemisphere represent collinear radiation which is described by the inclusive jet function in (1.4).

Our main goal in the present work is to develop the Monte Carlo methods to include

these corrections as a step towards full higher-logarithmic resummation, but it is also

interesting to study their numerical size, since they have never been computed for non-

global observables and often dominate numerically in the global case. It is customary to

add a prime to the logarithmic accuracy to indicate the presence of higher-order matching

corrections. In this notation our next-to-leading-logarithmic results for the jet mass have

NLL0 accuracy.

In Refs. [2, 10] we have derived a factorization formula for interjet energy flow and light-

jet mass. The key element is the presence of multi-Wilson-line operators which generate

the intricate pattern of Non-Global Logarithms (NGLs). Explicitly, the result for interjet

energy flow at a lepton collider has the form

�(Q,Q0) =
1X

m=2

⌦
Hm({n}, Q, µ)⌦ Sm({n}, Q0, µ)

↵
, (1.1)

where Q is the center-of-mass energy, and Q0 = �Q is the veto energy outside the jet cone

area. For simplicity, we choose the jet axis along the thrust axis. The above factorization

formula neglects power corrections from O(�) terms. The hard functions Hm describe

hard radiation inside the jet cone, and their characteristic scale is Q since radiation inside

the cones is unrestricted. The index m represents the number of hard partons inside the

jet, which propagate along the directions {n} = {n1, n2, . . . , nm}. Each of these sources

soft radiation, which we describe by a Wilson line along the direction of the hard parton.

The matrix elements of these Wilson lines define the soft functions Sm({n}, Q0, µ). To

obtain the cross section, one integrates over the directions {n} which is indicated by the

symbol ⌦. The hard and soft functions are matrices in the color space of the m partons

and one takes the color trace h. . . i after multiplying them. The operator definition for

these functions and further explanations can be found in [2].
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Achieves scale separation! Can resum logs by solving RG.

σ =
∑

a,b

∫ 1

0
dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)

σ =
∑

a,b

∫ 1

0
dx1dx2 Cab(Q, x1, x2, µ)⟨P (p1)|Oa(x1)|P (p1)⟩ ⟨P (p2)|Ob(x2)|P (p2)⟩+O(ΛQCD/Q)

(2)

⟨qa′(x′p)|Oa(x)|qa′(x′ p)⟩ = δaa′ δ(x′ − x)

Cab(Q, x1, x2) = σ̂ab(Q, x1, x2)

Vm =2
∑

(ij)

∫
dΩ(nk)

4π
(Ti,L · Tj,L + Ti,R · Tj,R)W

k
ij

− 2 iπ
∑

(ij)

(Ti,L · Tj,L − Ti,R · Tj,R)Πij (3)

Rm =− 4
∑

(ij)

Ti,L · Tj,R Wm+1
ij Θin(nm+1)

Hm ∝ |Mm⟩⟨Mm| (4)
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Resummation by RG evolution
Wilson coefficients fulfill renormalization group 
(RG) equations 

   

1. Compute Hm at a characteristic high scale 
μh ~ Q  

2. Evolve Hm to the scale of low energy 
physics μs ~ Q0 

3. Evaluate Sm at low scale μs ~ Q0 

Avoids large logarithms αsn lnn(Q/Q0) of scale ratios 
which spoil convergence of perturbation theory.

RG
 evolution

d

dt
Hn(t) = Hn(t)Vn +Hn�1(t)Rn�1(t) (11)

H2(th = 0) = 1, Hn>2(th = 0) = 1 (12)

Hn(t) =

Z
t

0
dt

0Hn�1(t
0)Rn�1(t

0)e�(t0�t)Vn (13)

�LL =
1X

n=2

Hn(ts)⌦ Sn(ts) (14)

d

d lnµ
Hm({n}, Q, �, µ) = �

mX

l=2

Hl({n}, Q, µ)�H

lm
({n}, Q, µ) (15)

d

d lnµ
Hm(Q,µ) = �

mX

l=2

Hl(Q,µ)�H

lm
(Q,µ) (16)

2

Q

Q0

treatment which is based on RG evolution in Soft-Collinear E↵ective Theory (SCET) [4–6]

(see [7] for a review). Our starting point is the factorization theorem which separates the

hard radiation inside the jets (or outside the isolation cone) from the soft radiation. The

soft radiation is driven by Wilson lines along the directions of the hard partons in the

process. Since there are contributions involving any number of hard partons, we end up

with operators with an arbitrary number of Wilson lines and these operators mix under

renormalization. The corresponding RG equation is complicated, but we will show that it

takes the form of a recursive equation which can be solved using a parton shower Monte-

Carlo (MC) program, which at leading-log accuracy and large-Nc is equivalent to the one

used by Dasgupta and Salam. An advantage of our treatment is that the RG equation is

not limited to leading logarithmic accuracy and we briefly discuss which ingredients and

modifications will be necessary to reach higher precision. There has been a lot of recent

work [8–11] on the general structure of parton showers and how to increase their accuracy.

The problem at hand provides an explicit example of a shower equation derived from first

principles for which it is clear what ingredients are needed to resum sub-leading logarithms.

The leading logarithms can be obtained by starting from the tree-level amplitudes and

running the parton shower to generate the logarithmically enhanced terms. Using a tree-

level event generator, this resummation can be automated. We have written a dedicated

parton shower code to perform the resummation and use the MadGraph5_aMC@NLO

framework [12] to generate the necessary tree-level amplitudes. We then study exclusive

jet and isolation-cone cross sections. In particular, we give numerical results for dijet

production with a gap between jets and compare to ATLAS measurements and theoretical

predictions [13] based on the BMS equation [14]. We also study isolated photon production

and compute the logarithms of ✏� , the energy fraction inside the isolation cone.

The remainder of this paper is organized as follows. In Section 2 we review the factor-

ization theorem for jet cross sections with gaps or isolation cones. In Section 3 we will show

that RG evolution of the associated Wilson coe�cients is equivalent to a parton shower,

and we give the necessary ingredients for LL resummation. In Section 4 we will apply

the shower code to obtain some phenomenological predictions, namely gap fraction of dijet

production and isolation cone cross section. We summarize our results and provide some

further discussions in Section 5.

2 Factorization for jet cross sections with gaps or isolation cones

The factorization formula for lepton-collider processes with k jets which takes the form

[1, 2]

d�(Q,Q0) =
1X

m=k

⌦
Hm({n}, Q, µ)⌦ Sm({n}, Q0, µ)

↵
. (2.1)

Here Q denotes the large energy inside the jets, while Q0 denotes the small energy outside

the jets in an angular region ⌦out. The factorization theorem is the leading term in an

expansion of the cross section in � = Q0/Q. Both the soft and hard functions depend on

the directions {n} = {n1, . . . , nm} and colors of the hard partons. The symbol ⌦ indicates
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divergence from the lower end of the energy integration, the total result for the divergent

part becomes

αs

4π
z
(1)
m,m({n}, Q, δ, ϵ, µ) +

αs

4π

∫
dΩ(nm+1)

4π
z
(1)
m,m+1({n, nm+1}, Q, δ, ϵ, µ)

= −
αs

2πϵ

∑

(ij)

Ti · Tj

∫
dΩ(nk)

4π
W k

ij Θ
nn̄
out(nk) . (5.8)

Since the color factors are contracted with the trivial tree-level soft function, we do not need

to distinguish the left and right color generators. Note that inside the cone the real and

virtual corrections have cancelled, so that the net result only gets contributions from out-

of-cone radiation and precisely cancels against the divergence of the soft function. We see

that the renormalization indeed works at the one-loop level. We have repeated the same

exercise also for the narrow-jet case, see Appendix C. In this case, we can give explicit

expressions for the angular integrals. Again, we find that the divergences cancel as they

should.

5.2 Renormalization-group evolution at leading logarithmic level

We now discuss the anomalous-dimension matrix ΓH defined in (2.40), which governs the

RG evolution of the hard (2.38) and soft functions (2.39), and verify the agreement between

the perturbative expansion of the BMS equation and our RG-based resummation method.

In order to resum the leading logarithmic terms, the anomalous-dimension matrix is needed

up to O(αs). It can be expressed as

ΓH ({n}, Q, δ, µ) =
αs

4π
Γ(1) ({n}, Q, δ, µ) +O(α2

s) , (5.9)

where

Γ(1) =

⎛

⎜⎜⎜⎜⎜⎜⎝

V2 R2 0 0 . . .

0 V3 R3 0 . . .

0 0 V4 R4 . . .

0 0 0 V5 . . .
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎠
. (5.10)

It follows from the discussion in the previous section that, in the soft approximation, the

corresponding matrix elements are given by

Vm = Γ(1)
m,m = −2

∑

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

∫
dΩ(nk)

4π
W k

ij

[
Θnn̄

in (k) +Θnn̄
out(k)

]
,

Rm = Γ
(1)
m,m+1 = 4

∑

(ij)

Ti,L · Tj,RWm+1
ij Θnn̄

in (nm+1) . (5.11)

The anomalous dimensions Vm and Rm depend on the directions {n} = {n1, . . . , nm} and

colors of the hard partons, and the indices i, j in the sum run from 1 to m. The quantities

Rm also depend on the additional direction nm+1 of the real emission. The integration over

this direction is performed after the multiplication with the soft function. At first sight,
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d

dt
Hn(t) = Hn(t)Vn +Hn�1(t)Rn�1(t) (11)

H2(th = 0) = 1, Hn>2(th = 0) = 1 (12)

Hn(t) =

Z
t

0
dt

0Hn�1(t
0)Rn�1(t

0)e�(t0�t)Vn (13)

�LL =
1X

n=2

Hn(ts)⌦ Sn(ts) (14)
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LL shower equivalent to Dasgupta Salam ’01. Have 
flexible implementation for general k-jet processes 

• uses LHE event files from Madgraph for LO Hk 

• used different forms of collinear cutoff 
• studied gap fractions and photon isolation cones, 

both in e+e− and pp collisions
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44 Applications in jet physics

H2(t0) −→ H3(t1) −→ H4(t2)

Fig. 4.6 Solution of the RG equation using Monte Carlo methods.

W l
ij =

ni · nj

ni · nl nj · nl
. (4.32)

This dipole is the combination of two eikonal factors as in (2.7), from a soft exchange
between legs i and j.

Let us now consider the resummation of the leading logarithms, which corresponds
to evolving with the anomalous dimension at O(αs) and evaluating the hard and
soft functions at O(α0

s). Since the anomalous dimension matrix is very sparse, it is
convenient to write out the one-loop RG equation explicitly
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which is zero for µ = µh and increases as we evolve to lower scales. For µ = µs the
logarithm becomes large and compensates the suppression by the coupling constant.
For this reason t is treated as a quantity of O(1) in RG-improved perturbation theory.
Solving the homogeneous equation and using variation of the constant, equation (4.34)
can also be written as
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This form is usually written for parton showers, which involve an evolution time t. One
can evolve from t0 to t either without any additional emissions (first term in (4.35))
or by adding an emission to the lower multiplicity cross section (second term). The
connection to parton showers becomes even more clear when we consider the initial
condition. At the high scale µ = µh, corresponding to t = 0, only the hard function
H2 is present since the higher multiplicity functions involve powers of αs and are free
of large logarithms for this scale choice. Starting with the function H2, we can then
iteratively generate the higher functions as
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O(αs) corrections at LL′
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Figure 2. Pictorial representations of the di↵erent ingredients for LL0 resummation of the interjet
energy flow. The diagrams on the three lines correspond to the one-loop corrections from H

(1)
2 ,

H
(1)
3 and S

(1)
m , respectively.

To extend these results to NLL, one needs two ingredients: the one-loop matching cor-

rections and the corrections to the RG running due to the two-loop anomalous dimensions.

The present paper focuses on the first set of corrections, i.e. LL0 accuracy. Specifically, we

need one-loop corrections to H2, the tree-level result for H3 and the one-loop soft functions

Sm. We write their perturbative expansions in the form
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• Implemented these: a systematically improved parton shower! 
• Need to add two-loop evolution for full NLL accuracy.

https://arxiv.org/abs/1901.09038


Gap fraction R(Q0) at Q=MZ

• Bands from variation of hard and soft scales by factor 2. 

• By construction R(Q0) = 1 at end-point Q0=Q/2. we match to 
fixed order and use a profile function function to switch off 
resummation. 

• Unfortunately there is no exp. data.
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Figure 7. Comparison of our results for the interjet energy flow to fixed order (left plot) and to
PYTHIA (right plot).

R(Q0). As mentioned earlier, there is unfortunately no experimental data to which we

can compare our results, but we compare to PYTHIA [36]. While the two results are

similar at very low Q0, PYTHIA is higher at intermediate values. We remind the reader,

that the intermediate values heavily depend on the profile function used to switch o↵ the

resummation.

4.2 Jet mass

Let us now turn to the jet mass ⇢. For interjet energy flow, we considered the integrated

cross section, i.e. all events with energy in the gap below the veto, while we will look

at the di↵erential spectrum in the present case, since this is what was measured by the

LEP experiments. We will however compute the spectrum by taking the derivative of the

integrated cross section, which has the advantage that the spectrum is correctly normalized

if the resummed prediction for the integrated cross section matches the fixed-order result

at large ⇢.

As a first step, we again separately plot the di↵erent ingredients and their scale depen-

dence in Figure 8. In the first three plots we compare NLL to NLL0 with corrections from

the jet, hard and soft functions. The red bands represent NLL results with scale variation,

where we vary either the jet, hard or soft scale by a factor of two around the default value.

The default scales are chosen as µh ⇠ Q, µj ⇠ p
⇢Q and µs ⇠ ⇢Q. The blue curves

show contributions at NLL0 accuracy from one of the three ingredients with its associated

scale variation. Obviously, the scale dependence is strongly reduced from NLL to NLL0 for

jet and hard corrections. The soft scale dependence, on the other hand, is only modestly

reduced after including one-loop soft function corrections. The scale bands mostly overlap

with each other, which indicates that perturbative convergence is reasonably good in all

the three cases.

In the last plot of figure 8 we show the e↵ect of adding the O(↵s) power corrections to

the NLL0 results. The LO power corrections for the heavy-jet mass are known analytically

and given in Appendix E. They are the same as for thrust, because the three-parton
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Figure 5. Left panel: Hard function corrections, with bands arising from hard scale variation.
Right panel: Soft function corrections, with bands from soft scale variation.

small cone angles, or equivalently large rapidity gaps, in order not to have to deal with

large collinear logarithms. In our plots we show the gap fraction

R(Q0) =
1

�tot
�(Q,Q0) ⌘

Z
Q0

0

dEs

1

�tot

d�

dEs

, (4.1)

which is the fraction of events in which the soft radiation outside the jets has an energy Es

below the cuto↵ Q0. By definition, the amount of energy in the gap must be below Q/2,

otherwise the thrust axis, which defines our jet axis, would flip. The fixed order result is

therefore R(Q0 = Q/2) = 1 at any order in perturbation theory. The O(↵0
s) result with

just two back-to-back partons is of course R(Q0) = 1, a nontrivial Q0 dependence only

arises at O(↵s) when the third parton is inside the gap. We will refer to the O(↵s) result

as LO.

As a first step, let us check the size of the individual corrections and investigate whether

the scale dependence is reduced after including them. In Figure 5 we show the hard and

soft corrections separately and then plot the scale bands from varying the associated scales

by a factor two around their default values µh = Q and µs = Q0. Compared to the LL

scale bands shown in red, the scale dependence is reduced in both cases after including the

corrections. We observe that the hard corrections are quite significant and positive, while

the soft corrections are moderate and negative. The hard corrections have two sources,

virtual corrections to H2 and real emission contributions encoded in H3. The first of these

is just a constant factor multiplying the LL result, while the second one comes together

with the higher soft function S3. Both corrections are positive. At high values of Q0 the

three parton contribution from H3 is about twice as large as the one from the one-loop

correction to H2 and it becomes more dominant at smaller values.

It is clear that the large hard function corrections at Q0 . Q/2 must be compensated

by terms which are power suppressed in Q0/Q and are not captured by the resummation

based on the factorization formula (1.1), which arises in the limit Q0 ! 0. One can obtain

these power suppressed terms by matching to the fixed-order result. More precisely, one
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NLL′ results for jet invariant mass 

• Jet mass is double logarithmic variable. Double logs can be 
subtracted and resummed analytically. 

• Exp. result from combining ALEPH light- and heavy-jet mass data. 

• Peak at ! ≈ 0.006 corresponds to μs ≈ 0.5 GeV. Non-perturbative 
effects are important and shift the peak, see PYTHIA. 

• Partonic PYTHIA is close to NLL′.
!42
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Figure 9. Jet-mass distribution compared to PYTHIA results. On the left side we plot our default
result, based on using the profile scale (4.3) and exponentiating the matching corrections. On the
right-hand side, we do not perform these modifications such that we get a negative cross section at
low ⇢ and hit the Landau pole at a nonzero ⇢.

default values.

At very low values of ⇢, the scale µs(Q0) hits the Landau pole at ⇤ = 0.23GeV. Near

the pole the soft corrections become large and negative, resulting in a negative cross section.

To avoid this unphysical behaviour, we replace µs(Q0) ! µs(Q0)+⇤ so that the pole occurs

at ⇢ = 0. We also exponentiate the hard, jet and soft corrections to avoid the negative cross

section. In the left plot of Figure 9 we show our result for the jet mass distribution after

these modifications. In the right plot, we show the result with µs(Q0) = ⇢Q and without

exponentiation. We observe that the soft scale dependence changes sign at a point to the

right of the peak. In this region the soft scale dependence becomes very small. With the

modifications in µs, we end up with quite small scale bands to the right of the peak, which

are likely not an accurate characterization of the true uncertainties. The NLL0 peak in

the right-hand plot is quite a bit higher because the cross section becomes negative below

⇢ = 0.004 and our distributions are by construction normalized. An important feature

of our result is that peak occurs at a very low value ⇢ ⇡ 0.006, which corresponds to

µs ⇡ 0.5GeV so that the peak region is strongly a↵ected by nonperturbative e↵ects. In

Figure 9 we also show the PYTHIA [36] results, both on the parton level (dashed lines)

and including hadronisation. The hadronisation e↵ects shift the peak to the right by about

�⇢ ⇡ 0.006, in accordance to what one expects from non-perturbative e↵ects in the soft

functions [37, 38]. The parton-level PYTHIA result is quite close to the NLL0 result.

In Figure 10 we compare the NLL0 + LO jet mass distribution with ALEPH results

[31], obtained by combining their measurements for the light-jet and the heavy-jet mass

using (1.2) and adding the uncertainties on the individual measurements in quadrature.

One immediately sees that the experimental peak shifted to the right from non-perturbative

e↵ects and the shift is compatible with the PYTHIA hadronization result. We also observe

that the jet mass distribution falls o↵ quite rapidly and to make the region of larger ⇢ visible,

we include also a logarithmic plot in Figure 10. The plot also illustrates what motivated
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Figure 10. Jet-mass distribution and comparison to ALEPH data [31] (green dots with error
bars). The black curve represents the LO prediction for jet mass, where its analytical expression is
given in (E.3). The red curve is the NLL resummation result and the band is from scale variation.
The blue curve corresponds to NLL0 +LO results, in which we switched o↵ resummation e↵ects at
large ⇢ using (4.3).

the profile function (4.3) with n = 4. The choices ensures that we start switching o↵ the

resummation fairly quickly about half-way to the endpoint and go over to the fixed-order

result. The plots show that, compared the LO fixed-order result, resummation greatly

improved the description of the experimental data. On the other hand there is — if at all

— only a relatively narrow region in ⇢ in which both higher-order power corrections and

non-perturbative corrections are small.

For completeness, we show in Figure 11 numerical results for the heavy-jet mass ⇢h

and the light-jet mass ⇢`. The heavy-jet mass is global and provides a reference variable at

the same accuracy, but free from all the complications which arise for the jet mass. From

the di↵erence of the heavy-jet mass and the jet mass we obtain the light-jet mass. This

is more sensitive to the non-global structure and also only has a nontrivial distribution at

O(↵2
s) so that there is no matching at the accuracy we work. The end-point for the NLO

light-jet mass is at ⇢max = 1/6, which is achieved when the four parton momenta form a

tetrahedron, and we use this as the endpoint in our profile function (4.3). From the plot,

one observes that also the heavy-jet distribution is a↵ected by nonperturbative e↵ects in

the peak region, however, the peak is at a larger ⇢ value than for the jet mass itself. Not

surprisingly, the worst description of the data arises for the light-jet mass distribution.

At larger ⇢ values the description is worse because the fixed-order result starts at O(↵s)

so that the matching corrections are beyond the accuracy of our computation. The peak

region is not well described because it is in the nonperturbative regime and very narrow.

5 Conclusion and Outlook

In this paper we analyzed non-global observables and, for the first time, went beyond

a resummation of only the leading non-global logarithms. Specifically, we analyzed the

single-logarithmic interjet energy flow at LL0 and the double-logarithmic jet mass at NLL0.
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Hadronisation, MPI, pile-up, …



Additional soft radiation from different sources 

• Pile-up. Additional soft scatterings during 
the same bunch crossing (~50 at run II, 
up to ~200 at HL-LHC). 

• Multi-Parton Interaction (MPI). Parton 
showers generate additional radiation 
from the proton remnants. 

• Power suppressed? Glauber gluons? 

Due to these effects, there is a lot of additional 
energy dumped into jets, isolation cones, …

!44



Pile-up and MPI mitigation
• Methods to correct for pile-up 

• Area–median technique, SoftKiller, Jet 
Cleansing, PUPPI, … 

• Observables which are insensitive to soft 
radiation 

• Jet substructure techniques to remove 
soft radiation: Grooming, soft-drop, mass-
drop, …
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see review by Soyez 1801.09721

see introduction by Marzani, Soyez and Spannowsky 1901.10342 
review by Larkoski, Moult and Nachman 1709.04464



Transverse energy              .

• ET is very sensitive to soft radiation. 
• NLL′ resummation using SCET agrees with 

PYTHIA w/o MPI
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Figure 1. The NLL-prime resumed distributions evaluated from Eq.(2.35) (black dot-dashed)
compared against the result from Pythia partonic distributions (red solid).

in order to transition from one region to the other. That requires that a single profile function

will change with any of the scale variations in order to ensure the proper transition without

double counting the variations. For example, the global-soft and beam profiles will change

accordingly when we consider hard scale variation in order to freeze evolution in the far tail

but should remain unchanged for ET ⌧ Q. We collected all the details on the choice of profile

functions and scale variation in Appendix D.

In order to compare our analytic result with the partonic distributions in Pythia we

turned o↵ the multi-parton interactions and hadronization. The non-perturbative/hadronization

e↵ects on the resummed distributions can be studied using the operator definition of the soft

and collinear functions [30–33]. Usually the hadronization e↵ects are included through a

convolution of the soft function or the cross section with a model function (which needs to

be determined from experiment). The convolution is over the measured observable and thus

the model function depends on the observable. The form of the model function is usually

determined using the operator product expansion to get the first few moments. This was

done for various event and jet-shape observables such as thrust, event-shape angularities, jet

mass, groomed-jet mass, D2, e.t.c. [34–38]. Ref. [39], studies the non-perturbative e↵ects in

transverse momentum dependent (TMD) distributions and jet broadening in e+e� which are

most closely related to the measurement presented in this paper.

In contrast, contributions from multi-parton interactions (MPI) are not very well un-

derstood theoretically, and a systematic approach for describing these e↵ects has yet to be

– 12 –
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MPI effects in ET
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Figure 2. The NLL-prime resumed distributions evaluated from Eq.(2.35) and convolved with the
half Gaussian model function (blue dashed) and the Pythia simulations (ISR+MPI) (orange solid).
We also included the purely perturbative result (black dot-dashed) compared against the result from
Pythia partonic distributions (MPI-only) (red solid). In each plot all curves are arbitrarily normalized
to the same area.

where, hEn

T
(Q)i is the nth moment at the hard scale Q and is defined by the following

hEn

T (Q)i =

Z
1

0

dET En

T

d�(ET , Q)

dET

.Z
1

0

dET

d�(ET , Q)

dET

(3.8)

where �(ET , Q) refers to the di↵erential cross section in ET and Q. Assuming the MPI

contribution can be modeled by a function fMPI(ET ) convoluted with the perturbative cross

section in Eq. (2.15) we have,

�(ET , Q) =

Z
dE0

T fMPI(ET � E0

T )✓(ET � E0

T )�
pert(E0

T , Q) (3.9)

The numerator in Eq. (3.8) can be written as

Z
1

0

dETEn

T

Z
dE0

T fMPI(ET � E0

T )✓(ET � E0

T )�
pert(E0

T , Q) ,

=

Z
dE0

T �pert(E0

T , Q)

Z
dET (E

0

T + !)nfMPI(!)✓(!) ,

=
nX

k=0

nCk

Z
dE0

T (E0

T )
k�pert(E0

T , Q)⇥

Z
d! !n�kfMPI(!)✓(!) (3.10)

– 15 –

• Dramatic change after MPI is switched on! 

• Can reproduce Pythia with model function fMPI



Proton collisions include forward component (proton remnants). 
EFT for pp collisions must describe forward scattering. 

• Absence of factorization-violation due to Glauber gluons 
is important element of factorization proof for Drell-Yan 
process. ET will likely involve Glauber contributions. 

• SCET with Glauber-gluons now available Rothstein and 
Stewart ‘16
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Glauber Exchange 
violates factorization: 122
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FIG. 29. Spectator-specator interactions for the hard scattering correlator in Eq. (312). The Glauber

interaction labeled G indicates the sum of all ladder diagrams including the graph with 0 Glaubers as

indicated.

As we will see below once the hard scattering is taken into account the Glaubers no longer

eikonalize. However, despite this fact, an overall phase will still be generated if we sum over

Glauber exchange rungs (ignoring soft and collinear radiation).

We will also show under what circumstances the phase cancels. Of course this cancellation

is a necessary TODO:

Check

(TODO) but not su�cient condition for a proof of factorization. Since there are

quantum corrections which break factorization that are not pure phases. A demonstration of how

complete proofs of factorization can be carried out using our Glauber theory will be given elsewhere.

TODO:

FIX THIS

OUTLINE

(TODO) In Sec. VIIB we consider the same all order resummation of Glauber exchanges for

a hard scattering vertex, demonstrating that they again give a phase. In Sec. VIIA we consider

Glauber gluons in diagrams involving spectators that do not directly participate in the hard scat-

tering.

A. Spectator-Spectator

We begin by considering the diagrams in Fig. 29 which we refer to as Spectator-Spectator (SS)

interactions. These occur between spectator particles which do not participate in the hard annihi-

lation. Since the hard scattering case with M
DIS
� has only a single hadron, these SS contributions

only exist for the hard annihilation case with M
DY
� , where the two participating spectators are

created by �n and �n̄ respectively. In these graphs the hard interaction is indicated by the ⌦, and

our routing for incoming and outgoing external momentum is shown in Fig. 29b. For simplicity

we take the limit where the mass of the incoming hadrons is ignored, so that P 2 = P̄ 2 = 0. This

is accomplished by taking Pµ = n̄ · P nµ/2 and P̄ = n · P̄ n̄µ/2 respectively. The tree level result

for Fig. 29b is then given by

Fig. 29b = S
�
i n̄ · (p1�P )

(P � p1)2
i n · (P̄ � p2)

(P̄ � p2)2
(313)

= S
�


1

~p 2
1?

1

~p 2
2?

� 
n̄ · p1 n̄ · (P�p1)

n̄ · P

n · p2 n · (P̄�p2)

n · P̄

�

⌘ S� E(p1?, p2?),

couples n-collinear,
n-collinear, and 

soft modes

Glauber’s dominate 
Forward Scattering:

19
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FIG. 4. Tree level matching for the nnn̄n̄ Glauber operators. In a) we show the four full QCD graphs

with t-channel singularites. The matching results are given by reading down each column. In b) we show

the corresponding Glauber operators for the four operators in SCET with two equivalent notations. The

notation with the dotted line in c) emphasizes the factorized nature of the n and n̄ sectors in the SCET

Glauber operators, which have a 1/P2
? between them denoted by the dashed line.

Thus for these tree level 2–2 scattering graphs the Mandelstam invariant t = q2
?
= �~q 2

?
< 0.

For this matching calculation there are four relevant QCD tree graphs, shown in Fig. 4a. They

will result in four di↵erent Glauber operators, whose Feynman diagrams for this matching are

represented by Fig. 4c. The matching must be carried out using S-matrix elements for a physical

scattering process, so we take ?-polarization for the external gluon fields. Expanding in � the

results for the top row of diagrams at leading order is

i
h
ūn

n̄/

2
TBun

ih
�8⇡↵s(µ)�BC

~q 2
?

ih
v̄n̄

n/

2
TCvn̄

i
, (28)

i
h
ifBA3A2gµ2µ3

?
n̄ · p2

ih
�8⇡↵s(µ)�BC

~q 2
?

ih
v̄n̄

n/

2
TCvn̄

i
,

i
h
ūn

n̄/

2
TBun

ih
�8⇡↵s(µ)�BC

~q 2
?

ih
ifCA4A1gµ1µ4

?
n · p1

i
,

i
h
ifBA3A2gµ2µ3

?
n̄ · p2

ih
�8⇡↵s(µ)�BC

~q 2
?

ih
ifCA4A1gµ1µ4

?
n · p1

i
.

In writting these results we have written out the collinear quark spinors but left o↵ the collinear

gluon polarization vectors "µ2A2
n (p2) etc, for simplicity.

We begin our analysis by discussing the SCETII operators whose tree level matrix elements

reproduce the results in Eq. (28). The four SCETII operators whose matrix elements reproduce

Eq. (28) factorize into collinear and soft operators separated by 1/P2
?

factors, so we adopt the

n n

ss

fwd. scattering

fwd. scattering

n-n̄

n-s

(small-x logs,  reggeization, BFKL,
BK/BJMWLK, …)

Glauber

MPI = Glauber gluons?
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Summary
A lot of progress in first-principles computations of 
collider processes using effective theory methods 

• High-precision computations for simple 
observables 

• Automated resummations 
• Factorization and resummation for more exclusive 

observables such as jet processes 
• interesting connection to MC parton showers 

At the same time open issues and challenges 
• MPI, hadronisation, factorization violation, Glauber 

gluons …
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