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Large Hadron Collider

The world’s largest particle accelerator, the LHC, has been running 
extremely well during the last couple of years

Higgs boson discovery!

Run1 is complete (7/8 TeV collision 
energy) Run2 is ongoing (13/14 TeV 
collision energy)

2
Simulated Higgs boson event by CMS



Rikkert Frederix

Large Hadron Collider

The world’s largest particle accelerator, the LHC, has been running 
extremely well during the last couple of years

Higgs boson discovery!

Run1 is complete (7/8 TeV collision 
energy) Run2 is ongoing (13/14 TeV 
collision energy)

Is the Higgs responsible for 
generating the masses of all 
fundamental particles?

➡Need to measure its coupling 
strength to all massive particles

➡This includes the Higgs 
self-coupling, of which we have 
no information so far

2
Simulated Higgs boson event by CMS
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More!
And there should be more!

Dark matter, fine tuning problem, matter anti-matter asymmetry, etc., suggest the 
existence of new particles and phenomena that have not yet been discovered
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QCD radiation

Messy collisions require involved analyses
State-of-the-art analyses require theory predictions and simulations

Commonly used are merging NLO matrix elements of various 
multiplicities and matching them to a parton shower. Possibly 
including NNLO matrix elements for the lowest multiplicity

4

Typical LHC collision
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�

a,b

Master equation for hadron 
colliders



Rikkert Frederix

Two  ingredients necessary:

1. Parton distribution functions 
(from experiment, but evolution from theory)

2. Parton-level cross section: short distance coefficients 
as an expansion in αS  
(from theory)

Master equation for hadron 
colliders
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Perturbative expansion

The parton-level cross section can be computed as a series in 
perturbation theory, using the coupling constant as an expansion 
parameter, schematically: 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Parton-level cross section⇥̂ab�X(ŝ, µF , µR)
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Perturbative expansion

The parton-level cross section can be computed as a series in 
perturbation theory, using the coupling constant as an expansion 
parameter, schematically: 
 
 
 
 
 
 
 
 

Including higher corrections improves predictions and reduces 
theoretical uncertainties
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NLO predictions

8
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Parton shower

In collinear (and soft) regions of phase-space, perturbation theory breaks 
down: every power of ⍺s is accompanied by a large (double) logarithm 
log[Q2/y]

Hence, for collinear (and soft) emissions need to rearrange (i.e. 'resum') the 
perturbative series to include them at all orders in P.T.

Fortunately, these logarithms are universal!

Can include the leading logarithmic corrections through a parton shower 
algorithm, using the Sudakov form factor

9
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What does this give us 
pictorially…?

Let’s start very simple and go from there…

Let’s consider

a very simple process: production of a single EW vector boson or 
Higgs boson

an observable most-sensitive to QCD radiation: kT-jet resolution 
variable (with R=1), √y ~ pT(j)     [y01 ~ pT2(j1) ; y12 ~ pT2(j2) ; etc]

10
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Leading Order V

Simplest prediction of all

Just gives a delta-function at 
zero pT due to energy-
momentum conservation

Cannot be used to make reliable 
predictions for this observable

11

Physical curve No

Tail N/A

Integral LO

Extendible to 
multi-jet Yes

√y01

dσ
/d
√y

01
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Leading Order V+1 jet

Non-trivial distribution that is 
LO accurate

Need a generation cut, otherwise 
the integral over the pT spectrum 
diverges

Cannot be used to make reliable 
predictions at low pT

12

Physical curve Only at high-pT

Tail LO

Integral ∞

Extendible to 
multi-jet Yes

√y01

dσ
/d
√y

01

2

+ ...
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Leading Order V+1 jet

Non-trivial distribution that is 
LO accurate

Need a generation cut, otherwise 
the integral over the pT spectrum 
diverges

Cannot be used to make reliable 
predictions at low pT

12

Physical curve Only at high-pT

Tail LO

Integral ∞

Extendible to 
multi-jet Yes
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dσ
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√y
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Next-to-leading order V

Integral is NLO accurate

Curve is non-physical at low pT: 
divergent real-emission corrections 
are compensated for by divergent 
virtual corrections

Including higher order corrections 
(NNLO, etc), does not fix the non-
physical behaviour at small pT

13

Physical curve Only at high-pT

Tail LO

Integral NLO

Extendible to 
multi-jet Yes
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(N)LO+PS V

To get a physical shape at low pT 
need to resum radiation at all orders

Can either be done analytically, or 
with a parton shower

Parton shower also includes 
hadronisation and other non-
factorisable corrections

Most used methods at NLO are 
MC@NLO and POWHEG

14

Physical curve Yes

Tail LO

Integral NLO

Extendible to 
multi-jet Yes

√y01

dσ
/d
√y

01

MC@NLO: [Frixione, Webber (2002)] 
POWHEG: [Nason (2004)]
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NLO(+PS) V+1 jet

Distribution diverges at small pT

Have to put a generation cut

Parton shower can easily be 
added, but this does not solve the 
low-pT problem

15

Physical curve Only at high-pT

Tail NLO

Integral ∞

Extendible to 
multi-jet Yes

√y01

dσ
/d
√y

01
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Minlo V+1jet

Include suitable Sudakov Form 
factors in the NLO V+1j 
predictions

Distributions is NLO accurate

Integral is not NLO accurate: 
the difference starts at O(αs3/2)

Parton shower can easily be 
attached

16

Physical curve Yes

Tail NLO

Integral LO+

Extendible to 
multi-jet Yes

√y01

dσ
/d
√y

01

[Hamilton, Nason, Zanderighi (2012)]
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Minlo

The Minlo approach can be summarised as follows:

Renormalisation and factorisation scale setting, a la CKKW

Together with matching to the Sudakov form factor,

Matching requires to subtract the O(alpha_s) expansion of the Sudakov form 
factor times the Born to prevent double counting with the NLO corrections

NLO accuracy of V+1j observables is not hampered by the scale setting and 
inclusion of the form factor: differences are beyond NLO
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Minlo

Start from a NLO calculation with one extra jet

18

since d�S alone is invariant under µR/µF shifts, up to NNLO terms, eR
21

and eR
20

have no µR or µF

dependence.

The Minlo prescription amounts to the following operations on the NLO calculation

0. Define µR = KR max(QB, QBJ) and µF = KFQ, where KR/F 2
⇥
1

2

, 2
⇤
.7

1. Set µR everywhere it occurs and likewise for all µF set µF ! µF

p
v:

d� ! d�0
= d� (µR = KR max(QB, QBJ), µF ! KF

p
y) . (2.22)

2. Replace the additional power of ↵̄S that accompanies the NLO corrections according to

d�0 ! d�00
= d�0 �↵̄NLO

S

�
µ2

R

�
! ↵̄S

�
K2

R y
��

. (2.23)

3. Multiply the LO component by the O (↵̄S) expansion of the inverse of the Sudakov form factor
times ↵̄

s

�
K2

R y
�
/↵̄

s

�
µ2

R

�
:

d�00 ! d�000
= d�00 � d�00|

LO
↵̄S

�
K2

R y
�✓

G
12

L2

+

�
G

11

+ 2S
1

+

¯�
0

�
L+ 2

¯�
0

ln

µR

KR Q

◆
.(2.24)

4. Multiply by the Sudakov form factor times ↵̄
s

�
K2

R y
�
/↵̄

s

�
µ2

R

�
:

d�000 ! d�M = exp [�R (v)]
↵̄
s

�
K2

R y
�

↵̄
s

(µ2

R)

d�000 . (2.25)

Neglecting O
�
N

4

LL

�

�
terms, with a bit of effort, we can write

d�M = d�R + d�MR + d�F , (2.26)

where d�R is the resummation cross section, eq. 2.1, a total derivative, and d�MR holds all remaining
large logs:

d�MR

d�dL
=

d�
0

d�
exp [�R (v) ]

niY

`=1

q(`)
�
x
`

, µ2

Fv
�

q(`) (x
`

, µ2

F )

h
↵̄2

S

�
K2

R y
� h

eR
21

L+

eR
20

i
+ ↵̄3

s

�
K2

R y
�
L2 eR

32

i
,

eR
32

= 2G
12

¯�
0

H
1

�
µ2

R

�
. (2.27)

The last term in eq. 2.26, d�F , is more precisely d�MF , the replacement d�MF ! d�F being made
on the grounds that the Minlo operations preserve the fixed order expansion up to and including
NLO terms, as well as the fact that d�F (and d�MF) is finite for v ! 0.

Since eR
21

= 0, the Minlo jet resolution spectra in eqs. 2.26 are equal to the NNLL

�

jet
resolution spectrum in sect. 2.2 (d�R) up to N

3

LL

�

differences.

7This is the definition of QB given in sect. 2.1.

– 13 –

[Hamilton, Nason, Zanderighi (2012)]
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Minlo decomposed

19

Resummed cross section. 
(Almost) identical to known 

LL/NNLLσ results
Finite terms in the 

limit y->0 (coming from 
real emission corrections)

Logarithmically enhanced terms 
for y->0 that are not captured 

by dσR 

d�M = d�R + d�MR + d�F
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Resummed cross section

20

d�M = d�R + d�MR + d�F
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Resummed cross section

Well-known formula; used e.g. in the Caesar approach

Sudakov form factor exp[-R] not identical to what’s (originally) used in 
Minlo. But Minlo approach can be improved to incorporate these terms  
(not relevant when colour is trivial)

Written as total derivative: straight-forward to show that this is NLO correct 
in phase-space Φ up to dσF  after integration over L and expanding in αS

However, not NLO correct in the dΦdL phase space (i.e., tail is not NLO correct)
20

d�R

d�dL

=

d�0

d�

⇥
1 + ↵̄S

�
µ

2
R

� H1

�
µ

2
R

�⇤
d

dL

[exp [�R (v) ] L ({x`} , µF , v)]

[Banfi, Salam, Zanderighi (2005); Dokshitzer, Diakonov, Troian (1980)]

(Hard) virtual contributions
Sudakov form factor

Luminosity factor

d�M = d�R + d�MR + d�F

LO cross 
section

L = log(1/v) = log(Q2/y)
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Accuracy of Minlo

Explicit derivation, using the general form of the differential NLO V+1j 
cross sections in the small y limit, 
 
 
 
gives 
 

21

the Sudakov form factor of the original Minlo procedure is fully consistent with that prescribed
by Caesar.

For the Bj case, not forgetting that here in section 2 we are restricting ourselves to considering
the region y

01

& O(m2

B), F
2

is not zero, and S
1

has non-trivial dependence on the underlying
Bj kinematics. Therefore, in the region where our Caesar-based formula is strictly valid we
have a discrepancy between what is suggested by it and by Minlo. In particular the original
Minlo proposal has omitted NNLL

�

terms due to multiple emission corrections (F
2

) and, more
importantly, NLL

�

contributions due to soft-wide-angle radiation (S
1

). Thus, in the region y
01

&
O(m2

B) Bjj-Minlo, implemented according to the original proposal in ref. [26], would formally not
be LO accurate in the description of Bj-inclusive quantities, with ambiguities arising between it
and conventional LO of order

p
↵̄S times the leading order term. With the benefit of hindsight it is

perhaps obvious that the original Minlo procedure would have this problem in this region, since
we know that its Sudakov form factors contain only soft-collinear and collinear terms, yet soft-wide-
angle radiation from a Bj state will be logarithmically enhanced too, even if the underlying Born
partons are widely separated.

In section 3 we also consider this comparison (for Bjj-Minlo) in the region y
01

< O(m2

B).

2.4 Minlo jet resolution spectra

In the Minlo framework, in all cases, we start with an NLO cross section: for the v
01

resummation
in B-production our fundamental ingredient is the NLO Bj cross section, while for v

12

resummation
in Bj-production it is that for NLO Bjj. We write these cross sections as a sum of a part which is
finite as v ! 0, d�F , plus a singular part obtained by expanding the NNLL

�

resummation formula
(eq. 2.1) d�S , and a further singular-remainder piece, d�SR, which is defined as all singular terms
which were not already contained in d�S :

d� = d�S + d�SR + d�F . (2.19)

Expanding the resummed differential cross section up to and including O
�
↵̄2

S

�
terms, we obtain

d�S

d�dL
=

d�
0

d�

2X

n=1

2n�1X

m=0

H
nm

↵̄n

S

�
µ2

R

�
Lm , (2.20)

where the explicit H
nm

coefficients are documented in the appendix A.2. Since the resummation
formula we used to derive this fixed order expansion was NNLL

�

accurate, it only predicts part of
the full N3

LL

�

coefficient, ⇠ ↵̄2

S, thus we have a singular remainder term,

d�SR

d�dL
=

d�
0

d�
↵̄2

S

�
µ2

R

� h
L eR

21

+

eR
20

i
, (2.21)

where eR
21

= 0 and we proceed under the assumption that the coefficient eR
20

is generally unknown
to us. We introduce the strange eR

21

= 0 term here in order to make the transition to the discussion
on merging by three units of multiplicity, in sect. 3, a little bit cleaner; there our formulae are
applied in regions where they lose NNLL

�

accuracy. The d�SR term can be considered as a valid
parametrization of our ignorance of the v ! 0 singular part of the NLO cross section. Importantly,

– 12 –

d�MR

d�dL

=

d�0

d�

exp [�R (v) ]

niY

`=1

q

(`)
�
x`, µ

2
Fv

�

q

(`)
(x`, µ

2
F )

h
↵̄

2
S

�
K

2
R y

� h
e
R21 L+

e
R20

i
+ ↵̄

3
s

�
K

2
R y

�
L

2 e
R32

i

Only non-zero when exp[R] and Minlo 
Sudakov exponent are different, or 

when exp[R] is not NNLLσ accurate. 
Therefore, assume that it is known

Unknown 
coefficient!

Known 
coefficient

d�M = d�R + d�MR + d�F
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Minlo accuracy for 
(inclusive) 0-jet observables

After integration over the logarithm L (taking R21=0, which is okay for the 
processes considered here) this results into terms of 

Hence, diff. 0-jet cross section is not NLO accurate with NLO-1jet Minlo

22

of assessing scale uncertainties. The last term in eq. 2.22, d�F , is more precisely d�MF , the replace-
ment d�MF ! d�F being made on the grounds that the Minlo operations preserve the fixed order
expansion up to and including NLO terms, as well as the fact that d�F (and d�MF) is finite for
v ! 0.

Since eR
21

= 0, the Minlo jet resolution spectra in eqs. 2.22 are equal to the NNLL

�

jet
resolution spectrum in sect. 2.2 (d�R) up to N

3

LL

�

differences.

2.5 Integrated Minlo jet resolution spectra

Making use of the fact that d�R is a total derivative with respect to L (eq. 2.22), and the definitions
of �̄ in terms of H

1

and C
1

, it is fairly straightforward to show7 that on integrating over all v

d�M

d�
=

d�NLO

d�
+

Z
dL0 d�MR

d�dL0 +O
�
↵̄2

S

�
. (2.24)

The contaminating
R
d�MR term consists of a N

2

LL

�

piece, / eR
21

, and N

3

LL piece / eR
20

� ¯�
0

H
1

.
For the regions in which the Caesar formalism holds eR

21

= 0, as discussed under eq. 2.21.

If we assume that we were ignorant of the value of eR
21

, dropping terms over which we have no
control, i.e. beyond NNLL

�

order, we can neglect the L dependence of ↵̄S and PDFs in d�MR, and
all but the leading term in the Sudakov form factor exponent / G

12

. With these approximations
the d�MR integral becomes:

Z
dL0 d�MR

d�dL0 = �d�
0

d�
eR
21

1

|2G
12

| ↵̄S

�
1 +O

�p
↵̄S

��
. (2.25)

The O(↵̄
3/2

S ) ambiguity in eq. 2.25 attributes to neglect of N3

LL

�

terms. So, if our knowledge of
eR
21

be wrong, for whatever reason, the Minlo inclusive cross section would deviate from the exact
NLO one by terms of order O (↵̄S) relative to the LO contribution (d�

0

).

Sticking to the regions for which the Caesar formalism holds, our starting resummation for-
mula and the Minlo cross section formulated with it is NNLL

�

accurate, i.e. eR
21

= 0 and our
ignorance is located downstream in the N

3

LL

�

terms / eR
20

� ¯�
0

H
1

. Dropping terms now only of
N

4

LL

�

accuracy we can again neglect the L dependence of the coupling constant and PDF terms,
and all but the leading double log term in the Sudakov form factor, giving

Z
dL0 d�MR

d�dL0 = �d�
0

d�

h
eR
20

� ¯�
0

H
1

�
µ2

R

�i r
⇡

2

1

|2G
12

|1/2
↵̄
3/2

S

�
1 +O

�p
↵̄S

��
. (2.26)

Now the Minlo inclusive cross section and that of the exact NLO calculation differ by terms of
order O(↵̄

3/2

S ) relative to the LO contribution; for the Minlo cumulant cross section to be certified
NLO accurate it needs to agree with conventional NLO up to relative O(↵̄2

S) (NNLO) ambiguities.

7For more details see appendix A.4.

– 14 –

[Hamilton, Nason, Oleari, Zanderighi (2012); 
RF, Hamilton (2015)]
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=

d�0

d�
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(`)
�
x`, µ

2
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(`)
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2
F )

h
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2
S

�
K

2
R y

� h
e
R21 L+

e
R20

i
+ ↵̄

3
s

�
K

2
R y

�
L

2 e
R32

i

d�M = d�R + d�MR + d�F
Z

d

dL0 log
m Q2

y
↵n
S(y) exp

h
�R(v)

i
⇡

h
↵S(Q

2
)

in�m+1
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Minlo V+1jet

Include suitable Sudakov Form 
factors in the NLO V+1j 
predictions

Distributions is NLO accurate

Integral is not NLO accurate: 
the difference starts at O(αs3/2)

Parton shower can easily be 
attached

23

Physical curve Yes

Tail NLO

Integral LO+

Extendible to 
multi-jet Yes

√y01

dσ
/d
√y

01

[Hamilton, Nason, Zanderighi (2012)]
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Getting 0-jet observables 
NLO correct

24

√y01

dσ
/d
√y

01

√y01

dσ
/d
√y

01

Minlo V+1j

NLO+PS V+0j
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FxFx / Meps@nlo: 
V & V+1j merging

Merge NLO+PS for V with Minlo for 
V+1j, at “merging scale” Q

Above Q the tail is NLO accurate

For not-too-small Q, integral is NLO 
accurate

Used by ATLAS & CMS for LHC run 
II analyses

Easily extendible to multi-jet

25

Physical curve “Yes”

Tail NLO

Integral “NLO” (depending on Q)

Extendible to 
multi-jet Yes

√y01

dσ
/d
√y

01

Q

FxFx: [RF, Frixione (2012)] 
MEPS@NLO: [Hoeche, Krauss, Schonherr, Siegert; +Gehrmann (2012)]
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Differences between FxFx & 
MEPS@NLO

Both FxFx and MEPS@NLO merging are based on making MC@NLO calculation for 
jet-multiplicities exclusive in more jets

Veto additional radiation; resum dependence on the veto scale (=merging scale)

Major difference is in the way this exclusivity is applied

CKKW-L approach (i.e. Sudakov rejection based on shower kernels)

Used in Sherpa’s “MEPS@NLO”

Using shower kernels prevents for a direct link with Minlo approach (and 
comparison to analytic resummation and accuracy), but prevents issues with 
mismatch in kT and shower ordering values

Minlo (CKKW) from hard scale down to the scale of the softest jet not affected by 
veto; MLM-type rejection from there down to merging scale

Used in MadGraph5_aMC@NLO w/ Pythia/Herwig: “FxFx merging”

Direct link with Minlo, and MLM-type rejection prevents mismatches in 
ordering values.
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FxFx merging: Higgs boson 
production

Transverse momentum of the Higgs and of the 1st jet. 
Agreement with H+0j at MC@NLO and H+1j at MC@NLO in 
their respective regions of phase-space; Smooth matching in 
between; Small dependence on matching scale
Alpgen (LO matching) shows larger kinks
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Figure 3: As in fig. 1, with Sudakov reweighting.

the lower insets of fig. 2). On the one hand, this overestimates the systematics, since the

contributions due to scales close to the end-points of the merging range are less important

(in the effective average performed by the smooth D function) than those at its center. On

the other hand, this is not equivalent to assessing the effect of changing the position and

width of the merging range, which should probably also be done. In any case, these appear

to be pretty minor issues, given that the theoretical systematics associated with merging

cannot be given a precise statistical meaning, and some degree of arbitrariness is always

present.

We now study the effect of the Sudakov reweighting, following the procedure described

in sect. 2.2.3. We start by considering again the N = 1 case, which we generate with a

sharp D function, and the three values µQ = 30, 50, and 70 GeV already employed. In

fig. 3 we plot the same observables as in fig. 1 and 2; a few more jet-related observables are
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Differential jet rates for 1->0 and 2->1
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Figure 4: As in fig. 3, for the pseudorapidity of the hardest jet (upper left), the pseudorapidity
(upper right) and pT (lower left) of the second-hardest jet, and d2 (lower right). In the case of
η(jk), we have imposed a pT (jk)>30 GeV cut.

displayed in figs. 4 and 5. In all these figures, the main frame presents the µQ = 50 GeV

results, our “central” predictions henceforth. The histograms in the lower insets are the

ratios of the Sudakov-reweighted µQ = 30 GeV and 70 GeV results over the central ones

(in other words, there are no merged predictions in these plots that do not include the

Sudakov reweighting). Also shown there are the ratios computed using Alpgen in the

numerator, over the central NLO-merged results.

The comparison of fig. 3 with figs. 1 and 2 shows that the Sudakov reweighting on top

of a sharp D function is as effective as the use of a smooth D function (without Sudakov

reweighting) in removing the kinks. There are quite small residual wiggles11, which may be

11These can be eliminated with a smooth D function (plus Sudakov reweighting). We did not test this
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Differential jet rates
Matching up to 2 jets at NLO
Results very much consistent with matching up to 1 jet at NLO
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Figure 6: As in fig. 3, with N = 2.

to disappear, and the merging-parameter dependence reduced, when pcut
T

becomes large.

We finally turn to discussing the case of the N = 2, sharp-D function, Sudakov-

reweighted merging; that is, we increase the largest multiplicity by one unit w.r.t. what

was done before. The settings are the same as in the N = 1 case, and figs. 6, 7, and 8 are

the analogues of figs. 3, 4, and 5 respectively (with the exception of one panel in fig. 8).

The numerators of the ratios that appear in the upper insets are the same as before for

the H + 0j and H + 1j cases; that for H + 2j is obviously specific to N = 2. In the lower

insets, together with the ratios that allow one to assess the merging systematics, we have

plotted (as histograms overlaid with open circles) the ratios of the N = 1 results over the

N = 2 ones, both for µQ = 50 GeV. We have also recomputed the Alpgen predictions, by

adding the H + 3 parton sample, for consistency with N = 2. The corresponding results

will not be shown in the plots, since these are already quite busy, and there is no difference
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Figure 7: As in fig. 4, with N = 2.

at all in the patterns discussed above, except in a very few cases which we shall comment

upon when appropriate.

The common feature of all but one of the observables presented in figs. 6–8 is that

they are extremely close, in both shape and normalization, to their N = 1 counterparts

of figs. 3–5. This is highly non-trivial, since the individual i-parton contributions are

different in the two cases. The exception is the pseudorapidity of the second-hardest jet

(upper right panel of fig. 7), which the inclusion of the 2-parton sample turns into a more

central distribution, as anticipated in the discussion relevant to fig. 4, and brings it very

close to the Alpgen result obtained with the same µQ.

The small impact of the increase of the largest multiplicity is also generally in agree-

ment with what is found in Alpgen, where the inclusion of the H +3 parton contribution

changes the fully-inclusive rate by +0.3%. The effects on differential observables are also
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Mass effects

Reweighting the EFT to include 
finite top (and bottom) quark mass 
effects, apart from the two-loop 
contributions to H+1j and H+2j NLO matrix 
elements

Non-trivial effects in the Higgs 
boson transverse momentum

30

FxFxM FxFxEFT incM incEFT �b

Total 32.83+24.9%
�19.5%

+1.3%
�2.6% 33.02+23.3%

�18.8%
+1.4%
�2.4% 31.13+21.0%

�18.2% 31.31+19.7%
�17.6% �2.05+2.9%

�8.9%

Njet = 0 19.75+23.6%
�18.7%

+2.4%
�0.5% 20.37+21.8%

�18.0%
+2.3%
�0.3% 20.65+20.1%

�18.0% 21.20+18.8%
�17.3% �1.97+5.7%

�11.1%

Njet = 1 9.011+26.4%
�20.5%

+0.0%
�5.8% 8.715+25.2%

�19.9%
+0.0%
�6.1% 7.397+22.0%

�18.6% 7.136+21.1%
�18.0% �0.10+27%

�77%

Njet � 2 4.061+30.4%
�25.0%

+0.0%
�5.7% 3.935+29.7%

�24.8%
+0.0%
�5.7% 3.083+31.9%

�21.7% 2.972+32.1%
�21.8% 0

VBF1 0.512+29.6%
�26.0%

+0.0%
�3.8% 0.518+29.8%

�25.9%
+0.0%
�5.1% 0.411+32.7%

�22.0% 0.402+32.7%
�22.0% 0

VBF2 0.214+29.0%
�26.4%

+0.0%
�2.3% 0.221+30.5%

�26.7%
+0.4%
�5.0% 0.191+32.5%

�21.7% 0.184+32.3%
�21.6% 0

Table 2. Rates (in pb) for the FxFx-merged and inclusive simulations, in both the full SM
and the EFT. The contributions to the full-theory predictions due to bottom-quark loops (�b)
are also reported separately; a null entry indicates a result of the same order as the error on the
corresponding FxFxM (or incM) entry. The fractional hard-scale (left) and merging-scale (right,
where relevant) uncertainties are given with an error notation.

Njet = 0 Njet = 1 Njet � 2

FxFxM 0.602 0.274 0.124

FxFxEFT 0.617 0.264 0.119

incM 0.663 0.238 0.099

incEFT 0.677 0.228 0.095

Table 3. Ratios of cross sections with a given number of inclusive or exclusive jets, over total
cross sections.

are evaluated by computing the ratio of the entry in the second, third, and fourth row,

respectively, of the first column of table 2, over the first entry in the same column of that

table. As can be seen from table 3, the merging decreases the Njet = 0 cross sections

by a relative 10%, while it increases the Njet = 1 and Njet � 2 ones by a relative 15%

and 25%, respectively. These fractions are essentially independent of whether heavy-quark

mass e↵ects are included or not. However, masses do have an impact for a given class of

calculations (merged or inclusive); in particular, they decrease the Njet = 0 rates (owing

to bottom-mass e↵ects, as we shall discuss below), while they increase the Njet = 1 and

Njet � 2 ones.

A di↵erent way of looking at mass e↵ects stems from the computation of the ratios of

full-SM over EFT cross sections, whose results we show in table 4 for both the merged and

the inclusive simulations. In the two rightmost columns of the table, the SM predictions

are computed by excluding bottom-loop contributions (i.e. the numerators correspond to

eqs. (2.3) and (2.4)). The most striking feature of table 4 is that such e↵ects factorise

almost exactly in the case of all the rates except the VBF ones; in other words, they are

independent of whether merging is carried out or not, except for longitudinally-dominated
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Figure 1. Inclusive Higgs transverse momentum. The main frame displays the central results for
our standard four predictions, as well as the hard-scale uncertainty band relevant to FxFxM. The
upper inset presents ratios of the central results over the FxFxM one. The middle insets highlights
heavy-quark mass e↵ects in both merged and inclusive predictions. The lower insets shows fractional
hard- and merging-scale uncertainties for FxFxM. See the text for further details.

e↵ects start to be visible for pT (H) & 250 GeV, where they suppress the full-SM results

w.r.t. their EFT counterparts. As can be seen from the middle inset, by comparing the

histograms with the symbols, heavy-quark mass e↵ects almost exactly factorise w.r.t. the

merging procedure: they a↵ect equally the merged and the inclusive predictions, which is

quite consistent with what has been already observed for inclusive rates in sect. 3.1. We

note that this applies both to the large- and to the small-pT (H) region. In the latter, for

pT (H) . 50 GeV, the bottom-loop contributions do have a non-negligible impact on the

shape of the distribution, in keeping with what previously found [25, 26, 30]. Finally, the

theoretical systematics that a↵ect the FxFxM result also have a similar pattern as those

relevant to inclusive rates: namely, on the whole transverse-momentum range considered,

hard-scale uncertainties largely dominate over merging-scale ones. The latter are in fact
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analytically-computed counterparts. Note, in particular, that this implies that two-

loop virtuals are employed in such sub-samples, which are integrated and unweighted

directly.

• The one-loop matrix elements for the other sub-samples, (H + 1j)t2 and (H + 2j)t2 ,

are stored in a library generated by MadLoop. The library includes a wrapper that

allows one to call the individual matrix elements.

• The sub-samples of the previous item are first integrated and unweighted by working

in the EFT. The resulting hard events are then reweighted by using the relevant5 full-

SM over EFT ratios, with the numerators computed on the fly using the MadLoop

library constructed before. This is the same procedure used to compute di-Higgs

production in gluon fusion in refs. [58, 59].

A few comments are in order. Firstly, the reweighting procedure described above does not

entail any approximation. Its only implication is that the final event samples, given in

input to the MC, are weighted rather than unweighted (as it would be customary in Mad-

Graph5 aMC@NLO). Although a secondary unweighting could be envisaged, we did not

consider it in this work. Secondly, the Higgs-plus-three-partons top-loop amplitudes enter

(although in regions that do not overlap kinematically) both the (H + 0j)t2 contribution

(as real corrections) where they are computed by SusHi, and the (H + 1j)t2 contribution

(as Borns) where they are computed by MadLoop. Given the strict equivalence between

SusHi and MadLoop one-loop results, the (H + 1j)t2 bit could also be computed with

SusHi; this would be faster, but rather more awkward from a procedural point of view,

and we have therefore refrained from doing it. Thirdly, the reweighting by the full-SM ma-

trix elements adopted in this paper is carried out by using, in part, software routines which

are not public. However, the hard events will be made publicly available6. Furthermore,

future public versions of MadGraph5 aMC@NLO will contain NLO-accurate reweighting

capabilities, equivalent to the procedure adopted here.

mH = 125 GeV mt = 172.5 GeV

mb = 4.92 GeV PDFs: NNPDF30 nlo as 0118 [60]

Table 1. Input parameters for hard matrix elements. The pole top and bottom masses are used
both in the propagators and in the Yukawas.

The matrix elements have been computed by using the input parameters7 reported

in table 1. The central renormalisation and factorisation scales (µ0) are set in merged

5When very close to the IR limits of the real-emission matrix elements, Born matrix elements are

employed in the reweighting, in order to ensure a more stable numerical behaviour, and a marginally faster

procedure. Furthermore, as is customary Borns are also used to reweight the virtuals.
6The interested reader is advised to contact the authors.
7Apart from the PDFs, these are in keeping with the recommendations of the LHC Higgs Cross Section

Working Group. See https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG.

– 5 –
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Figure 2. Higgs transverse momentum with Njet = 0, Njet = 1, and Njet � 2. The main
frame displays the central FxFxM predictions and their hard-scale uncertainty bands. Each inset
is relevant to one Njet multiplicity, and presents ratios computed with the central FxFxM result as
denominator. We show the merged EFT and both inclusive predictions, and the fractional hard-
and merging-scale uncertainty of FxFxM. See the text for further details.

at most ±10%, and typically much smaller than that. In summary, multi-jet merging is

more relevant to obtaining a sensible prediction for the pT (H) spectrum than the exact

treatment of heavy-quark loops when statistics is limited, because this restricts one to

relatively small transverse momenta and/or to use bins of large widths. However, as soon

as one is able to access the high-pT region and to better resolve the details of the spectrum

(including its low-pT end), then mass e↵ects must mandatorily be taken into account.

The Higgs transverse momentum can also be observed in a more di↵erential manner,

by requiring a given number of accompanying jets; this is potentially very relevant to

experimental analyses which employ Njet categorisation. We present our predictions for

this quantity in fig. 2, by requiring Njet = 0, Njet = 1, and Njet � 2. The layout of the

figure is the following. In the main frame, the solid histograms show the FxFxM results for
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Figure 7. Same as in fig. 1, for the azimuthal distance between the two hardest jets, within the
VBF1 acceptance region.

4 Conclusions

In this paper we have studied the production of a Standard Model Higgs boson in associa-

tion with jets through the gluon-fusion channel, presenting results for both inclusive rates

and di↵erential observables relevant to the 13 TeV LHC. We have done so by consider-

ing several types of simulations, in all of which matrix elements are matched to parton

showers at the NLO accuracy in QCD according to the MC@NLO formalism. We have

systematically compared predictions that stem from inclusive samples with those based

on the consistent merging, by means of the FxFx method, of sub-samples characterised

by di↵erent parton-level multiplicities, for up to two extra jets at the NLO. Within each

type of approach, inclusive or merged, we have evaluated the underlying matrix elements

both in the EFT where the Higgs couples directly to gluons, and in the SM by comput-

ing exactly the relevant top- and bottom-loop amplitudes (except for the two-loop virtual

contributions to the one- and two-jet cross sections, which we have approximated). All of
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in turn, �b is the cross section that emerges from the sub-samples (H+0j)b2 and (H+0j)bt
– see eqs. (2.1) and (2.2). All results are obtained with central hard and merging scales; by

using an error notation, we also show the fractional hard- and merging-scale systematics,

obtained as discussed in sect. 2.

The first row of table 2 features the results obtained without imposing any final-state

cuts. The predictions in the next three rows are relevant to requiring a given number of

exclusive (Njet = 0, 1) or inclusive (Njet � 2) jets among those that satisfy the cuts in

eq. (2.5). The two rows at the bottom present cross sections in two phase-space regions

defined by VBF-like cuts:

VBF1 : M(j1, j2) � 400 GeV , �y(j1, j2) � 2.8 , (3.1)

VBF2 : M(j1, j2) � 600 GeV , �y(j1, j2) � 4 , (3.2)

where j1 and j2 denote the hardest and second-hardest jet of the event, respectively.

We observe that the hard-scale uncertainties of the merged results are rather similar to

those of the inclusive ones, if only slightly larger, consistently with the fact that they receive

contributions from matrix elements that feature higher powers of ↵S w.r.t. those that enter

the inclusive samples. Such uncertainties are significantly larger, for all of the acceptance

regions considered, than the merging-scale ones, in spite of the fact that the latter are

associated with a very conservative choice for the range of µQ. This is particularly striking

in the case of the two VBF-like regions, for which the small merging-scale dependence

implies that the descriptions, given by the matrix elements and by Pythia8, of kinematic

configurations where jets tend to be close to the beam line are mutually quite consistent

with each other. This is clearly an MC-dependent statement, and is e.g. at variance with

what has been found in the past with Herwig6 both at the LO and the NLO [69]: it is

wise to always assess the merging-scale systematics associated with a given parton shower,

especially in longitudinally-dominated regions.

The impact of the bottom-induced contributions, measured by the ratio of �b over

FxFxM or incM, is non-negligible in the regions dominated by small jet multiplicities, but

irrelevant elsewhere. This is a consequence of the choices made for the treatment of such

contributions (see sect. 2), and consistent with the idea that bottom-loop amplitudes should

describe the emission of mostly soft jets. As expected, the opposite behaviour is associated

with merging, whose impact becomes more significant the larger the jet multiplicity. Even

in the fully-inclusive case (first row of table 2), merged rates are larger by about 5.5%

w.r.t. the inclusive ones. The cross section thus increases (we recall that FxFx is a non-

unitary prescription), and this increase, as we shall see from the di↵erential results of

sect. 3.2, is essentially driven by the contributions of the sub-samples (H + 1j)t2 and

(H + 2j)t2 .

In order to assess in a more transparent manner the e↵ects of merging, we report in

table 3 the ratios of the cross sections for a given number of inclusive or exclusive jets, over

the corresponding fully-inclusive cross sections. Note that these results are not independent

from those of table 2, but are obtained from the latter (by using only the central values).

For example, the first, second, and third entry from the left in the first row of table 3

– 7 –
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FxFx Merged results close to the NLO inclusive cross sections

Order 1% dependence on the merging scale for total rates

slightly smaller for HW++ than for PY8

Slightly larger cross section for PY8 than for HW++

For comparisons to data (next slides) no normalisation factors applied: the 
normalisation of the predictions is as they come out of the code

32

µQ = 15 GeV µQ = 25 GeV µQ = 45 GeV inclusive

Z+jets
2.055(�0.9%) 2.074 2.085(+0.5%) 2.012(�3.0%) HW++

2.168(+0.8%) 2.150 2.117(�1.5%) 2.011(�6.5%) PY8

W+jets
20.60(�0.9%) 20.78 20.87(+0.4%) 19.96(�3.9%) HW++

21.71(+1.0%) 21.50 21.18(�1.5%) 19.97(�7.1%) PY8

Table 2: Total rates (in nb) for the three di↵erent choices of the FxFx merging scale, as

well as those for the inclusive (i.e. non-merged) samples, obtained with Herwig++ (upper

rows) and Pythia8 (lower rows). Relative di↵erences w.r.t. the FxFx results obtained with

the central merging scale are also reported in brackets.

fixed-order computations – indeed, the Pythia8 and Herwig++ results in the last column

agree to a 0.05% level, which is the statistical inaccuracy one expects from a 5M-event

sample. There are two features in table 2 which are particularly worth remarking. Firstly,

the merged results obtained with di↵erent merging scales are very close to each other.

This gives one confidence on the fact that merging-scale systematics is under control, in

spite of the large range chosen for µQ variations. Secondly, the merged rates are a few

percent larger than the fully-inclusive one, with the exact amount depending on the MC

adopted for showering. This is a manifestation of the non-unitary behaviour of FxFx, and

the MC-dependent amount of “unitarity violation” should be seen as an actual prediction

associated with the given MC. On the other hand, the di↵erences w.r.t. the fully-inclusive

cross sections are not large, which is perfectly compatible with the moderate NNLO K

factors for Z and W hadroproduction. We shall see that the small increase of the merged

cross sections w.r.t. the inclusive ones is beneficial in terms of the comparisons to data.

⌥ Normalisation of results

The features just mentioned, and the predictivity they underpin, help us stress the follow-

ing point. All of our predictions are reported with their native normalisation: in other

words, no rescaling has been performed. While an overall re-normalisation by a constant

(e.g. the NNLO/NLO fully-inclusive K factor) common to all observables is acceptable,

we believe that the practice of rescaling theoretical results by factors that depend on the

jet multiplicity leads to confusion, and especially when such a multiplicity is understood

in the inclusive sense. Although by so doing one generally makes theory-data comparisons

look better, one also tends to neglect the fact that merged results, especially at the NLO,

are supposed to be predictive for both shapes and rates. At the very least, a rescaling

dependent on the jet multiplicity renders it more di�cult to understand the strengths and

weaknesses of a given merging approach, and to assess the overall predictivity of di↵er-

ent merging techniques. The latter problem is clearly more acute in the case where the

rescaling factors exhibit a non-negligible dependence on the jet multiplicity, and/or on the

particular MC considered. As an example of both of these issues, we refer the reader to

table 7, appendix A, of ref. [31], where the results of several state-of-the-art simulations

are reported. From a purely theoretical viewpoint, the e↵ects of a multiplicity-dependent
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Multi-jet production in 
association with an EW boson
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FxFx merging for W and Z plus up to 2 jets at NLO for LHC 7 TeV




