- Z + jets
- Exclusive jet multiplicity and hardest and 3 rd hardest jet pT spectra
- Uncertainty band contains ren. \& fac. scale, PDF \& merging scale dependence
\uparrow Rather good agreement between data and theory

- Rapidity difference between Z-boson and hardest jet.
- Sensitive to higher multiplicity matrix elements
- LO predictions off (in particular MadGraph)
- No discrepancies at NLO

$-W+j e t s$
\uparrow Agreement between FxFx merged results, matched to Herwig++ and Pythia8, and Atlas and CMS data is rather good
\uparrow Where data and theory differ, also differences between the results matched to HW ++ and PY8 differ
- W+jets
- Agreement between FxFx merged results, matched to Herwig++ and Pythia8, and Atlas and CMS data is rather good
- Where data and theory differ, also differences between the results matched to HW++ and PY8 differ

- W+jets
- Agreement between FxFx merged results, matched to Herwig++ and Pythia8, and Atlas and CMS data is rather good
\uparrow Where data and theory differ, also differences between the results matched to HW++ and PY8 differ

FXFX / MEPS@NLO: \mathbf{V} \& $\mathbf{V}+1 \mathrm{~J}$ MERGING

FxFx: [RF, Frixione (2012)]
MEPS@NLO: [Hoeche, Krauss, Schonherr, Siegert; +Gehrmann (2012)]

- Merge NLO + PS for V with Minlo for $\mathrm{V}+\mathrm{lj}$, at "merging scale" Q
- Above Q the tail is NLO accurate
- For not-too-small Q, integral is NLO accurate
- Used by ATLAS \& CMS for LHC run II analyses

Physical curve	"Yes"
Tail	NLO
Integral	"NLO" (depending on Q)
Extendible to multi-jet	Yes

MinLO-REVISITED V+IJ

- Much simpler as Geneva
\uparrow Like Minlo V+lj, include Sudakov form factors to make distribution physical at low pт
- Modify the Sudakov form factors with subleading, process dependent terms such that total integral becomes NLO accurate
- Can include NNLO corrections for V

Physical curve	Yes
Tail	NLO
Integral	(N)NLO
Extendible to multi-jet	Yes

MINLO ACCURACY FOR (INCLUSIVE) O-JET OBSERVABLES

- An explicit comparison between the diff.-jet-rate-resummation formula (which integrates to the correct NLO 0 -jet diff. cross section) and Minlo shows that they differ by terms of order

$$
\frac{d \sigma_{\mathcal{M R}}}{d \Phi d L}=\frac{d \sigma_{0}}{d \Phi} \exp [-R(v)] \prod_{\ell=1}^{n_{i}} \frac{q^{(\ell)}\left(x_{\ell}, \mu_{F}^{2} v\right)}{q^{(\ell)}\left(x_{\ell}, \mu_{F}^{2}\right)}\left[\bar{\alpha}_{\mathrm{S}}^{2}\left(K_{R}^{2} y\right)\left[\widetilde{R}_{21} L+\widetilde{R}_{20}\right]+\bar{\alpha}_{s}^{3}\left(K_{R}^{2} y\right) L^{2} \widetilde{R}_{32}\right]
$$

- After integration over the logarithm L (taking $\mathrm{R}_{21}=0$, which is okay for the processes considered here) this results into terms of

$$
\int d L^{\prime} \frac{d \sigma_{\mathcal{M R}}}{d \Phi d L^{\prime}}=-\frac{d \sigma_{0}}{d \Phi}\left[\widetilde{R}_{20}-\bar{\beta}_{0} \mathcal{H}_{1}\left(\mu_{R}^{2}\right)\right] \sqrt{\frac{\pi}{2}} \frac{1}{\left|2 G_{12}\right|^{1 / 2}} \bar{\alpha}_{\mathrm{S}}^{3 / 2}\left(1+\mathcal{O}\left(\sqrt{\bar{\alpha}_{\mathrm{s}}}\right)\right)
$$

+ Hence, diff. NLO-0jet cross section not correct with NLO-1jet Minlo
[Hamilton, Nason, Oleari, Zanderighi (2012); RF, Hamilton (2015)]

MINLO ACCURACY FOR (INCLUSIVE) O-JET OBSERVABLES

- An explicit comparison between the diff.-jet-rate-resummation formula (which integrates to the correct NLO 0 -jet diff. cross section) and Minlo shows that they differ by terms of order

$$
\frac{d \sigma_{\mathcal{M R}}}{d \Phi d L}=\frac{d \sigma_{0}}{d \Phi} \exp [-R(v)] \prod_{\ell=1}^{n_{i}} \frac{q^{(\ell)}\left(x_{\ell}, \mu_{F}^{2} v\right)}{q^{(\ell)}\left(x_{\ell}, \mu_{F}^{2}\right)}\left[\bar{\alpha}_{S}^{2}\left(K_{R}^{2} y\right)\left[\widetilde{R}_{21}+\widetilde{R}_{20}\right]-\bar{\alpha}_{s}^{3}\left(K_{R}^{2} y\right) L^{2} \widetilde{R}_{32}\right]
$$

- After integration over the logarithm L (taking $\mathrm{R}_{21}=0$, which is okay for the processes considered here) this results into terms of

$$
\int d L^{\prime} \frac{d \sigma_{\mathcal{M R}}}{d \Phi d L^{\prime}}=-\frac{d \sigma_{0}}{d \Phi}\left[\widetilde{R}_{20}-\bar{\beta}_{0} \mathcal{H}_{1}\left(\mu_{R}^{2}\right)\right] \sqrt{\frac{\pi}{2}} \frac{1}{\left|2 G_{12}\right|^{1 / 2}} \bar{\alpha}_{\mathrm{S}}^{3 / 2}\left(1+\mathcal{O}\left(\sqrt{\bar{\alpha}_{\mathrm{s}}}\right)\right)
$$

+ Hence, diff. NLO-0jet cross section not correct with NLO-1jet Minlo
[Hamilton, Nason, Oleari, Zanderighi (2012); RF, Hamilton (2015)]

MINLO ACCURACY FOR (INCLUSIVE) O-JET OBSERVABLES

Explicitly compute and remove that term in the Minlo

 calculation such that the integral $\int \frac{d \sigma \mathcal{R}}{}$ is zero up to NLO? explicit comparison betwe n theduld Φ d Eate 2-restmmation formula (which
It's process dependent and not aconstant in phase-space sho vs that
they aiffer by terms of order

$$
\frac{d \sigma_{\mathcal{M R}}}{d \Phi d L}=\frac{d \sigma_{0}}{d \Phi} \exp [-R(v)] \prod_{\ell=1}^{n_{i}} \frac{q^{(\ell)}\left(x_{\ell}, \mu_{F}^{2} v\right)}{q^{(\ell)}\left(x_{\ell}, \mu_{F}^{2}\right)}\left[\bar{\alpha}_{\mathrm{S}}^{2}\left(K_{R}^{2} y\right)\left[\widetilde{R}_{21}\left[+\widetilde{R}_{20}\right]+\bar{\alpha}_{s}^{3}\left(K_{R}^{2} y\right) L^{2} \widetilde{R}_{32}\right]\right.
$$

- After integration over the logarithm L (taking $\mathrm{R}_{21}=0$, which is okay for the processes considered here) this results into terms of

$$
\int d L^{\prime} \frac{d \sigma_{\mathcal{M R}}}{d \Phi d L^{\prime}}=-\frac{d \sigma_{0}}{d \Phi}\left[\widetilde{R}_{20}-\bar{\beta}_{0} \mathcal{H}_{1}\left(\mu_{R}^{2}\right)\right] \sqrt{\frac{\pi}{2}} \frac{1}{\left|2 G_{12}\right|^{1 / 2}} \bar{\alpha}_{\mathrm{s}}^{3 / 2}\left(1+\mathcal{O}\left(\sqrt{\bar{\alpha}_{\mathrm{s}}}\right)\right)
$$

- Hence, diff. NLO-0jet cross section not correct with NLO-1jet Minlo
[Hamilton, Nason, Oleari, Zanderighi (2012); RF, Hamilton (2015)]

MINLO ACCURACY FOR (INCLUSIVE) O-JET OBSERVABLES

Explicitly compute and remove that term in the Minlo calculation such that the integral $\int \frac{d \sigma \mathcal{R}}{}$ is zero up to NLO (which

they differ by terms of order

$$
\frac{d \sigma_{\mathcal{M R}}}{d \Phi d L}=\frac{d \sigma_{0}}{d \Phi} \exp [-R(v)] \prod_{\ell=1}^{n_{i}} \frac{q^{(\ell)}\left(x_{\ell}, \mu_{F}^{2} v\right)}{q^{(\ell)}\left(x_{\ell}, \mu_{F}^{2}\right)}\left[\bar{\alpha}_{\mathrm{s}}^{2}\left(K_{R}^{2} y\right)\left[\widetilde{R}_{21}+\widetilde{R}_{20}\right]-\bar{\alpha}_{s}^{3}\left(K_{R}^{2} y\right) L^{2} \widetilde{R}_{32}\right]
$$

- After integration over the logarithm L (taking $\mathrm{R}_{21}=0$, which is okay for the processes considered here) this rest lts into terms of

$$
\int d L^{\prime} \frac{d \sigma_{\mathcal{M} \mathcal{R}}}{d \Phi d L^{\prime}}=-\frac{d \sigma_{0}}{d \Phi}\left[\widetilde{R}_{20}-\bar{\beta}_{0} \mathcal{H}_{1}\right.
$$

Can either be done analytically (μ_{n}^{2} or numerically ${ }^{\text {b }}$ y ${ }^{2}$ enforcing) unitarity

- Hence, diff. NLO-0jet cross section
[Hamilton, Nason, Oleari, Zanderighi (2012); RF, Hamilton (2015)]

PROOF-OF-CONCEPT

[RF, Hamilton (2015)]

- Apply the method to Higgs production by gluon fusion in the infinite top quark limit (which is not a good approximation at high scales, but not a problem for a proof of concept)
- Start from H+J Minlo’, corrected to include NNLO for H. Already available in the POWHEG BOX [Hamilton, Nason, Re, Zanderighi (2013)]
- Apply the extended Minlo' method to HJJ at NLO to get

O NLO+PS predictions for inclusive HJJ observables

- NLO+PS predictions for inclusive HJ observables
- NNLO+PS predictions for inclusive H observables
- Study renormalisation/factorisation scale dependence and dependence on freezing parameter ρ (which we vary $\rho=\{1,3,9,18,27\}$)

Rapidity of the Higgs boson

- Only observable truly NNLO correct
\uparrow Extended Minlo' method (HJJぇ) agrees with NNLOPS by construction
\uparrow Normal HJJ Minlo shows larger uncertainty bands and different central value: it's only LO accurate for this observable

TRANSVERSE MOMENTUM OF THE LEADING JET

\uparrow Extended Minlo’ method (HJJぇ) agrees with NNLOPS by construction.
O apart from $\mathrm{pt}<5 \mathrm{GeV}$ region: grid-granularity to compute δ not fine enough
O Also region $60<\mathrm{p}$ т $<80 \mathrm{GeV}$ shows $3-5 \%$ deviations: pT derivative of the numerator of δ changes very rapidly
\uparrow Normal HJJ Minlo shows unphysical uncertainty band. Formally only LO for this observable

TRANSVERSE MOMENTUM OF THE SECOND JET

- Extended Minlo’ method HJJ \star agrees with Minlo HJJJ, as expected

O apart close to the Sudakov peak: the difference between $H J J \star$ and HJJ is beyond LL/NNLL ${ }_{\sigma}$ accuracy, which is important close to the Sudakov peak

- NNLOPS only LO accurate for this observable: uncertainty band is too small (this is due to the POWHEG method)

Y12 RESOLUTION PARAMETER

\uparrow Similar picture as for $\mathrm{p}_{\mathrm{T}}\left(\mathrm{j}_{2}\right)$, but low pt^{2} region easier to see due to logarithmic x -axis

- First observable where we see some non-zero dependence on the freezing parameter ρ (red solid). Well below the Sudakov peak where higher-logarithmic corrections are large as well as nonperturbative corrections

Y12 RESOLUTION PARAMETER WITH Yoi >200 GEV

- At very large y12, all scales are large and of the same order $\rightarrow>$ the Minlo method switches off: HJJ* agrees with HJJ
*When y12 < y 01 , large logarithms build up, and the extended Minlo' method brings the HJJ * to the NNLOPS

HigGs boson Pt IN EVENTS WITH EXACTLY 2 JETS

\uparrow At small рт, all scales are of the same order. The Minlo method does not do much: HJJ ${ }^{\star}$ agrees with HJJ

- At large $\mathrm{p}^{\boldsymbol{*}}, \mathrm{HJJ} \mathrm{\star}$ agrees with NNLOPS dominated by events with one hard jet $\left(\mathrm{p}_{\mathrm{T}}\left(\mathrm{j}_{1}\right) \sim \mathrm{p}_{\mathrm{t}}(\mathrm{H})\right)$ and one soft jet: a 30 GeV jet comes basically for free

O The pT(H) spectrum with $\mathrm{N}_{\mathrm{jets}}=2$ becomes essentially $\mathrm{N}_{\mathrm{jets}} \geq 1 \mathrm{pT}(\mathrm{H})$ distribution

CONCLUSIONS

- In the last couple of years the accuracy of event generation has greatly improved, and full automation has been achieved at NLO accuracy

O FxFx Merging is one of the methods to combine NLO matrix elements of various multiplicities with the parton shower

O NLO accuracy in multiple regions of phase-space, separated by a merging scale

- A lot of freedom in tuning has been replaced by accurate theory descriptions:

O More predictive power
O Better control on uncertainties in predictions
O Greater trust in the measurements
\star One of the latest developments, 'Minlo revisited', allows for similar accuracy as $\mathrm{FxFx}_{\mathrm{x}}$ in multi-jets, but without the introduction of a merging scale and with the possibility to include NNLO. Only proof-of-concept so far.

