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The observables for which we expect most advantges from the MINLO method are those
that can be constructed from the momenta of the pseudo-partons after a kT-clustering
procedure carried out until we have n jets, n being the number of radiated partons beyond
the primary process at the Born level (e.g. n = 1 for HJ and ZJ and n = 2 for HJJ and
ZJJ). Strictly speaking it should work for observables built up with the n-jet exclusive cross
section. This is obtained by applying the kT clustering algorithm, discarding or merging
the pseudoparton with the smallest transverse momentum until we are left with exactly n

pseudopartons. In practice, it should also work well for quantities built out of the hardest
n jets, as defined in the inclusive kT algorithm with a reasonable (i.e. not too small) choice
of the R parameter. We remark, however, that quantities that are sensitive to the radiation
in the real event (i.e. to the third parton in HJJ and to the second parton in HJ) the MINLO
method has no great advantage over the standard ones. In fact, no Sudakov suppression is
included for the radiated parton in the real cross section. On the other hand, the POWHEG
method provides specifically these Sudakov form factors, while maintaining NLO accuracy.
Therefore, the MINLO method combined with POWHEG yields the fully resummed results for
all quantities. We expect that in this framework the POWHEG results improved with the
MINLO method will ease the task of merging multijet samples, by providing associated jet
cross section that merge more smoothly with those with smaller multiplicity.

It is possible to conceive observables for which the MINLO method includes double
logarithms (at the NNLO level and beyond) that are actually not correct [32]. At the end
of Section 5.2.1 we will consider two such examples.

5.2 Higgs boson production

5.2.1 Higgs boson production in association with one jet

We begin by considering the MINLO improved HJ calculation. In fig. 2 we show the transverse
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Figure 2: Transverse momentum spectrum of the Higgs boson, computed with the POWHEG BOX
ggH generator (H PWG), the HJ-MINLO result (HJ MINLO), the HJ default µF = µR = p

H

T (HJ
RUN), and HJ with µF = µR = MH (HJ FXD). The right panel shows the ratio of each of the
NLO HJ results with respect to the NLO ggH POWHEG simulation with the band either side of the
central values indicating the combined renormalization and factorization scale uncertainty. Results
are shown for LHC collisions at 7 TeV and a Higgs mass of 120 GeV. No cuts are applied.
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The observables for which we expect most advantges from the MINLO method are those
that can be constructed from the momenta of the pseudo-partons after a kT-clustering
procedure carried out until we have n jets, n being the number of radiated partons beyond
the primary process at the Born level (e.g. n = 1 for HJ and ZJ and n = 2 for HJJ and
ZJJ). Strictly speaking it should work for observables built up with the n-jet exclusive cross
section. This is obtained by applying the kT clustering algorithm, discarding or merging
the pseudoparton with the smallest transverse momentum until we are left with exactly n

pseudopartons. In practice, it should also work well for quantities built out of the hardest
n jets, as defined in the inclusive kT algorithm with a reasonable (i.e. not too small) choice
of the R parameter. We remark, however, that quantities that are sensitive to the radiation
in the real event (i.e. to the third parton in HJJ and to the second parton in HJ) the MINLO
method has no great advantage over the standard ones. In fact, no Sudakov suppression is
included for the radiated parton in the real cross section. On the other hand, the POWHEG
method provides specifically these Sudakov form factors, while maintaining NLO accuracy.
Therefore, the MINLO method combined with POWHEG yields the fully resummed results for
all quantities. We expect that in this framework the POWHEG results improved with the
MINLO method will ease the task of merging multijet samples, by providing associated jet
cross section that merge more smoothly with those with smaller multiplicity.

It is possible to conceive observables for which the MINLO method includes double
logarithms (at the NNLO level and beyond) that are actually not correct [32]. At the end
of Section 5.2.1 we will consider two such examples.

5.2 Higgs boson production

5.2.1 Higgs boson production in association with one jet

We begin by considering the MINLO improved HJ calculation. In fig. 2 we show the transverse
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Figure 2: Transverse momentum spectrum of the Higgs boson, computed with the POWHEG BOX
ggH generator (H PWG), the HJ-MINLO result (HJ MINLO), the HJ default µF = µR = p

H

T (HJ
RUN), and HJ with µF = µR = MH (HJ FXD). The right panel shows the ratio of each of the
NLO HJ results with respect to the NLO ggH POWHEG simulation with the band either side of the
central values indicating the combined renormalization and factorization scale uncertainty. Results
are shown for LHC collisions at 7 TeV and a Higgs mass of 120 GeV. No cuts are applied.
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Even if you make a `good scale choice’ in predicting some observable 

such IR Sudakov logs can be as or more significant than scale logs

Q3: if worrying about scale logs why not other large logs?
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MiNLO: Multi-scale improved Next-to-leading Order 

Ask how a parton shower generate the Born kinematics in the NLO calcn

Take all beyond-NLO corrns to that and put on top of the NLO calcn

A1: small/moderate NLO corrns/scale sensitivity isn’t a consideration  

A2: PS have natural uniquely defined scale setting for multi-scale probs

A3: PS resum large IR double logs as well as single scale logs

Nason, Zanderighi, KH

In the context of pure fixed order calcns MiNLO isn’t a full shower 

resummation, but BY FAR captures more event dynamics than a single 

number for the scale choice
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Example: H+2 jets MiNLO at leading order with a broad brush
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