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Why NNLO QCD may play a special role
1) Perturbative  approximation (LO, NLO, NNLO) is an expansion of the leading twist 
contribution to proton proton scattering  in the strong coupling constant. The twist 
expansion is quite separate and rarely discussed approximation. It is conceivable that 
NNLO QCD is the last perturbative contribution that is still parametrically larger than 
higher-twist corrections, for a generic observable.  

2) Experimental precision for a number of interesting processes ( Higgs production/
couplings, electroweak boson production with extra QCD radiation, top quark 
physics ) may  reach ( or have reached already !)  a few percent.   Matching it on  the 
theory side requires NNLO computations. 
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3)  Proximity of resummed  and fixed order computations for realistic selection criteria 
at the LHC. We are in the ``grey’’ region where both approaches may be used for  
reasonable estimates of radiative corrections provided that we can reach sufficiently 
high orders the strong coupling expansion.  In practice, NNLO seems to be sufficient. 

The main advantage of fixed-order computations is the possibility to compute fiducial 
cross sections for realistic selection criteria. 
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How far in the perturbative expansion should one go?
1) Perturbative  approximation (LO, NLO, NNLO) is an expansion of the leading twist 
contribution to proton proton scattering  in the strong coupling constant. The twist 
expansion is quite separate and rarely discussed approximation.

2) Existence of a NNLO calculation for a process does not imply that any observable 
computed using a particular ``NNLO’’ code has the NNLO accuracy ( pt of the Z in 
NNLO Drell-Yan, pt of the top pair in NNLO tT production etc.).  Sometimes NLO to a 
higher multiplicity process is more useful than NNLO to a lower multiplicity process. 

3) NNLO computations are fairly insensitive to scale choices, at least in the region 
where NNLO is at work.  Too much of a scale choice game can be counter-productive 
since scale variation uncertainty is one of the few handles we have to understand how  
relevant of higher order corrections. 
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4)  Proximity of resummed  and fixed order computations for realistic selection criteria 
at the LHC. We are in the ``grey’’ region where both approaches provide reasonable 
estimates of radiative corrections provided that we can reach sufficiently high orders 
the strong coupling expansion.  The main advantage of fixed-order computations is 
the possibility to compute fiducial cross sections for realistic selection criteria. 
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pQCD approximation for collider physics observables

  

Introduction

● The goal of hadron collider physics program (Tevatron, LHC) is to discover and study 

physics beyond the Standard Model in the  mass range 100 GeV - few TeV 

● To produce that heavy final states, we require rare short-distance processes where both 

protons disintegrate and all momenta transfers are large. These processes can be 

understood using factorization and asymptotic freedom.

● A major role in  such an understanding  is played by parton-parton scattering that is 

described by  perturbative QCD.
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d� =

Z
dx1dx2fi(x1)fj(x2)d�part(x1x2shadr)

?

When hadrons collide with each other, many things can happen; most of these things 
can not be described in perturbation theory using quark and gluon degrees of freedom.

A very small fraction of hadron collisions occurs ``head on’’ and leads to a complete 
disintegration of the colliding protons.   These events may have rather  large energy density  
and, thanks to  E=Mc^2, can lead to production of  new, yet unknown, heavy particles. 

Since such  processes occur at very small distances, x ~ 1/M, where quarks and gluons 
behave as, essentially, free particles,  they can be described in perturbation theory of QCD.
The same also applies to  SM processes that lead to final states similar to the ones 
expected in the production and decay of new heavy particles; proper description of these 
SM ``backgrounds’’ is essential for finding (small) BSM signals and elucidating their nature.
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Remarks on NNLO QCD approximation

The NNLO QCD approximation is an expansion of the leading twist contribution to proton 
proton scattering  in the strong coupling constant. The twist expansion itself is quite separate 
and rarely discussed approximation.

Continuous increase in the ``number of N’s’’ is not possible without hitting a non-perturbative 
boundary.   I do not know where this boundary is and what to do about  it, but an idea that 
one  can measure the W mass to 10 MeV ( 0.01 percent) or the top quark mass to better 
than 500 MeV (0.3 percent)  without addressing non-perturbative effects theoretically from 
first principles seems disturbing to me. 
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d� =

Z
dx1dx2fi(x1)fj(x2)d�part(x1x2shadr)

?

For the purposes of describing hard processes at colliders,  NNLO is better than NLO that 
is better than LO that is better than a parton shower.  
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Perturbation theory: what needs to be done
QCD perturbation theory is, first and foremost, an expansion in the strong coupling 
constant.  For fixed initial and final states, expansion in the strong coupling constant leads 
to an increased number of loops. For this reason, understanding how to deal with  multi- 
loop diagrams is a very important aspect of perturbation theory computations. 

Z

Z

However, since quarks  and gluons are massless,  final states with fixed partonic 
multiplicities are unphysical,  we need to add  higher multiplicity contributions to cross 
sections, to obtain infra-red insensitive  ( or short distance) results.

Z

Z

Understanding how virtual and real contributions can be  combined in an efficient 
way, to obtain infra-red safe,  fully-differential cross sections is another non-trivial 
aspect of perturbative computations.
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 Existence of a NNLO calculation for a process does not imply that any observable 
computed using a particular ``NNLO’’ code has the NNLO accuracy ( pt of the Z in 
NNLO Drell-Yan, pt of the top pair in NNLO tT production etc.).  Sometimes NLO 
calculations to higher multiplicity processes are more useful than NNLO calculations 
for lower multiplicity process. 

NNLO >= 2 loops !

Figure 8. As for figure 7, but for the transverse momentum of the photon pair, p��T .
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Figure 9. As for figure 7, but for the azimuthal angle between the two photons, ���� .

themselves in the m�� spectrum. In particular a recent observation of an excess around
750 GeV in the ATLAS experiment [16], with a smaller excess in the same region reported
by CMS [17], has caused considerable excitement in the theoretical community. In these

– 14 –

Figure 1. Representative Feynman diagrams for the calculation of pp ! �� at NNLO. From
left to right these correspond to double virtual (calculated in ref. [57]), real-virtual and real-real
corrections.

LHC phenomenology, comparing our predictions to data obtained by the CMS experiment
at 7 TeV, and to the m�� spectrum reported by ATLAS at 13 TeV. Finally, we draw our
conclusions in section 5. Appendices A, B and C contain additional technical details of our
calculation.

2 Calculation

In this section we present an overview of our calculation of diphoton production at NNLO
and discuss the various contributions that are included in this paper. Before going into
detail we introduce the following notation

�NLO
�� = �LO

+��NLO ,

�NNLO
�� = �NLO

+��NNLO
= �LO

+��NLO
+��NNLO . (2.1)

In this way ��X represents the correction obtained from including the coefficient that first
arises at order X in perturbation theory. We use this notation both inclusively (as written
above) and for differential predictions.

2.1 Overview

We present representative Feynman diagrams for the various topologies that enter the
calculation of the pp ! �� process at NNLO in Figure 1. At this order in perturbation
theory contributions arise from three distinct final states. The simplest is the one that also
represents the Born contribution and corresponds to a 2 ! 2 phase space. At NNLO this
final state receives corrections from two-loop amplitudes interfered with the LO amplitude,
and one-loop squared contributions. The 2 ! 3 real-virtual phase space consists of tree-
level and one-loop amplitudes for qqg�� interfered with one another. Finally the largest
phase space, representing a 2 ! 4 process, is referred to as the double-real contribution and
consists of two tree-level qq�� +2 parton amplitudes squared. The contributions discussed
above have ultraviolet (UV) poles in the double-virtual and real-virtual phase spaces, which
we renormalize in the MS scheme. Amplitudes for the double-virtual contribution can be
found in ref. [57], for the real-virtual in ref. [58], and tree-level amplitudes for the real-real
can be found in ref. [59].

After UV renormalization the individual component pieces of the calculation still con-
tain singularities of infrared (IR) origin. These infrared poles must be regulated, made
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LHC phenomenology, comparing our predictions to data obtained by the CMS experiment
at 7 TeV, and to the m�� spectrum reported by ATLAS at 13 TeV. Finally, we draw our
conclusions in section 5. Appendices A, B and C contain additional technical details of our
calculation.

2 Calculation

In this section we present an overview of our calculation of diphoton production at NNLO
and discuss the various contributions that are included in this paper. Before going into
detail we introduce the following notation
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+��NNLO . (2.1)

In this way ��X represents the correction obtained from including the coefficient that first
arises at order X in perturbation theory. We use this notation both inclusively (as written
above) and for differential predictions.

2.1 Overview

We present representative Feynman diagrams for the various topologies that enter the
calculation of the pp ! �� process at NNLO in Figure 1. At this order in perturbation
theory contributions arise from three distinct final states. The simplest is the one that also
represents the Born contribution and corresponds to a 2 ! 2 phase space. At NNLO this
final state receives corrections from two-loop amplitudes interfered with the LO amplitude,
and one-loop squared contributions. The 2 ! 3 real-virtual phase space consists of tree-
level and one-loop amplitudes for qqg�� interfered with one another. Finally the largest
phase space, representing a 2 ! 4 process, is referred to as the double-real contribution and
consists of two tree-level qq�� +2 parton amplitudes squared. The contributions discussed
above have ultraviolet (UV) poles in the double-virtual and real-virtual phase spaces, which
we renormalize in the MS scheme. Amplitudes for the double-virtual contribution can be
found in ref. [57], for the real-virtual in ref. [58], and tree-level amplitudes for the real-real
can be found in ref. [59].

After UV renormalization the individual component pieces of the calculation still con-
tain singularities of infrared (IR) origin. These infrared poles must be regulated, made
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For larger values of µ
R

> mH, however, as(µ2
R

) falls down
suppressing the logarithmic contributions and hence the
cross sections will decrease monotonically. We have also
plotted the RESUM cross sections at various orders in
Fig. 2 as a function of µ

R

. We find that the predictions
from the RESUM cross sections are more stable com-
pared to the FO ones over a wide range of µ

R

demon-
strating the power and the reliability of resummation.
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FIG. 2: µR dependence of both the fixed order and resummed
cross sections up to N3LO.

LO NLO NNLO N3LO

FO (%) 167.26 143.40 54.99 27.01

RESUM (%) 6.11 5.47 3.39 1.23

TABLE I: Percentage of maximum uncertainty for µR varia-
tion in the range [0.1mH, 10mH] up to N3LO (see text).

In Table I, we show the maximum percentage of uncer-
tainty in the cross sections up to N3LO for µ

R

variation
in the range [0.1mH, 10mH]. Here, at N3LO, the µ

R

un-
certainty is maximum for µ

R

between about 0.1mH and
0.5mH whereas at NNLO, the maximum uncertainty is
for µ

R

between about 0.2mH and 10mH. We notice that
the scale uncertainties in both FO and RESUM cross sec-
tions decrease with the order of the perturbation theory,
as expected.

We also study the scale uncertainties of both the FO
and RESUM cross sections up to N3LO as a function of
the center of mass energy

p
s of the incoming protons

at the LHC and our results are given in fig.3. Here, we
vary µ

R

in the range [0.1mH, 10mH] fixing µ

F

= mH. In
general, the scale uncertainties in both FO and RESUM
results are found to increase with

p
s precisely because

of the increase in gluon fluxes. Irrespective of the order
of the perturbation theory, the RESUM results are found
to decrease the scale uncertainties remarkably compared

to the FO results. Here, at N3LO, the cross sections will
increase from µ

R

= 0.1mH to about µ
R

= 0.5mH ( shown
as solid lines in the Fig.3, the dashed line corresponds to
the one at µ

R

= 10mH) and then start decreasing with
further µ

R

variation. Also for µ
R

> mH, the N3LO cross
section will decrease. Consequently for N3LO, the cross
sections at the end points of the µ

R

variation i.e. 0.1mH

and 10mH, will both be below the one at µ
R

= mH.
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FIG. 3: Dependence of scale uncertainties in both the fixed
order and resummed cross sections on

p
s (see text).

In conclusion, we have investigated the dependence of
both the fixed order as well as the resummed predictions
on the renormalization scale, using the recently available
results on the Higgs boson production to N3LO in gluon
fusion. For the resummed results, we systematically in-
clude all the RG accessible logarithms, L

R

, to all orders
in the perturbation theory. While the fixed order N3LO
result shows impressive scale reduction for the canonical
choice of the renormalization scale between mH/2 and 2
mH, there is still a significant dependence on the scale
through these large logarithms which can spoil the be-
havior if the renormalization scale is varied further away
from this range. On the other hand, the resummed re-
sults obtained in this letter show little dependence on
the scale choice. For µ

R

in the range [0.1mH, 10mH], the
RG improved cross sections bring the scale uncertainties
from about 27% down to about 1.5% at N3LO level. This
approach can also be used for other processes such as top
pair production, multi-jet production etc.
Acknowledgments : We thank Nandadevi cluster com-
puting facility at the Institute of Mathematical Sciences
(IMSc) where the computation was carried out. GD
thanks for the hospitality provided by IMSc where part
of the work was done. GD also thanks P. Mathews for
useful discussions and for his encouragement.

NNLO computations are fairly insensitive to scale choices, at least in the region where 
NNLO is at work.  Too much of a scale choice game, however,  can be counter-
productive since scale variation uncertainty is one of a very few handles we have to 
estimate uncertainties in predictions caused by the truncation of perturbative expansion.

Scales 
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In conclusion, we have investigated the dependence of
both the fixed order as well as the resummed predictions
on the renormalization scale, using the recently available
results on the Higgs boson production to N3LO in gluon
fusion. For the resummed results, we systematically in-
clude all the RG accessible logarithms, L

R

, to all orders
in the perturbation theory. While the fixed order N3LO
result shows impressive scale reduction for the canonical
choice of the renormalization scale between mH/2 and 2
mH, there is still a significant dependence on the scale
through these large logarithms which can spoil the be-
havior if the renormalization scale is varied further away
from this range. On the other hand, the resummed re-
sults obtained in this letter show little dependence on
the scale choice. For µ

R

in the range [0.1mH, 10mH], the
RG improved cross sections bring the scale uncertainties
from about 27% down to about 1.5% at N3LO level. This
approach can also be used for other processes such as top
pair production, multi-jet production etc.
Acknowledgments : We thank Nandadevi cluster com-
puting facility at the Institute of Mathematical Sciences
(IMSc) where the computation was carried out. GD
thanks for the hospitality provided by IMSc where part
of the work was done. GD also thanks P. Mathews for
useful discussions and for his encouragement.

Ahmed et al.

Wednesday, June 8, 16



There seems to be a close proximity of resummed  and fixed order computations for 
realistic selection criteria at the LHC. We are in the ``grey’’ region where both approaches 
can be used for  reasonable estimates of radiative corrections, provided that we can reach 
sufficiently high orders in the strong coupling expansion.  

The main advantage of fixed-order computations is the possibility to compute fiducial cross 
sections for realistic selection criteria. 

The main advantage of resummed computations is that they can be continued to regions 
where fixed order computations fail. This is good but we rarely need those regions for 
anything but the consistency checks of the SM. 

Remarks on NNLO QCD approximation

De Florian et al.
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PQCD approximation for collider physics observables 
Perturbative QCD is a systematic improvable framework to describe hard scattering 
processes at the LHC that requires three  ingredients:

1) parton distribution functions;

2)  partonic scattering cross sections computed to a particular order in perturbation theory;

3) parton shower event generators, to describe multiple emissions and detector responses.

d� =

Z
dx1dx2fi(x1)fj(x2)d�part(x1x2shadr)

For the type  of physics that we are interested in, the most important ingredient is partonic 
cross sections; everything else depends, either directly or indirectly, on our ability to compute 
them. 
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Two-loop  calculations in QCD

An interesting recent development in this field is the suggestion by J. Henn to streamline the 
application of differential equations in external kinematic variables to compute master integrals

@

x

~

f = ✏Â

x

(x, y, z. . . )~f

The important point is that on  the right-hand side, the dimensional regularization 
parameter appears explicitly, and only as a multiplicative pre-factor. It is then possible 
to solve these equations iteratively  order-by-order in (d-4) since in each order 
of this expansion the above equation contains no homogeneous terms ( so that in 
each order in epsilon, the right-hand side is the source for the left-hand side). 

The idea by Henn streamlines and simplifies such computations significantly. This 
already lead to very impressive advances ( e.g. master integrals for Bhabha, V1 V2 
production) that will have interesting consequences for phenomenology.

Traditionally, calculations of two-loop integrals rely on a large number of methods 
( Feynman parameter integration, Mellin-Barns, differential equations).   The method of 
differential equations has been used to compute master integrals since quite some time 
already,  starting from papers by Kotikov and Remiddi in the early 1990s,  however it was 
never considered to be ``the’’ method. 

~f =
1X

n=0

✏n ~f (n)
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Since the theory of non-perturbative corrections does not exist, their magnitude provides an 
ultimate precision target on the theory side:  going beyond it does not make sense 
unless the theory of non-perturbative corrections is established, but reaching this  (few 
percent) precision  is  justified.  To get there, one needs the NNLO QCD predictions; this is 
a simple consequence of the numerical value of the strong coupling constant at 100 GeV. 

There are many non-trivial issues ( mostly of experimental nature)  that have to be 
understood  if one wants to benefit  from such a high precision but this is a separate issue.
On the other hand, to provide maximal benefit for theory/experiment cross-talk,  such 
predictions should be realistic, i.e. they should be performed at a fully differential level and 
applied  to realistic final states. 

Introduction

In recent years, progress towards reaching the NNLO accuracy for large number of LHC 
processes  was very impressive. Paraphrasing what  has been said about NLO 
computations just a few years ago, we are living through the  NNLO QCD revolution. This 
implies that we have large and constantly increasing number  of processes that are known 
to the NNLO QCD accuracy. 

  

Introduction

● The goal of hadron collider physics program (Tevatron, LHC) is to discover and study 

physics beyond the Standard Model in the  mass range 100 GeV - few TeV 

● To produce that heavy final states, we require rare short-distance processes where both 

protons disintegrate and all momenta transfers are large. These processes can be 

understood using factorization and asymptotic freedom.

● A major role in  such an understanding  is played by parton-parton scattering that is 

described by  perturbative QCD.
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dijets O(3%) gluon-gluon, gluon-quark PDFs, strong couplings, BSM

H+0 jet O(3-5 %) fully inclusive (N3LO ) Higgs couplings

H+1 jet O(7%) fully exclusive; Higgs 
decays, infinite mass tops

Higgs couplings, Higgs pt, structure for the 
ggH vertex.

tT pair O(4%) fully exclusive, stable tops top cross section, mass, pt, FB asymmetry, 
PDFs, BSM

single top O(1%) fully exclusive, stable tops, 
t-channel Vtb, width, PDFs

WBF O(1%) exclusive, VBF cuts Higgs couplings

W+j O(1%) fully exclusive, decays PDFs

Z+j O(1-3%) decays, off-shell effects PDFs

ZH O(3-5 %) decays to bb at NLO Higgs couplings (H-> bb)

ZZ O(4%) fully exclusive Trilinear gauge couplings, BSM

WW O(3%) fully exclusive Trilinear gauge couplings, BSM

top decay O(1-2 %) exclusive Top couplings

H -> bb O(1-2 %) exclusive, massless Higgs couplings, boosted

Processes currently known through NNLO
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Phenomenology and NNLO computations
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Master integrals

An interesting recent development in this field is the suggestion by J. Henn to streamline the 
application of differential equations in external kinematic variables to compute master 
integrals. Imagine that it is possible to write the differential equations in the following form

The important point is that on  the right-hand side, the dimensional regularization parameter 
appears explicitly (and only) as a multiplicative pre-factor. It is then possible to solve these 
equations iteratively  order-by-order in (d-4) since in each order  of this expansion the above 
equation contains no homogeneous terms ( so that in each order in epsilon, the right-hand side 
is the source for the left-hand side). 

The idea by Henn streamlines and simplifies such computations significantly, making 
bookkeeping particularly straightforward.

Different methods are used for computing  two-loop integrals ( direct integration, Mellin-
Barns, differential equations).   The method of differential equations has been used to find 
master integrals for a long time,  starting from papers by Kotikov and Remiddi in the early 
1990s, however it was never considered to be ``the’’ method. 
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Ingredients for NNLO computations
A NNLO QCD computation is, essentially,  a two-loop computation. However, in theories 
with massless particles, two-loop computations are insufficient for obtaining a physical 
answer: two-loop computations need to be combined with contributions of higher-
multiplicity processes to physical observables. 

Suppose we want to  compute the NNLO QCD correction to a process pp -> X .  To do 
this, we need:

a) two-loop scattering amplitudes for a process X ;

b) one-loop amplitudes for a process X+g;

d) tree-level amplitudes for a process X+gg, X+qQ etc. 

Computation of two-loop scattering amplitudes is a significant challenge; 

Integration of tree-level amplitudes over available phase-space requires some procedure that 
allows an extraction of infra-red  divergences ( subtraction/slicing techniques). 

One-looop amplitudes need to be known in  an unresolved region; although one loop 
computations are ``standard’’ by now, they are not easy especially in unresolved regions.
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NNLO QCD predictions for the background

NNLO QCD predictions for ZZ production require computation of complicated two-loop 
scattering amplitudes.

Z

Z

Z

Z

These are computed using the standard steps that include:   parametrization of 
amplitudes in terms of Lorentz-invariant form factors;  reduction to master integrals 
followed by the calculation of master integrals. 

Interestingly, with these standard procedures, we are  getting to the point were these 
computations become hardly manageable ( the amplitude depends on four kinematic 
invariants). 
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Concluding remarks
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Consolidating precision physics at the LHC
The very rapid progress with NNLO QCD computations strongly suggests that there is a 
realistic opportunity to perform precision studies at the LHC.  This opportunity is new and 
somewhat unexpected; it arises because of spectacular progress in theory and expreriment
in recent years.  Taking up this opportunity may also become necessary  because of no clear 
BSM signals at the LHC.  

To fully benefit from these theoretical developments, we will need (in the long run) 

1) to better understand inputs for  cross section calculations (PDFs, masses, couplings, 
etc.)

2) to include electroweak corrections; 

3) to work with realistic final states and fiducial cross sections ( how  does ``experimental 
acceptance’’ fit together  with ``precision physics’’ anyway? ); 

4) to understand the limitations of the various approximations  that we currently use in the 
most advanced computations ( finite = infinite, large Nc arguments etc.).
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Two-loop calculations: amplitudes and integrals

1) Calculation of master integrals using differential equations in kinematic variables is 
now a method of choice. It has benefited from an understanding of how the 
bookkeeping in  such calculations can be streamlined by choosing appropriate master 
integrals and working with  particular special functions.   

2)  We are able to compute  master integrals with up to 4 kinematic invariants and there 
are indications that even larger number of kinematic invariants can be handled.    

3) Internal masses is a big challenge since they introduce new special functions whose 
properties are currently being explored. Very recently, an interesting development related 
to direct numerical evaluation of two loop Feynman integrals with internal masses.

4) There are interesting attempts to understand if two-loop computations can be done 
using unitarity techniques,  that turned out to be so powerful at one-loop.  While there 
was an impressive progress in this field related to classification of integrand residuals 
based on techniques from algebraic geometry,  there are still  many outstanding issues.  

Here are a few general remarks  about two-loop computations: 

Remiddi,  Kotikov, Henn, Papadopoulos

Gehrmann, Henn,  Tancredi, Caola, Smirnov(s), Papadopoulos, Tommasini, Wever

Badger, Frellesvig, Zhang, Mastrolia,  Ita

Weinzierl, Tancredi, Remiddi;  Czakon, Heinrich et al.
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NNLO calculations: loops and real emissions

An important achievement of  the  past few years was the  development of  theoretical 
methods that allow us to perform  NNLO QCD computations for hard hadron collider 
processes of a sufficiently general nature.

Consider NNLO QCD corrections to a tree process pp -> X.   There are three sources  of 
infra-red divergencies that must be considered: 

1) two-loop virtual corrections  to pp -> X,  where all infrared singularities  are explicit; 

2) one-loop virtual corrections to pp -> X+g, where some infrared singularities  are explicit 
and  some appear only after the integration of the final state gluon; 

3) process pp -> X+ g+ g  where all infra-red singularities  appear only after integration over 
final state gluon(s) is carried out. 

The key problem here is that we would like to achieve the cancellation of infra-red 
singularities  at NNLO  without integrating over kinematic variables of those final state 
particles that are accessible in experiment; but this seems to be impossible given that in 
real emission processes singularities  are produced only after the phase-space integration...
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NNLO calculations:  loops and real emissions

It is easy to recognize that for achieving the cancellation of infra-red and collinear 
divergences, we only need to integrate over phase-space regions which can generate the 
singularities. 

These are the regions where external particles can become soft and/or collinear to each 
other and where measurable differences between final states with different multiplicities 
become unobservable. In these regions, ``singular’’ matrix elements factorize into universal 
singular functions and non-singular matrix element of lower multiplicity. 
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can be factorized with respect to the tree-level current Ja (0)
µ (q) (see Eqs. (35) and (36)),

new ‘non-factorizable’ contributions appear when the loop momentum is soft. To single
out these new contributions, we write the following identity:

|M(1)
soft(q, {p})〉 = gS µε εµ(q) J

(0)
µ (q) |M(1)

soft({p})〉

+
(

|M(1)
soft(q, {p})〉 − gSµεεµ(q)J (0)

µ (q)|M(1)
soft({p})〉

)

, (37)

where we have added and subtracted the ‘factorized’ contribution. Then we combine the
contributions from the hard, collinear and soft regions by adding Eqs. (35), (36) and (37),
and we obtain

|M(1)(q, {p})〉 = gS µε εµ(q) J
(0)
µ (q) |M(1)({p})〉

+
(

|M(1)
soft(q, {p})〉 − gSµεεµ(q)J (0)

µ (q)|M(1)
soft({p})〉

)

. (38)

The first term on the right-hand side of Eq. (37) together with the contributions from
Eqs. (35) and (36) have reconstructed the first term on the right-hand side of Eq. (38),
which is exactly the first term on the right-hand side of the factorization formula (17).
What remains to be done to prove the factorization formula is to relate the second term
on the right-hand side of Eq. (17) with the contribution in the round bracket of Eq. (38).

q

l

j

i

i

j

i

j
- + J(0)(q)( )

Figure 2: Graphs that contribute to the one-loop soft current.

For this purpose, we first note that when the real gluon q and the virtual gluon k are
both soft, they can couple only to the external hard lines. In the corresponding Feynman
diagrams, which are schematically represented by the first graph in Fig. 2, the tree-level
amplitude M(0)({p}) is factorized in the soft limit. We can write:

|M(1)
soft(q, {p})〉 # (gS µε)3 εµ(q) K

(1)
µ (q, ε) |M(0)({p})〉 , (39)

where the kernel K
(1) (represented by the box in Fig. 2) denotes all the soft-gluon insertions

of q and k on the hard-momentum lines. Then, we note that M(0)({p}) is factorized also

in the expression (34) for M(1)
soft({p}). Therefore, the contribution in the round bracket

of Eq. (38) can be recast in the form of the second term on the right-hand side of the
factorization formula (17). Moreover, using Eqs. (39) and (34), we obtain the following
explicit representation of the one-loop contribution J

(1) to the soft-gluon current (Fig. 2):

εµ(q) J
(1)
µ (q, ε) = εµ(q)

{

K
(1)
µ (q, ε) − J

(0)
µ (q)

1

2

∫

ddk

(2π)d

i

k2 + i0

[

J
(0)
ν (k)

]†
· J

ν (0)(k)

}

.

(40)

12

Collinear  factorization at one-loop (Kosower, Uwer)
Soft factorization at one-loop (Catani, Grazzini)

Mn+i+j = FijMn
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NNLO calculations: loops and real emissions

Slicing methods (qt-subtraction  and N-jettiness) are based on splitting the phase-space 
into regular and singular parts.
Z

d�n|M|2FJ =

Z

regular

d�n|M|2FJ +

Z

singular

d�n|M|2
approx

F̃J

A universal, simplified form of scattering amplitudes in kinematic regions responsible for the 
appearance of singularities, together with factorization of multi-particle phase-space, allows 
us to extract the singularities and, cancel  them in  a generic, process-independent way.   

There are two basic methods familiar from NLO computations: slicing and subtraction.  

Z
d�n|M|2FJ =

Z
d�n

⇣
|M|2FJ � |M|2

approx

F̃J

⌘
+

Z
d�n|M|2

approx

F̃J

Catani, Grazzini;       Bougezhal,  Focke, Liu, Petriello;  Gaunt, Stahlhofen, Tackmann, Walsh.

Gehrmann-de Ridder,  Gehrmann, Glover;  Czakon;  Bougezhal, Petriello, K.M.
Cacciari, Dreiyer, Kalberg, Salam, Zanderighi

Subtraction methods (antenna,  improved sector decomposition and projection to Born) are 
based on subtracting approximate expressions for the amplitude squared from the  integrand 
to make the difference integrable.

All  these methods work and have been used in a large number of  recent  NNLO QCD 
computations.
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NNLO calculations: real emissions
A few issues arise when we think about constructing subtraction terms :

1)  subtractions need to be local (i.e. make integrands finite point-by-point in the 
phase-space);

2)  one should avoid over-subtraction;

3) subtraction terms should be integrable, either analytically or numerically.  Analytic 
integration is difficult (antenna). Numerical integration is possible if one partitions the 
phase-space. 

F (1, 2, 3; g) ⇡ 4⇡↵s

X

i,j

~Ti · ~Tj
pi · pj

(pi · g)(pj · g)
F (1, 2, 3)

1 =
⇢g1⇢g2
d12

+
⇢g1⇢g3
d13

+
⇢g2⇢g3
d23

⇢ij = 1� ~ni~nj

Z
[dg]F(1, 2, 3, g) =

X

{ij}

Z
[dg]wijF (1, 2, 3, g) wij =

⇢gi⇢gj
dij

Each of the contributing terms has one and only one collinear singularity. Each 
singularity can be easily extracted by choosing  a reference frame where the z-axis 
is aligned with the (only) collinear direction in each of the contributing sectors; the 
remaining  integrations even in the subtraction term can be done numerically.

1

2

3
g

Z

Frixione, Kunszt, Signer
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The above discussion summarizes the recent  techniques for NNLO QCD computations that 
combine sector decomposition and  phase-space partitioning.   There are a few other things 
that are worth mentioning: 

1)    Within this  framework, the necessary  local subtraction terms  are generated automatically;  
similar to the original FKS, the new framework is very robust.

2)    All of the subtraction terms  are related to universal limits of scattering amplitudes making 
the  whole procedure scalable in the right way (need no diagrams, need amplitudes, all limits 
are hard-coded once and for all);

3)  Can work with helicity states for external resolved particles;

4)  All spin-correlations in amplitudes are subtracted locally;

5) No need for (d-4) terms in amplitudes squared, except  in  their collinear limits;

6)  Massive particles aren’t a problem; 

7)  Decay kinematics is not a problem;

8)  Important to have ``good’’ (fast and stable)  NLO amplitudes.

NNLO calculations: real emissions summary
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NNLO calculations: real emissions
At NNLO, there are singularities  when two gluons are collinear to the direction of a 
harder gluon or quark. There are also singularities when two unresolved gluons 
become collinear to two different collinear hard directions. The  soft singularities  are 
always present.  A partitioning is more complex but it exists.
1

2

Z

3
4

5
p4||p3, p5||p3, p4||p5.

The trademark of NNLO computations are triple-collinear 
singularities; they  appear when

The collinear/soft singular limits of the matrix elements 
factorize if we choose particular parametrization for energies 
and angles in the reference frame where the z-axis is aligned 
with the direction of the gluon 3.
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Example: the Higgs boson width
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Example: exclusive/fiducial  Higgs cross sections
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too, and a consistent NNLO treatment would require the
analysis of Ref. [35] to be extended to NNLO, which is
now possible with the help of the results derived in this
letter as well as Ref. [12]. Given the numerical effect is
small (a 0.7% shift at LHC 8 TeV and a 0.4% shift at the
Tevatron), in this work we take A = 0.
As can be concluded from table I the precision of the

theoretical prediction at full NNLO+NNLL is very high.
At the Tevatron, the scale uncertainty is as low as 2.2%
and just slightly larger, about 3%, at the LHC. The inclu-
sion of the NNLO correction to the gg-initiated reaction
increases the Tevatron prediction of Ref. [12] by about
1.4%, which agrees well with what was anticipated in
that reference.

Collider σtot [pb] scales [pb] pdf [pb]

Tevatron 7.009 +0.259(3.7%)
−0.374(5.3%)

+0.169(2.4%)
−0.121(1.7%)

LHC 7 TeV 167.0 +6.7(4.0%)
−10.7(6.4%)

+4.6(2.8%)
−4.7(2.8%)

LHC 8 TeV 239.1 +9.2(3.9%)
−14.8(6.2%)

+6.1(2.5%)
−6.2(2.6%)

LHC 14 TeV 933.0 +31.8(3.4%)
−51.0(5.5%)

+16.1(1.7%)
−17.6(1.9%)

TABLE II: Pure NNLO theoretical predictions for various
colliders and c.m. energies.

To assess the numerical impact from soft gluon re-
summation, in table II we present results analogous to
the ones in table I but without soft gluon resummation,
i.e. at pure NNLO. Comparing the results in the two
tables we conclude that the effect of the resummation
is a (2.2, 2.9, 2.7, 2.2)% increase in central values and
(2.4, 2.2, 2.1, 1.5)% decrease in scale dependence for, re-
spectively, (Tevatron, LHC7, LHC8, LHC14).
Next we compare our predictions with the most precise

experimental data available from the Tevatron and LHC.

 5

 6

 7

 8

 9

 10

 164  166  168  170  172  174  176  178  180  182

σ
to

t [
p
b
]

mtop [GeV]

PPbar → tt+X @ NNLO+NNLL
MSTW2008NNLO(68cl)

Theory (scales + pdf)
Theory (scales)

CDF and D0, L=8.8fb-1

FIG. 3: Theoretical prediction for the Tevatron as a function
of the top quark mass, compared to the latest combination of
Tevatron measurements.

 150

 200

 250

 300

 6.5  7  7.5  8  8.5

σ
to

t [
p

b
]

√s [TeV]

PP → tt+X @ NNLO+NNLL
mtop=173.3 GeV
MSTW2008NNLO(68cl)

Theory (scales + pdf)
Theory (scales)

CMS dilepton, 7TeV
ATLAS and CMS, 7TeV

ATLAS, 7TeV
CMS dilepton, 8TeV
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The comparison with the latest Tevatron combination
[36] is shown in fig. 3. The measured value σtot = 7.65±
0.42 pb is given, without conversion, at the best top mass
measurement [37] m = 173.18 ± 0.94 GeV. From this
comparison we conclude that theory and experiment are
in good agreement at this very high level of precision.
In fig. 4 we show the theoretical prediction for the

tt̄ total cross-section at the LHC as a function of the
c.m. energy. We compare with the most precise avail-
able data from ATLAS at 7 TeV [38], CMS at 7 [39] and
8 TeV [40] as well as the ATLAS and CMS combination
at 7 TeV [41]. We observe a good agreement between
theory and data. Where conversion is provided [39], the
measurements have been converted to m = 173.3 GeV.
Finally, we make available simplified fits for the top

mass dependence of the NNLO+NNLL cross-section, in-
cluding its scale and pdf uncertainties:

σ(m) = σ(mref )
(mref

m

)4
(16)

×

(

1 + a1
m−mref

mref
+ a2

(

m−mref

mref

)2
)

.

The coefficient a1,2 can be found in table III.

CONCLUSIONS AND OUTLOOK

In this work we compute the NNLO corrections to
gg → tt̄ + X . With this last missing reaction included,
the total inclusive top pair production cross-section at
hadron colliders is now known exactly through NNLO
in QCD. We also derive estimates for the two-loop hard
matching coefficients which allows NNLL soft-gluon re-
summation matched consistently to NNLO. All results
are implemented in the program Top++ (v2.0) [33].

Top pair production 

Czakon, Mitov, Fiedler, Heymes
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The comparison with the latest Tevatron combination
[36] is shown in fig. 3. The measured value σtot = 7.65±
0.42 pb is given, without conversion, at the best top mass
measurement [37] m = 173.18 ± 0.94 GeV. From this
comparison we conclude that theory and experiment are
in good agreement at this very high level of precision.
In fig. 4 we show the theoretical prediction for the

tt̄ total cross-section at the LHC as a function of the
c.m. energy. We compare with the most precise avail-
able data from ATLAS at 7 TeV [38], CMS at 7 [39] and
8 TeV [40] as well as the ATLAS and CMS combination
at 7 TeV [41]. We observe a good agreement between
theory and data. Where conversion is provided [39], the
measurements have been converted to m = 173.3 GeV.
Finally, we make available simplified fits for the top

mass dependence of the NNLO+NNLL cross-section, in-
cluding its scale and pdf uncertainties:

σ(m) = σ(mref )
(mref

m

)4
(16)

×

(

1 + a1
m−mref

mref
+ a2

(

m−mref

mref

)2
)

.

The coefficient a1,2 can be found in table III.

CONCLUSIONS AND OUTLOOK

In this work we compute the NNLO corrections to
gg → tt̄ + X . With this last missing reaction included,
the total inclusive top pair production cross-section at
hadron colliders is now known exactly through NNLO
in QCD. We also derive estimates for the two-loop hard
matching coefficients which allows NNLL soft-gluon re-
summation matched consistently to NNLO. All results
are implemented in the program Top++ (v2.0) [33].

An ongoing effort by  Abelof, Gehrmann de Ridder , Pozzorini
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Single top production (t-channel)

60

80

140

220

7 8 13

LO

NLO

NNLO

CMS

ATLAS

�
(p
b
)

p
s (GeV)

Charge ratio 
!  7 TeV (ATLAS):  
◦  σt(t) = 53.2 ± 10.8 pb,  σt(t¯) = 29.5 +7.4

-7.5 pb 
◦  Rt = σt(t)/σt(t¯) = 1.81+0.23

-0.22 
◦  Main systematics on Rt: background normalization (multijet from data, other from MC), JES 

!  8 TeV (CMS):  
◦  σt(t) = 53.8 ± 1.5(stat) ± 4.4(syst) pb,  σt(t¯) = 27.6 ± 1.3(stat) ± 3.7(syst) pb 
◦  Rt = σt(t)/σt(t¯) = 1.95 ± 0.10(stat) ± 0.19(syst) 
◦  Main systematics on Rt: PDF uncert., signal modeling 

!  Rt potentially sensitive to PDF 
!  Approaching the precision necessary to discriminate between different PDF models 
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�t,NLO/�t̄,NLO = 1.83

�t,NNLO/�t̄,NNLO = 1.83

Burcherseifer, Caola, K.M.

The precision on the inclusive  cross section is about one percent. Ratio of top and anti-top 
cross sections is  sensitive to parton distribution functions at relatively large values of x and 
should be used as one  of the standard candles for PDF determinations. 

4

p⊥ σLO, pb σNLO, pb δNLO σNNLO, pb δNNLO

0 GeV 53.8+3.0
−4.3 55.1+1.6

−0.9 +2.4% 54.2+0.5
−0.2 −1.6%

20 GeV 46.6+2.5
−3.7 48.9+1.2

−0.5 +4.9% 48.3+0.3
−0.02 −1.2%

40 GeV 33.4+1.7
−2.5 36.5+0.6

−0.03 +9.3% 36.5+0.1
+0.1 −0.1%

60 GeV 22.0+1.0
−1.5 25.0+0.2

+0.3 +13.6% 25.4−0.1
+0.2 +1.6%

TABLE I: QCD corrections to t-channel single top quark production cross sections at 8 TeV LHC with a cut on the transverse
momentum of the top quark p⊥. Cross sections are shown at leading, next-to-leading and next-to-next-to-leading order in
dependence of the factorization and renormalization scale µ = mt (central value), µ = 2mt (upper value) and µ = mt/2 (lower
value). Corrections at NLO and at NNLO (relative to the NLO) are shown in percent for µ = mt.

las for the phase-space parametrization relevant for the
ub → dt, ub → dtg and ub → dtgg sub-processes, as well
as a discussion of an appropriate choices of variables rel-
evant for the extraction of singularities can be found in
that reference. Using the language of that paper, we only
need to consider “initial-state” sectors since there are no
collinear singularities associated with final state particles
due to the fact that top quarks are massive. All calcula-
tions required for initial-state sectors are documented in
Ref. [61] except that here we need soft and collinear lim-
its for incoming quarks, rather than gluons, and the soft
current for a massive particle. This, however, is a minor
difference that does not affect the principal features of
the computational method.

The above discussion of the NNLO QCD corrections
to the heavy quark line can be applied almost verba-
tim to corrections to the light quark line. The two-loop
corrections for the 0 → qq̄′W ∗ vertex are known since
long ago [62–64]. One-loop corrections to 0 → qq̄′gW ∗

scattering are also well-known; we implemented the re-
sult presented in [65] and again checked the implemen-
tation against an independent computation based on the
Passarino-Veltman reduction. Apart from different am-
plitudes, the only minor difference with respect to cor-
rections to the heavy quark line is that in this case there
are collinear singularities associated with both, the in-
coming and the outgoing quark lines. We deal with this
problem splitting the real-emission contribution into sec-
tors, see Ref. [61]. In the language of that paper, we
have to consider “initial-initial”, “final-final” and mixed
“initial-final” sectors. Finally, we briefly comment on the
contribution shown in Fig.1c. We note that, although
formally NNLO, it is effectively the product of NLO cor-
rections to the heavy and the light quark lines, so that
it can be dealt with using techniques familiar from NLO
computations.

We will now comment on our treatment of γ5. For
perturbative calculations at higher orders the presence of
the Dirac matrix γ5 is a nuisance since it can not be con-
tinued to d-dimensions in a straightforward way. While
computationally-efficient ways to deal with γ5 in com-
putations, that employ dimensional regularization, exist
(see e.g. Ref. [66]), they are typically complex and un-
transparent. Fortunately, there is a simple way to solve
the γ5 problem in our case. Indeed, in the calculation of
virtual corrections to the tWb weak vertex, γ5 is taken

to be anti-commuting [40–43]. This enforces the left-
handed polarization of the b-quark and removes the issue
of γ5 altogether. Indeed, if we imagine that the weak
b → t transition is facilitated by the vector current but
we select the b-quark with left-handed polarization only,
we will obtain the same result as when the calculation is
performed with the anti-commuting γ5. Since the can-
cellation of infra-red and collinear divergences occurs for
each polarization of the incoming b-quark separately, this
approach completely eliminates the need to specify the
scheme for dealing with γ5 and automatically enforces
simultaneous conservation of vector and axial currents –
a must-have feature if quantum anomalies are neglected.
Of course, this requires that we deal with the γ5 appear-
ing in real emission diagrams in the same way as in the
virtual correction and this is, indeed, what we do by us-
ing helicity amplitudes, as described in [39].

We have performed several checks to ensure that our
calculation of NNLO QCD corrections to single top quark
production is correct. For example, we have compared all
the tree-level matrix elements that are used in this com-
putation, e.g. ub → dt+ng, with 0 ≤ n ≤ 2, ub → dt+qq̄,
ug → db̄t+mg, 0 ≤ m ≤ 1, against MadGraph [67] and
found complete agreement. We have extracted one-loop
amplitudes for 0 → Wtb̄g from MCFM [45] and checked
them against our own implementation of the Passarino-
Veltman reduction, for both the W ∗b → tg and the
W ∗g → tb̄ processes. We have cross-checked one-loop
amplitudes for W ∗u → dg and related channels against
MadLoop [68]. In the intermediate stages of the compu-
tation, we also require reduced tree and one-loop ampli-
tudes computed to higher orders in ε, as explained e.g. in
Ref. [61]. We checked that their contributions drop out
from the final results, in accord with the general conclu-
sion of Ref. [69].

One of the most important checks is provided by the
cancellation of infra-red and collinear divergences. In-
deed, the technique for NNLO QCD computations de-
scribed in Refs. [47–49] leads to a Laurent expansion
of different contributions to differential cross sections in
the dimensional regularization parameter ε; coefficients
of this expansion are computed by numerical integra-
tion. Independence of physical cross sections on the reg-
ularization parameter is therefore achieved numerically,
when different contributions to such cross sections (two-
loop virtual corrections, one-loop corrections to single
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Di-jet production 

Results are for gluon-gluon and quark-gluon (preliminary) initial states.  Not all color factors 
included for quark-gluon channel. Flat NNLO/NLO  K-factors; small corrections (may 
change if other channels included). Results for various orders obtained with NNLO PDFs. 

Currie, Gehrmann-de Ridder, Gehrmann, Glover, Pires
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Realistic cross sections
The Higgs boson couplings are extracted from cross sections that are subject to kinematic 
constraints on the final states.  This happens because detectors have only restricted angular 
coverage and because by selecting final states with particular kinematic properties, certain 
backgrounds can be significantly reduced.   

This, however, requires precision predictions for  exclusive/fiducial cross sections, including jet-
binning,  Higgs boson decays etc, making them highly non-trivial.   Without such predictions, 
the Higgs couplings can not be extracted from the LHC data with the ultimate precision.

Higgs production in association with jets

jetsN
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 Z+jets  W+jets
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ieiµ/iµieA
(*)WWAH

Table 8: Selection table for Njet = 0 in 8 TeV data. The observed (Nobs) and expected (Nexp) yields for

the signal (Nsig) and background (Nbkg) processes are shown for the (a) eµ+ µe and (b) ee+ µµ chan-

nels. The composition of Nbkg is given on the right. The requirements are imposed sequentially from

top to bottom. Energies, masses, and momenta are in units of GeV. All uncertainties are statistical.

(a) eµ+ µe channel

Selection Nobs Nbkg Nsig

Njet = 0 9024 9000± 40 172± 2
|∆φ"",MET |> π2 8100 8120± 40 170± 2
p""
T
> 30 5497 5490± 30 156± 2

m"" < 50 1453 1310± 10 124± 1
|∆φ"" |< 1.8 1399 1240± 10 119± 1

NWW NVV Ntt̄ Nt NZ/γ∗ NW+ jets

4900± 20 370± 10 510± 10 310± 10 2440± 30 470± 10
4840± 20 360± 10 490± 10 310± 10 1690± 30 440± 10
4050± 20 290± 10 450± 10 280± 10 100± 10 320± 5
960± 10 110± 6 69± 3 46± 3 18± 7 100± 2
930± 10 107± 6 67± 3 44± 3 13± 7 88± 2

(b) ee+ µµ channel

Selection Nobs Nbkg Nsig

Njet = 0 16446 15600± 200 104± 1
|∆φ"",MET |> π2 13697 12970± 140 103± 1
p""
T
> 30 5670 5650± 70 99± 1

m"" < 50 2314 2390± 20 84± 1
pmiss
T,rel
> 45 1032 993± 10 63± 1

|∆φ"" |< 1.8 1026 983± 10 63± 1
frecoil < 0.05 671 647± 7 42± 1

NWW NVV Ntt̄ Nt NZ/γ∗ NW+ jets

2440± 10 190± 5 280± 6 175± 6 12300± 160 170± 10
2430± 10 190± 5 280± 6 174± 6 9740± 140 160± 10
2300± 10 170± 5 260± 6 167± 5 2610± 70 134± 4
760± 10 64± 3 53± 3 42± 3 1410± 20 62± 3
650± 10 42± 2 47± 3 39± 3 200± 5 19± 2
640± 10 41± 2 46± 3 39± 3 195± 5 18± 2
520± 10 30± 2 19± 2 22± 2 49± 3 12± 1

Table 9: Selection table for Njet = 1 in 8 TeV data. More details are given in the caption of Table 8.

(a) eµ+ µe channel

Selection Nobs Nbkg Nsig

Njet = 1 9527 9460± 40 97± 1
Nb-jet = 0 4320 4240± 30 85± 1
Z→ ττ veto 4138 4020± 30 84± 1
m"" < 50 886 830± 10 63± 1
|∆φ"" |< 1.8 728 650± 10 59± 1

NWW NVV Ntt̄ Nt NZ/γ∗ NW+ jets

1660± 10 270± 10 4980± 30 1600± 20 760± 20 195± 5
1460± 10 220± 10 1270± 10 460± 10 670± 10 160± 4
1420± 10 220± 10 1220± 10 440± 10 580± 10 155± 4
270± 4 69± 5 216± 6 80± 4 149± 5 46± 2
250± 4 60± 4 204± 6 76± 4 28± 3 34± 2

(b) ee+ µµ channel

Selection Nobs Nbkg Nsig

Njet = 1 8354 8120± 90 54± 1
Nb-jet = 0 5192 4800± 80 48± 1
m"" < 50 1773 1540± 20 38± 1
pmiss
T,rel
> 45 440 420± 10 21± 1

|∆φ"" |< 1.8 430 410± 10 20± 1
frecoil < 0.2 346 320± 10 16± 1

NWW NVV Ntt̄ Nt NZ/γ∗ NW+ jets

820± 10 140± 10 2740± 20 890± 10 3470± 80 60± 10
720± 10 120± 10 720± 10 260± 10 2940± 70 40± 10
195± 4 35± 2 166± 5 65± 3 1060± 10 20± 2
148± 3 21± 1 128± 5 52± 3 64± 4 5.1± 0.8
143± 3 20± 1 125± 5 51± 3 63± 4 4.5± 0.7
128± 3 17± 1 97± 4 44± 3 25± 2 3.1± 0.6

7.2 Statistical model and signal extraction

The statistical analysis uses the likelihood function L, the product of Poisson functions for each
signal and control region and Gaussian constraints, where the product is over the decay channels. In

the Poisson term for the signal region µ scales the expected signal yield, with µ = 0 corresponding to

22

Experimental analyses of Higgs decays to W-
bosons splits the Higgs signal according to jet 
multiplicities since systematic uncertainties in 
H+0 jets, H+1 jets and H+2 jets are very 
different.

Signal to background ratios in 
H+1 and H+2 jet bins are small, they are 
roughly 10 percent of the background

The signal significance in H+1jet is smaller, but 
not much smaller, than the significance in H+0 
jets

Thursday, May 2, 13
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FIG. 7: The 0-jet cross section for R = 0.4 and mH = 125GeV. On the left we show the NLLpT , NLL′
pT+NLO, and

NNLL′
pT+NNLO predictions. A good convergence and reduction of uncertainties at successively higher orders is observed. On

the right we compare our best prediction at NNLL′
pT+NNLO to the fixed NNLO prediction. The lower plots show the relative

uncertainty in percent for each prediction. On the lower left the lighter inside bands show the contribution from ∆resum only,
while the darker outer bands show the total uncertainty from adding ∆resum and ∆µ in quadrature.

ues for σ0(pcutT , R) with both theoretical uncertainties:

σ0(25GeV, 0.4) = 12.67± 1.22pert ± 0.46clust pb ,

σ0(30GeV, 0.5) = 13.85± 0.87pert ± 0.24clust pb . (74)

It is interesting to compare our results and uncertain-
ties for σ0 to the NNLL+NNLO results presented ear-
lier in Ref. [9]. Our results build on their results in a
few ways. In particular, our RG approach includes π2

resummation, our results are quoted as NNLL′ because
they go beyond NNLL by including the complete NNLO
singular terms in the fixed-order matching (which are the
correct boundary conditions for the N3LL resummation),
and finally we use a factorization based approach to un-
certainties, which also makes predictions for the correla-
tions between the different jet bins.
Comparing σ0 at pcutT = 25GeV and R = 0.4 our cen-

tral values agree with those in Ref. [9], and are well within
each other’s uncertainties. Our perturbative uncertainty
of 9.6% is a bit smaller than the 13.3% uncertainty for
σ0 of Ref. [9] which seems reasonable given the above

mentioned additions. One important ingredient in this
comparison is the inclusion of the π2 resummation which
improves the convergence of our results and decreases our
uncertainty. On the other hand, in Ref. [9] the central
scale is chosen to be µFO = mH/2 which also works in the
same direction, decreasing the uncertainty relative to the
choice µFO = mH . For the total cross section Ref. [9] has
a 7.4% uncertainty, whereas we have 6.9% uncertainty
using µFO = mH and including π2 resummation (see Ta-
ble II). From Table IV in appendix App. A we see that
our perturbative uncertainty for σ0(25GeV, 0.4) would
increase to 12.8% if the π2 resummation were turned off
(while still taking the central µFO = mH), and that at
this level the uncertainty would become comparable to
that of Ref. [9]. For pcutT = 30GeV and R = 0.5 our
central values remain perfectly compatible with Ref. [9],
and the uncertainties follow a pattern similar to the case
above.

Banfi, Zanderighi, Salam; Tackmann, Zuberi, Walsh; Becher, Neubert 

Jet binning requires jet identification; this may introduce perturbative computations unstable; 
attempts to resum logarithmically enhanced terms.
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Higgs production: jet-binned cross sections
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Figure 1: Cancellation of 1/✏ poles in the qg channel. Note
that individual contributions have been rescaled by a factor
of 0.1, while the sum of them is not rescaled.

detail in our previous work on Higgs plus jet production
in pure gluodynamics [9], we only sketch here the salient
features of the calculation. We then present the numer-
ical results of the computation including NNLO results
for cross sections of Higgs plus jet production at various
collider energies and for various values of the transverse
momentum cut on the jet. We also discuss the NNLO
QCD corrections to the transverse momentum distribu-
tion of the Higgs boson. Finally, we present our conclu-
sions.

We begin by reviewing the details of the computation.
Our calculation is based on the e↵ective theory obtained
by integrating out the top quark. For values of the Higgs
p
?

below 150 GeV, this approximation is known to work
to 3% or better at NLO [13, 14]. Since the Higgs boson re-
ceives its transverse momentum by recoiling against jets,
we expect that a similar accuracy of the large-mt ap-
proximation can be expected for observables where jet
transverse momenta do not exceed O(150) GeV as well.

The e↵ective Lagrangian is given by

L = �1

4
G(a)

µ⌫ G
(a),µ⌫ +

X

i

q̄ii/Dqi�C1
H

v
G(a)

µ⌫ G
(a),µ⌫ , (1)

where G
(a)
µ⌫ is the gluon field-strength tensor, H is the

Higgs boson field and qi denotes the light quark field
of flavor i. The flavor index runs over the values i =
u, d, s, c, b, which are all taken to be massless. The co-
variant derivative /D contains the quark-gluon coupling.
The Higgs vacuum expectation value is denoted by v,
and C1 is the Wilson coe�cient obtained by integrating
out the top quark. The calculation presented here re-
quires C1 through O(↵3

s), which can be obtained from
Ref. [15]. Both the Wilson coe�cient and the strong
coupling constant require ultraviolet renormalization; the
corresponding renormalization constants can be found
e.g. in Ref. [16].

Partonic cross sections computed according to the
above prescription are still not finite physical quantities.

NNPDF2.3, 8 TeV

�
[fb
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µ [GeV]
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NLO
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Figure 2: Dependence of the total LO, LO and NNLO cross-
sections on the unphysical scale µ. See text for details.

Two remaining issues must be addressed. First, contribu-
tions of final states with di↵erent number of partons must
be combined in an appropriate way to produce infrared-
safe observables. This requires a definition of final states
with jets. We use the anti-kT jet algorithm [17] to com-
bine partons into jets. Second, initial-state collinear sin-
gularities must be absorbed into the parton distribution
functions (PDFs) by means of standard MS PDF renor-
malization. A detailed discussion of this procedure can
be found in Ref. [18].
The finite cross sections for each of the partonic chan-

nels ij obtained in this way have an expansion in the MS
strong coupling constant ↵s ⌘ ↵s(µ), defined in a theory
with five active flavors,

�ij = �
(0)
ij +

↵s

2⇡
�
(1)
ij +

⇣↵s

2⇡

⌘2

�
(2)
ij +O(↵6

s). (2)

Here, the omitted terms indicated by O(↵6
s) include the

↵3
s factor that is contained in the leading order cross sec-

tion �
(0)
ij . Our computation will include the gg and qg

partonic cross sections at NNLO, �(2)
gg and �

(2)
qg , where q

denotes any light quark or anti-quark. At NLO, it can be
checked using MCFM [19] that these channels contribute
over 99% of the cross section for typical jet transverse
momentum cuts, p

?

⇠ 30 GeV. We therefore include the
partonic channels with two quarks or anti-quarks in the
initial state only through NLO.
In addition to the ultraviolet and collinear renormal-

izations described above, we need the following ingre-

dients to determine �
(2)
gg and �

(2)
qg : the two-loop vir-

tual corrections to the partonic channels gg ! Hg and
qg ! Hq; the one-loop virtual corrections to gg ! Hgg,
gg ! Hqq̄ and qg ! Hqg; the double real emission
processes gg ! Hggg, gg ! Hgqq̄, qg ! Hqgg and
qg ! HqQQ̄, where the QQ̄ pair in the last process can
be of any flavor. The helicity amplitudes for all of these
processes are available in the literature. The two-loop
amplitudes were computed in Ref. [20]. The one-loop cor-
rections to the four-parton processes are known [21] and

To obtain the zero-jet cross section for the Higgs production, we subtract the one-jet inclusive 
cross section from the total inclusive cross section, at matching orders in pQCD.

The inclusive Higgs production was computed recently through N3LO and the H+jet production 
was computed through NNLO QCD; these are same orders in perturbation theory.   Using 
these results, one can improve on predictions for jet-binned cross sections.

R. Boughezal, F. Caola, K.M., F. Petriello, M. Schulze Anastasiou,  Duhr,  Dulat, Furlan, Herzog, 
Gehrmann, Mistlberger etc.

H H
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Fiducial cross sections

The results of N3LO computation for inclusive Higgs production, NNLO for the H+j 
production as well as advances with re-summations of jet-radius logarithms allow one to 
improve on existing predictions for 0-jet and 1-jet bin cross sections. 

For the 13 TeV LHC, using NNPDF2.3, anti-kT, R=0.5, μ0=mH/2, Qres = mH/2 and 
accounting for top and bottom mass effects, one finds the following results:

0-jet bin

≥1-jet bin

• No breakdown of fixed order perturbation theory for pT ~ 25- 30 GeV ;

• Reliable error estimate from lower orders ; residual errors O(3-5) percent for the two 
jet bins; 

• Re-summed results change fixed-order results within the error bars of the former/
latter.  There seems to be little difference between re-summed and fixed order results. 

A. Banfi, F. Caola,  F. Dreyer, P. Monni, G.Salam, G. Zanderighi, F. Dulat

Figure 6. N3LO+NNLL+LLR best prediction for the jet-veto cross section (blue/hatched) com-
pared to NNLO+NNLL (left) and fixed-order at N3LO (right).

LHC 13 TeV ✏N
3LO+NNLL+LL

R

⌃

N3LO+NNLL+LL
R

0-jet [pb] ⌃

N3LO
0-jet ⌃

NNLO+NNLL
0-jet

pt,veto = 25GeV 0.539+0.017
�0.008 24.7+0.8

�1.0 24.3+0.5
�1.0 24.6+2.6

�3.8

pt,veto = 30GeV 0.608+0.016
�0.007 27.9+0.7

�1.1 27.5+0.5
�1.1 27.7+2.9

�4.0

Table 2. Predictions for the jet-veto efficiency and cross section at N3LO+NNLL+LLR, compared
to the N3LO and NNLO+NNLL cross sections. The uncertainty in the fixed-order prediction is
obtained using the JVE method. All numbers include the effect of top and bottom quark masses,
treated as described in the text, and are for a central scale µ

0

= mH/2.

The right-hand plot of Fig. 7 shows our best prediction with uncertainty obtained
with the JVE method, compared to the case of just scale (i.e. µR, µF , Q) variations. We
observe a comparable uncertainty both at small and at large transverse momentum, which
indicates that the JVE method is not overly conservative in the tail of the distribution. We
have observed that the same features persist for the corresponding differential distribution.
Table 3 contains the predictions for the inclusive one-jet cross section for two characteristic
pt,min choices.

4 Conclusions

In this article we have presented new state-of-the-art, N3LO+NNLL+LLR, predictions for
the jet-veto efficiency and the zero-jet cross section in gluon-fusion induced Higgs produc-
tion, as well as NNLO+NNLL+LLR results for the inclusive one-jet cross section. The
results, shown for 13 TeV LHC collisions, incorporate recent advances in the fixed-order
calculation of the total cross section [8], the fixed-order calculation of the one-jet cross sec-
tion [9–11] and the resummation of small-R effects [12]. They also include the earlier NNLL

– 15 –

Figure 7. Matched NNLO+NNLL+LLR prediction for the inclusive one-jet cross section
(blue/hatched) compared to fixed-order at NNLO (left) and to the matched result with direct
scale variation for the uncertainty (right), as explained in the text.

LHC 13 TeV ⌃

NNLO+NNLL+LL
R

�1-jet [pb] ⌃

NNLO
� 1-jet [pb]

pt,min = 25GeV 21.2+0.4
�1.1 21.6+0.5

�1.0

pt,min = 30GeV 18.0+0.3
�1.0 18.4+0.4

�0.8

Table 3. Predictions for the inclusive one-jet cross section at NNLO+NNLL+LLR and NNLO. The
uncertainty in the fixed-order prediction is obtained using the JVE method. All numbers include
the effect of top and bottom quark masses, treated as described in the text, and are for a central
scale µ

0

= mH/2.

jet pt resummation [5] including finite quark mass effects [23]. Uncertainties have been de-
termined using the jet-veto efficiency method, which has been updated here to take into
account the good perturbative convergence observed with the new fixed-order calculations.

Results for the jet-veto efficiency and zero-jet cross section for central scale choices of
µ0 = mH/2 and µ0 = mH are reported in tables 2 and 5, respectively. With our central scale
choice, µ0 = mH/2, we find that the inclusion of the new calculations decreases the jet-veto
efficiency by 2% with respect to the NNLO+NNLL prediction, and it has a substantially
smaller uncertainty, reduced from more than 10% to less than 5%.

In the zero-jet cross section, the reduction in the jet-veto efficiency is compensated
by a similar increase in the total cross section due to the N3LO correction, resulting in a
sub-percent effect. In comparison to the N3LO result, the matched N3LO+NNLL+LLR

jet-veto efficiency and zero-jet cross section are about 2% larger, and have comparable
(⇠ 3 � 4%) theoretical errors. The picture is different for a central scale µ0 = mH , as
discussed in appendix B. In this case the jet-veto efficiency at N3LO+NNLL+LLR decreases
by more than 5% with respect to the NNLO+NNLL result, while it is in perfect agreement

– 16 –
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Higgs cross sections: even more fiducial
To go even more fiducial (i.e. realistic), one can let the Higgs decay and compare results with 
measured cross sections / distributions of the ATLAS collaboration. 

anti� kt, �R = 0.4, pj? = 30 GeV, abs(yj) < 4.4

p?,�1 > 43.75 GeV, p?,�2 = 31.25 GeV, �R�j > 0.4

�fid
NNLO = 9.46+0.56

�0.84 fb�fid
1j,ATLAS = 21.5± 5.3(stat)± 2.3(syst)± 0.6 lum fb

Atlas cuts on photons and 
jets

F. Caola, K.M.,  M. Schulze 
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ZZ pair production at the LHC
By the end of the Run I, we had an interesting problem with the production of two 
W-bosons; the measured cross -sections came out too high.  By now, the issue 
seems to be understood; it appears that it was caused by improper extrapolation.

ZZ cross sections are smaller but cleaner. The NNLO fully-differential predictions 
for ZZ final state are available. NNLO corrections are dominated by (LO) gg -> ZZ 
which is subject to large QCD corrections (N3LO formally). 

 T. Gehrmann, M. Grazzini, S. Kallweit, P. Maierhoefer,  
A. von Manteuffel, S. Pozzorini,  D. Rathlev, L.  Tancredi

 F. Caola,  K. Melnikov,  R. Rontsch, L.  Tancredi

�qq̄!2e2µ
NNLO = 19.6(6) fb

�gg!2e2µ
NNLO = 2.0(2) fb

Monni, Zanderighi
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Figure 2. The unnormalised Z-boson transverse momentum distribution for the cuts given in
Table 1 and 66 GeV < m`` < 116 GeV. ATLAS data is taken from Ref. [15]. The luminosity error
is not shown. The green bands denote the NLO prediction with scale uncertainty and the blue
bands show the NNLO prediction with scale uncertainty.
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Figure 3. The normalised Z-boson transverse momentum distribution for the cuts given in Table 1
and 66 GeV < m`` < 116 GeV. ATLAS data is taken from Ref. [15]. The green bands denote the
NLO prediction with scale uncertainty and the blue bands show the NNLO prediction with scale
uncertainty.

the data by the measured values for the inclusive lepton pair cross section in this fiducial

bin. The cross section for this mass window was measured to be [15],

�exp(66 GeV < m`` < 116 GeV) = 537.10± 0.45% (sys.)± 2.80% (lumi.) pb.

– 5 –

Z+jet production at the LHC

The transverse momentum distribution of the Z boson is measured with a very high (few 
percent) precision.  An important observable for constraining  gluon PDF.  The NNLO QCD  
computation of Z+j production at the LHC leads to a precise  description of the Z transverse 
momentum distribution and improves  agreement between theory and experiment. 

Gehrmann-De Ridder, Gehrmann, Glover, Huss, Morgan

Z

r

e

c

o

i

l

pZT 6= 0

Figure 1. A schematic diagram demonstrating the Z boson recoiling against hard radiation.

and numerically stable code to compute the transverse momentum distribution of the Z

boson at finite transverse momentum at NNLO precision. To achieve this we relax the

requirement of observing a final state jet and instead impose a low transverse momentum

cut on the Z boson. This transverse momentum cut ensures the infrared finiteness of

the NNLO calculation, since it enforces the presence of final-state partons to balance the

transverse momentum of the Z boson.

The production of Z bosons (or, more generally, of lepton pairs with given invari-

ant mass) at large transverse momentum has been studied extensively at the LHC by the

ATLAS [14, 15], CMS [16, 17] and LHCb [18] experiments. In order to reduce the system-

atic uncertainty on the measurement, the transverse momentum distribution is commonly

normalised to the pT -inclusive Z-boson production cross section. ATLAS and CMS both

observed a tension between their measurements and existing NLO QCD predictions, high-

lighting the potential importance of higher order corrections to this process.

Both experiments present their measurements in the form of fiducial cross sections

for a restricted kinematical range of the final state leptons (in invariant mass, transverse

momentum and rapidity). In view of a comparison between data and theory, this form of

presenting the experimental data is preferable over a cross section that is fully inclusive

in the lepton kinematics (requiring a theory-based extrapolation into phase space regions

outside the detector coverage). Consequently, the theoretical calculation must take proper

account of these restrictions in the final state lepton kinematics.

The unnormalised pZT distribution represents an absolute cross section measurement

based on event counting rates. As with any absolute measurement, it has the disadvantage

of being sensitive to the proper modelling of acceptance corrections, and of relying on the

absolute determination of the integrated luminosity of the data sample under consideration.

At the LHC the luminosity uncertainty alone amounts to about 3%. In order to reduce

the luminosity uncertainty, the data can be normalised to the Drell–Yan cross section

for the corresponding fiducial phase space. This is obtained from the cross section for Z

boson production with the same transverse momentum and rapidity cuts on the individual

leptons, but integrated over all possible transverse momenta of the Z boson. On the

theoretical side, this amounts to normalising the distribution to the NNLO pp ! `+`�+X

cross section in which the fiducial cuts are applied to the leptons, but which is fully inclusive

on the transverse momentum of the lepton-pair.

In this paper, we compute the NNLO QCD corrections to the transverse momentum

– 2 –

Z
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Theoretical precision and 3000/fb expectations
H+0 jet N3LO O(3-5 %) 10 pb fully inclusive 

H+1 jet N2LO O(7%)  7 pb fully exclusive; Higgs 
decays, infinite mass limit

H+2 jet NLO O(20%) 1.5 pb matched/merged

H+3 jet NLO O(20%) 0.4 pb matched/merged/almost

WBF N2LO O(1%) 1.5 pb exclusive, no VBF cuts

WBF N2LO O(5%) 0.2 pb exclusive, VBF cuts

ZH, WH N2LO O(2-3%) O(1) pb decays to bottom quarks 
at NLO, no massesttH NLO O(5%) 0.2pb decays, off-shell effects

16 4 Higgs Boson Properties

fusion and via vector-boson fusion production [30–32]. The dimuon events can be observed as
a narrow resonance over a falling background distribution. The shape of the background can
be parametrized and fitted together with a signal model. Assuming the current performance of
the CMS detector, we confirm these studies and estimate a measurement of the hµµ coupling
with a precision of 8%, statistically limited in 3000 fb�1.

0.00 0.05 0.10 0.15

CMS Projection

Expected uncertainties on
Higgs boson couplings

expected uncertainty

γκ

Wκ

Zκ

gκ

bκ

tκ

τκ

 = 14 TeV Scenario 1s at  -1300 fb
 = 14 TeV Scenario 2s at  -1300 fb

0.00 0.05 0.10 0.15

CMS Projection

Expected uncertainties on
Higgs boson couplings

expected uncertainty

γκ

Wκ

Zκ

gκ

bκ

tκ

τκ

 = 14 TeV Scenario 1s at  -13000 fb
 = 14 TeV Scenario 2s at  -13000 fb

Figure 12: Estimated precision on the measurements of k

g

, kW , kZ, kg, kb, kt and k

t

. The pro-
jections assume

p
s = 14 TeV and an integrated dataset of 300 fb�1 (left) and 3000 fb�1 (right).
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0.00 0.05 0.10 0.15

CMS Projection

Expected uncertainties on
Higgs boson signal strength

expected uncertainty

γ γ →H 

 WW→H 

 ZZ→H 

 bb→H 

τ τ →H 

 = 14 TeV Scenario 1s at  -13000 fb

 = 14 TeV No Theory Unc.s at  -13000 fb

0.00 0.05 0.10 0.15

CMS Projection

Expected uncertainties on
Higgs boson couplings

expected uncertainty

γκ

Wκ

Zκ

gκ

bκ

tκ

τκ

 = 14 TeV Scenario 1s at  -13000 fb

 = 14 TeV No Theory Unc.s at  -13000 fb

Figure 13: Estimated precision on the signal strengths (left) and coupling modifiers (right).
The projections assuming

p
s = 14 TeV, an integrated dataset of 3000 fb�1 and Scenario 1 are

compared with a projection neglecting theoretical uncertainties.

4.5 Spin-parity

Besides testing Higgs couplings, it is important to determine the spin and quantum numbers
of the new particle as accurately as possible. The full case study has been presented by CMS
with the example of separation of the SM Higgs boson model and the pseudoscalar (0�) [7].
Studies on the prospects of measuring CP-mixing of the Higgs boson are presented using the
H! ZZ⇤ ! 4l channel. The decay amplitude for a spin-zero boson defined as

A(H ! ZZ) = v�1
⇣

a1m2
Ze

⇤
1e

⇤
2 + a2 f ⇤(1)

µn

f ⇤(2),µn + a3 f ⇤(1)
µn

f̃ ⇤(2),µn

⌘
. (2)

Theoretical precision on major Higgs production cross sections, that we already have, seems to match  the 
experimental precision achievable with 3000/fb.  A new situation, thanks to the recent theoretical results. 
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Consolidating precision

To fully benefit from these developments, we will need 

1) to  better understand parameters that enter  calculation of cross sections (PDFs, masses, 
couplings, etc.) ;

2) to include   electroweak corrections; 

3) to work with realistic final states and fiducial cross sections ; 

4) to understand the limitations of various approximations that we currently use in theoretical 
computations (finite = infinite, parton showers, etc.)

Progress with perturbative QCD computations at the LHC strongly suggests that 
there is a real chance to perform precision studies at the LHC. 
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A hadron collider as a machine for precision studies?
16 4 Higgs Boson Properties

fusion and via vector-boson fusion production [30–32]. The dimuon events can be observed as
a narrow resonance over a falling background distribution. The shape of the background can
be parametrized and fitted together with a signal model. Assuming the current performance of
the CMS detector, we confirm these studies and estimate a measurement of the hµµ coupling
with a precision of 8%, statistically limited in 3000 fb�1.

0.00 0.05 0.10 0.15

CMS Projection

Expected uncertainties on
Higgs boson couplings

expected uncertainty

γκ

Wκ

Zκ

gκ

bκ

tκ

τκ

 = 14 TeV Scenario 1s at  -1300 fb
 = 14 TeV Scenario 2s at  -1300 fb

0.00 0.05 0.10 0.15

CMS Projection

Expected uncertainties on
Higgs boson couplings

expected uncertainty

γκ

Wκ

Zκ

gκ

bκ

tκ

τκ

 = 14 TeV Scenario 1s at  -13000 fb
 = 14 TeV Scenario 2s at  -13000 fb

Figure 12: Estimated precision on the measurements of k

g

, kW , kZ, kg, kb, kt and k

t

. The pro-
jections assume

p
s = 14 TeV and an integrated dataset of 300 fb�1 (left) and 3000 fb�1 (right).

The projections are obtained with the two uncertainty scenarios described in the text.

0.00 0.05 0.10 0.15

CMS Projection

Expected uncertainties on
Higgs boson signal strength

expected uncertainty

γ γ →H 

 WW→H 

 ZZ→H 

 bb→H 

τ τ →H 

 = 14 TeV Scenario 1s at  -13000 fb

 = 14 TeV No Theory Unc.s at  -13000 fb

0.00 0.05 0.10 0.15

CMS Projection

Expected uncertainties on
Higgs boson couplings

expected uncertainty

γκ

Wκ

Zκ

gκ

bκ

tκ

τκ

 = 14 TeV Scenario 1s at  -13000 fb

 = 14 TeV No Theory Unc.s at  -13000 fb

Figure 13: Estimated precision on the signal strengths (left) and coupling modifiers (right).
The projections assuming

p
s = 14 TeV, an integrated dataset of 3000 fb�1 and Scenario 1 are

compared with a projection neglecting theoretical uncertainties.

4.5 Spin-parity

Besides testing Higgs couplings, it is important to determine the spin and quantum numbers
of the new particle as accurately as possible. The full case study has been presented by CMS
with the example of separation of the SM Higgs boson model and the pseudoscalar (0�) [7].
Studies on the prospects of measuring CP-mixing of the Higgs boson are presented using the
H! ZZ⇤ ! 4l channel. The decay amplitude for a spin-zero boson defined as

A(H ! ZZ) = v�1
⇣

a1m2
Ze

⇤
1e

⇤
2 + a2 f ⇤(1)

µn

f ⇤(2),µn + a3 f ⇤(1)
µn

f̃ ⇤(2),µn

⌘
. (2)

H+0 jet N3LO O(3-5 %) 10 pb fully inclusive 

H+1 jet N2LO O(7%)  7 pb fully exclusive; Higgs decays, 
infinite mass limit

H+2 jet NLO O(20%) 1.5 pb matched/merged

H+3 jet NLO O(20%) 0.4 pb matched/merged/almost

WBF N2LO O(1%) 1.5 pb exclusive, no VBF cuts

WBF N2LO O(5%) 0.2 pb exclusive, VBF cuts

ZH, WH N2LO O(2-3%) O(1) pb decays to bottom quarks at 
NLO, no massesttH NLO O(5%) 0.2pb decays, off-shell effects

Traditionally, hadron colliders played a role of the discovery machines but, given spectacular 
theoretical  advances of recent years, it may be possible to do precision physics at those 
machines.  A new situation, right in time for the beginning of the Run II.    

As an illustration,   compare  theoretical precision on major Higgs production cross sections, that 
we already have,  with  experimental precision expected  with 3000/fb.  
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A hadron collider as a machine for precision studies?

16 4 Higgs Boson Properties

fusion and via vector-boson fusion production [30–32]. The dimuon events can be observed as
a narrow resonance over a falling background distribution. The shape of the background can
be parametrized and fitted together with a signal model. Assuming the current performance of
the CMS detector, we confirm these studies and estimate a measurement of the hµµ coupling
with a precision of 8%, statistically limited in 3000 fb�1.
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4.5 Spin-parity

Besides testing Higgs couplings, it is important to determine the spin and quantum numbers
of the new particle as accurately as possible. The full case study has been presented by CMS
with the example of separation of the SM Higgs boson model and the pseudoscalar (0�) [7].
Studies on the prospects of measuring CP-mixing of the Higgs boson are presented using the
H! ZZ⇤ ! 4l channel. The decay amplitude for a spin-zero boson defined as

A(H ! ZZ) = v�1
⇣

a1m2
Ze

⇤
1e

⇤
2 + a2 f ⇤(1)

µn

f ⇤(2),µn + a3 f ⇤(1)
µn

f̃ ⇤(2),µn

⌘
. (2)

H+0 jet N3LO O(3-5 %) 10 pb fully inclusive 

H+1 jet N2LO O(7%)  7 pb fully exclusive; Higgs decays, 
infinite mass limit

H+2 jet NLO O(20%) 1.5 pb matched/merged

H+3 jet NLO O(20%) 0.4 pb matched/merged/almost

WBF N2LO O(1%) 1.5 pb exclusive, no VBF cuts

WBF N2LO O(5%) 0.2 pb exclusive, VBF cuts

ZH, WH N2LO O(2-3%) O(1) pb decays to bottom quarks at 
NLO, no massesttH NLO O(5%) 0.2pb decays, off-shell effects

As an illustration,   compare  theoretical precision on major Higgs production cross sections, that 
we already have,  with  experimental precision expected  with 3000/fb.  
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Higgs boson production in weak boson fusion
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Estimating NNLO QCD corrections to WBF fusion by mapping the problem on the 
inclusive DIS apparently does not work.  QCD corrections are different. 

Cacciari,  Dreyer, Kalberg, Salam, Zanderighi

�nocuts[pb] �VBF cuts[pb]

LO 4.032+0.057
�0.069 0.957+0.066

�0.059

NLO 3.929+0.024
�0.023 0.876+0.008

�0.018

NNLO 3.888+0.016
�0.012 0.826+0.013

�0.014

p
j1,2
? > 25 GeV, |yj1,2 | < 4.5,

�yj1,j2 = 4.5, mj1,j2 > 600 GeV,

yj1yj2 < 0, �R > 0.4

WBF cuts

Cross sections with and without WBF cuts
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Z-boson pair production: quark annihilation

The fully-differential production of two Z-bosons in quark-anti-quark annihilation was 
computed  through NNLO QCD, including off-shell effects and decays of the Z-bosons. 
  
The residual uncertainty on the cross section is estimated to be of the order of 3%; this 
should enable precise predictions for the ``background’’ for the determination of the 
Higgs boson width.  Note that  this calculation relies  on  the two-loop amplitudes for qq-
>V1V2  and uses the qt-subtraction scheme, to combine real and virtual corrections. 

M. Grazzini, S. Kallweit,   D. Rathlev
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What is the width of the Higgs boson?

�i!H!f ⇠
g2i g

2
f

�H

g

g

H
�

�

g ! ⇠g, �H ! ⇠4�H ) �H ! �H

Although many properties of the Higgs bosons appear to be consistent with the Standard 
Model,  reaching this conclusion requires hidden assumptions. One of such assumptions 
is the Standard Model value of the Higgs boson width. 

The on-shell production cross section is invariant under a simultaneous change  of the 
couplings and the width, resulting  in infinitely many  solutions.  To break the degeneracy, one 
should find the way to measure the couplings and the width independently of each other. 
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Z-boson pair production: gluon annihilation
Gluon fusion into a pair of Z-bosons is  an irreducible background to Higgs production 
( the amplitudes interfere).   It starts at one-loop, so calculation of even NLO QCD 
corrections to it is highly non-trivial. 

 F. Caola,  K. Melnikov,  R. Rontsch, L.  Tancredi

Nevertheless,  the  NLO QCD corrections to gg -> ZZ production through massless quark 
loops were computed;   large perturbative corrections (70-90%) were  found and the 
residual uncertainty was estimated  to be close to 10 percent. 

Top quark loops perhaps  are not important for the cross-section but are likely to  be 
relevant for the interference with the Higgs.   Recent results for gg ->ZZ  cross-section in 
the approximation of the infinitely heavy top quark  indicate large (1.8) K-factor.

Dowling, Melnikov

MZZ

KNLO
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W-boson pair production

 T. Gehrmann, M. Grazzini, S. Kallweit, P. Maierhoefer,  
A. von Manteuffel, S. Pozzorini,  D. Rathlev, L.  Tancredi

Interest in this process is related to a two-sigma excess that was observed by both 
ATLAS and CMS in 7 TeV and 8 TeV data.  The NNLO QCD corrections to quark-anti-
quark annihilation as well as the NLO QCD corrections to gluon fusion push the 
theory prediction much closer to experiment.    

In the case of gg ! V V such extrapolations completely
ignore all the subtleties related to the gluon fusion chan-
nel since NLO QCD corrections to this mechanism of
vector boson production are not included in Monte Carlo
event generators. Matching our computation to existing
NLO parton shower event generators is then desirable.
While this may be challenging technically since the LO
process is loop-induced, it does not require any con-
ceptual modification of existing techniques to combine
fixed order computations and parton showers.

We would like to examine the e↵ects of the NLO
corrections to the gg channel shown in Table 1 on the
existing theoretical calculations of the fiducial cross sec-
tions. We compute these fiducial cross sections using
MCFM [61] and the cuts from Ref. [46]. Included in
this calculation are the qq̄ contributions3 at NLO QCD,
the Higgs production pp ! H ! W+W� at NLO QCD
and the LO gg contributions through quark loops of all
flavors, with the top mass taken as mt = 172.5 GeV and
the Higgs signal/background interference at LO QCD.
We then replace the LO massless gg cross sections in
the fiducial volume with the corresponding NLO val-
ues. The 8 TeV cross sections (in fb) for the µµ, ee and
eµ+ µe decay channels become4

�qq̄+H+gg,NLO
µµ,ee,eµ+µe = (72.0+1.3

�2.1, 66.3
+1.2
�1.7, 337.3

+6.3
�4.5). (6)

Theoretical results in Eq.(6) should be compared
with results of the ATLAS 8 TeV measurement

�µµ,ee,eµ+µe = (74.4+8.1
�7.1, 68.5

+9.0
�8.0, 377.8

+28.4
�25.6), (7)

where we combined statistical, systematic and luminos-
ity uncertainties in quadratures. We see that the elec-
tron and muon channels agree perfectly whereas the
central value of the eµ+µe channel di↵ers by about 1.5
standard deviations. However, this picture is somewhat
misleading, since we have not included the NNLO QCD
corrections to the qq̄ channel in the theory predictions
in Eq.(6). While these corrections are unknown in the
fiducial region, it is perhaps interesting to see what hap-
pens if one estimates them by re-scaling NNLO QCD
corrections to the inclusive cross section by the ratio of
fiducial and inclusive cross sections. In this case we find
that the missing NNLO QCD corrections can increase
the cross sections in Eq.(6) by O(4� 20) fb for ee(µµ)
and eµ + µe channels, respectively. Such an increase
would make the theory prediction and experimental re-
sults agree to within one standard deviation for each of
the three channels.

3Although we consistently talk about qq̄ contributions, the qg
initiated processes are, of course, included, following the standard
routine of perturbative QCD computations.

4 The NLO qq̄ and LO gg results have opposite scale depen-
dence, so their naive combination would lead to an accidentally
small scale variation uncertainty. If the gg channel is included at
NLO, the total uncertainty is dominated by the qq̄ channel so a
precise procedure of how to combine the qq̄ and gg uncertainties
is not important.

In summary We have calculated the NLO QCD
corrections to the gg ! W+W� ! l+1 ⌫1l

�
2 ⌫̄2 process

at the LHC. These corrections increase the gluon fusion
cross section by 20%�80%, depending on the center-of-
mass energy and the scale choice. The impact of these
corrections on the pp ! W+W� production cross sec-
tion is moderate; they increase the NNLO QCD theory
prediction by about two percent, which is comparable
to the current estimate of the theoretical uncertainty
at NNLO. We have also calculated the gg ! W+W�

cross section through NLO in perturbative QCD sub-
ject to kinematic cuts used by the ATLAS collabora-
tion to measure the pp ! W+W� cross section. For
the fiducial cross section, we found a smaller increase of
around 20% for our central scale choice. Nevertheless,
this contribution further increases the fiducial volume
cross section, moving the theoretical result closer to the
experimental one.
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In the case of gg ! V V such extrapolations completely
ignore all the subtleties related to the gluon fusion chan-
nel since NLO QCD corrections to this mechanism of
vector boson production are not included in Monte Carlo
event generators. Matching our computation to existing
NLO parton shower event generators is then desirable.
While this may be challenging technically since the LO
process is loop-induced, it does not require any con-
ceptual modification of existing techniques to combine
fixed order computations and parton showers.

We would like to examine the e↵ects of the NLO
corrections to the gg channel shown in Table 1 on the
existing theoretical calculations of the fiducial cross sec-
tions. We compute these fiducial cross sections using
MCFM [61] and the cuts from Ref. [46]. Included in
this calculation are the qq̄ contributions3 at NLO QCD,
the Higgs production pp ! H ! W+W� at NLO QCD
and the LO gg contributions through quark loops of all
flavors, with the top mass taken as mt = 172.5 GeV and
the Higgs signal/background interference at LO QCD.
We then replace the LO massless gg cross sections in
the fiducial volume with the corresponding NLO val-
ues. The 8 TeV cross sections (in fb) for the µµ, ee and
eµ+ µe decay channels become4

�qq̄+H+gg,NLO
µµ,ee,eµ+µe = (72.0+1.3

�2.1, 66.3
+1.2
�1.7, 337.3

+6.3
�4.5). (6)

Theoretical results in Eq.(6) should be compared
with results of the ATLAS 8 TeV measurement

�µµ,ee,eµ+µe = (74.4+8.1
�7.1, 68.5

+9.0
�8.0, 377.8

+28.4
�25.6), (7)

where we combined statistical, systematic and luminos-
ity uncertainties in quadratures. We see that the elec-
tron and muon channels agree perfectly whereas the
central value of the eµ+µe channel di↵ers by about 1.5
standard deviations. However, this picture is somewhat
misleading, since we have not included the NNLO QCD
corrections to the qq̄ channel in the theory predictions
in Eq.(6). While these corrections are unknown in the
fiducial region, it is perhaps interesting to see what hap-
pens if one estimates them by re-scaling NNLO QCD
corrections to the inclusive cross section by the ratio of
fiducial and inclusive cross sections. In this case we find
that the missing NNLO QCD corrections can increase
the cross sections in Eq.(6) by O(4� 20) fb for ee(µµ)
and eµ + µe channels, respectively. Such an increase
would make the theory prediction and experimental re-
sults agree to within one standard deviation for each of
the three channels.

3Although we consistently talk about qq̄ contributions, the qg
initiated processes are, of course, included, following the standard
routine of perturbative QCD computations.

4 The NLO qq̄ and LO gg results have opposite scale depen-
dence, so their naive combination would lead to an accidentally
small scale variation uncertainty. If the gg channel is included at
NLO, the total uncertainty is dominated by the qq̄ channel so a
precise procedure of how to combine the qq̄ and gg uncertainties
is not important.

In summary We have calculated the NLO QCD
corrections to the gg ! W+W� ! l+1 ⌫1l

�
2 ⌫̄2 process

at the LHC. These corrections increase the gluon fusion
cross section by 20%�80%, depending on the center-of-
mass energy and the scale choice. The impact of these
corrections on the pp ! W+W� production cross sec-
tion is moderate; they increase the NNLO QCD theory
prediction by about two percent, which is comparable
to the current estimate of the theoretical uncertainty
at NNLO. We have also calculated the gg ! W+W�

cross section through NLO in perturbative QCD sub-
ject to kinematic cuts used by the ATLAS collabora-
tion to measure the pp ! W+W� cross section. For
the fiducial cross section, we found a smaller increase of
around 20% for our central scale choice. Nevertheless,
this contribution further increases the fiducial volume
cross section, moving the theoretical result closer to the
experimental one.
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Estimating the NNLO QCD corrections by re-
scaling inclusive ones, we find that they can add 
additional 4-20 fb, for ee and electron-muon 
channels, respectively.  This will make  theory 
and experiment agree to within one sigma. 

 F. Caola,  K. Melnikov,  R. Rontsch, L.  Tancredi
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Vector bosons plus jet
NNLO QCD computations for W+j and Z+j are now  available. Corrections  are found to 
be quite small. 

These results can be  used for better background modeling, for improved understanding 
of the W and Z bosons  transverse momentum distribution and for constraining the gluon 
PDF.

Bougezhal, Focke, Liu, Petriello
Gehrmann-de Ridder, Gehrmann, Glower, Huss, Morgan
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Also studied by Bougezhal, Campbell, Ellis, Focke, Giele, Liu, Petriello
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Conclusion
Our ability to perform NNLO QCD computations increased dramatically  during the past year. 
Development of robust theoretical methods finally paid off and allowed us to compute large number of 
2 -> 2 processes through NNLO QCD in a fully exclusive  manner.  

Phenomenological reach of these computations is very broad and impacts studies of top quark 
properties, understanding the Higgs boson couplings,  extraction of parton distribution functions, 
measurements of the strong coupling constant and refined modeling of backgrounds. 

Further developments of  theoretical methods for these computations will involve massive loops, 
higher multiplicity final states, unitarity and improvements in the efficiency of subtraction methods. 

NNLO QCD  is the ``last perturbative order’’ that is possible to study without understanding non-
perturbative effects at colliders ( exceptions are processes with very large NLO QCD
corrections). 

NNLO is a  high enough perturbative order to provide  both correct  physics and high precision. Use 
of NNLO should naturally reduce the reliance on resummations and parton showers  outside of their 
applicability region.

NNLO QCD predictions show that after a certain level of precision, it is not possible to rely on the 
approximate ways of computing radiative corrections;  full fixed order calculations are needed.   This 
is especially true for hard fiducial cross sections that, in fixed order calculations, can be computed for 
the same sets of cuts  that are used in the measurement.  
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Conclusion
The LHC is the first hadron collider where outcomes of hard proton collisions can be predicted  
with  a few percent precision for a large number of diverse final states.  The possibility to do that is 
the result of spectacular progress in technology of perturbative QCD that occurred in recent 
years. 

Further improvements of  theoretical methods are required to pursue this research program. They 
include  understanding  massive loops,  development of  two-loop  unitarity and improvements in 
the efficiency of subtraction methods. 

Precision studies at the LHC will allow determination of Higgs couplings with a few percent 
precision or perhaps even better if theoretical and experimental progress continues at a pace. that 
we have seen in recent years. 

Equally important, progress with precision predictions for complex multi-particle final states  
should allow for broad-band searches for (correlated) deviations in multitude of kinematic 
distributions that can be measured for various final states at the LHC.  Such correlated deviations 
-- if discovered -- will signal the presence of physics beyond the SM which is too heavy to be 
observed at the LHC  and, in this way, will allow us to determine the energy scale where the 
Standard Model breaks down.

Moreover, to fully benefit from these theoretical developments, we will need  to  better 
understand parameters that enter  calculation of cross sections (PDFs, masses, couplings, etc.),  to 
include   electroweak corrections, to work only with realistic final states and fiducial cross sections 
and to understand the limitations of various approximations that we currently use in theoretical 
computations. 
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Conclusion

With data taken in coming years at or near to the design  energy of 14 TeV, a broader 
picture for physics at the TeV  scale will emerge with implications for the future of the 
energy frontier  program.  Amongst the essential inputs will be  precision measurements of 
the properties of the Higgs boson and direct (as well as indirect (K.M.) ) searches for new 
physics that will make significant inroads into new territory. 
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