
Fakultät Physik Institut für Kern- und Teilchenphysik

Rivet – a toolkit for theory-data comparisons
at high-energy colliders

Introduction and tutorial

Frank Siegert, TU Dresden

Freiburg Graduate School Seminar, May 2019

Theory-data comparisons at colliders

In our detectors:
Energy deposits & tracks

Particles interacting with detector:
Stable hadrons

Interesting for our understanding:
Fundamental physics!

What’s the best level for

theory-data comparison?

Theory-data comparisons at colliders

[ATLAS event display from 13 TeV collisions]

In our detectors:
Energy deposits & tracks

Particles interacting with detector:
Stable hadrons

Interesting for our understanding:
Fundamental physics!

What’s the best level for

theory-data comparison?

Theory-data comparisons at colliders

?

In our detectors:
Energy deposits & tracks

Particles interacting with detector:
Stable hadrons

Interesting for our understanding:
Fundamental physics!

What’s the best level for

theory-data comparison?

Theory-data comparisons at colliders

In our detectors:
Energy deposits & tracks

Particles interacting with detector:
Stable hadrons

Interesting for our understanding:
Fundamental physics!

What’s the best level for

theory-data comparison?

Theory-data comparisons at colliders

In our detectors:
Energy deposits & tracks

Particles interacting with detector:
Stable hadrons

Interesting for our understanding:
Fundamental physics!

What’s the best level for

theory-data comparison?

Detector (reconstruction) level

Many LHC analyses compare data and theory at detector level:

• Data digitised and reconstructed into high-level calibrated objects:
jets, e, µ, τ , γ

• Theory simulated in Monte-Carlo event generators and particles
passed through detector simulation + digi + reco

+ Straightforward – no thinking needed once detector simulation
available

+ Robust

− Comparing to multiple theories needs CPU for detector simulation

− Reproduction of analysis needs experimental experts (→ analysis
preservation!)

− Physicists outside experiment cannot repeat comparisons to data,
e.g. with new calculations or models

Mainly used in searches for BSM physics.

Parton level

Some analyses correct data to the parton level using MC generators
• Correction for detector effects and

non-perturbative effects:
– (parton shower and QED FSR)
– hadronisation and hadron decays
– multiple parton interactions
– beam remnants and intrinsic k⊥

+ Simple comparison to parton-level
calculations

− Additional effort to determine NP
corrections robustly

− MC model dependence transferred to
measurement!
“Measurement of the p⊥ spectrum of Pythia v8.235

status-23 top-quarks with the XYZ detector at
√

s = 13 TeV”

→ useless analysis preservation?

Fortunately not used very often for final LHC measurements!

Particle level

Rivet1 advocates measurements at the {particle|hadron|truth} level
• Measurements (as opposed to searches) resemble our final word

from the experiment on a given process/observable

→ should be independent from current theory understanding and MC

• Only detector effects removed by unfolding procedure

– If done correctly, very model-independent

− Needs robust unfolding procedure during analysis

+ Easy comparison to other (newer) theories and MC modelling outside
the original experiment

+ Can typically also be used to compare to parton-level calculations

– Might need NP corrections for PL calculation, depending on observable
– Notable exception: heavy-flavour tagged jets – often defined based on

B-hadrons

. . . and tries to make their implementation/sharing simple.

1(together with basically all of the LHC community)

Rivet
Rivet is an analysis system for MC events + lots of analyses
∼ 500 built-in! ∼ 50 are pure MC, and some double-counting

I Easy and powerful way to get physics
numbers & plots from any MC gen

I LHC standard for preserving data analyses:
standard in ATLAS & CMS SM

I Origins in SM, and particularly QCD for
MCs – extended for search preservation
since v2.5 by adding detector
transfer-function features

I C++ library with Python interface, analyses
are plugins, code is “clean”

I “If you can’t write a Rivet analysis for it,
it’s probably unphysical”!

2008 2010 2012 2014 2016 2018
Year

0

100

200

300

400

500

an

al
ys

es

Generator independence

A Pythia8 t̄t event visualised from HepMC output:

PDF link

Most of this is not standardised: Herwig and Sherpa look very different.
But final states and decay chains have to have equivalent meaning.

http://www.ppe.gla.ac.uk/~abuckley/top-0002.pdf

Analysis coverage / wishlist
Lots of analyses, but we’re still missing a lot! You can help. . .

Semi-automatic Rivet LHC analysis wishlist

2008 2010 2012 2014 2016 2018
Year

0

100

200

300

400

500

an

al
ys

es

https://rivet.hepforge.org/rivet-coverage
https://rivet.hepforge.org/rivet-coverage

First Rivet runs

Command-line interface

rivet and other command line tools to query and
run routines

I List available analyses:
rivet --list-analyses

I List ATLAS analyses:
rivet --list-analyses "ATLAS|CMS"

I Show some pure-MC analyses’ full details:
rivet --show-analysis MC_

Same metadata and API docs online at http://rivet.hepforge.org

All Rivet commands start with rivet-, so tab-complete lists them all

http://rivet.hepforge.org

Running existing analyses

To avoid huge files, we get the events
from generator to Rivet by writing
HepMC (from Py8) to a filesystem pipe

$ mkfifo fifo.hepmc

$ run-pythia -n 200000 -e 8000 -c Top:all=on -o fifo.hepmc &

$ rivet fifo.hepmc -a MC_TTBAR,MC_JETS,MC_FSPARTICLES

-a ATLAS_2015_I1404878,CMS_2016_I1473674

$ rivet-mkhtml Rivet.yoda:’Pythia8 $t\bar{t}$’

By default unfinalised histos are written every 1000 events: monitor
progress through the run. Killing with Ctrl-C is safe: finalizing is run

Plotting

“YODA” stats library — http://yoda.hepforge.org
Bin-width handling, bin gaps, object ownership,
thread-safety⇒ non-ROOT histogramming

I Separation of stats from presentation:
plotting via make-plots script

I Text-based data format with all second-order
stat moments: full stat merging up to all
means and variances

I YAML metadata and zipped read/write
from v1.7.0

I Being gradually extended to handle more
complex physics data types

CLI tools: yodals, yodadiff, yodamerge, yodascale,
yoda2root, etc.

b

b
b b b b b b b b b b

b b
b
b b

b
b
b

b
b

b
b

b

b

b

Datab

Py8

10−2

10−1

1

10 1

Charged jet prel
⊥ (anti-kt, R = 0.4, y 0.0-1.9, p⊥ 15.0-24.0)

1/
N

je
td

N
/

d
pre

l
⊥

[G
eV

−
1]

0 0.5 1 1.5 2

0.6

0.8

1

1.2

1.4

Charged particle prel
⊥ [GeV]

M
C

/D
at

a

http://yoda.hepforge.org

Writing a first analysis

Writing an analysis

Writing an analysis is of course more involved

But the C++ interface is pretty friendly: most analyses are short,
simple, and readable

An example is usually the best instruction: take a look at
https://rivet.hepforge.org/analyses/MC_FSPARTICLES.html

Code is “mostly normal”:

I Typical init/exec/finalize loop structure
I Histograms ∼normal; titles, etc.→ external .plot file
I Particle, Jet and FourMomentum classes with some nice things

like abseta() and abspid(), constituents, decay-chain searching,
and compatibility with FastJet objects

I Use of projections for auto-cached computations

https://rivet.hepforge.org/analyses/MC_FSPARTICLES.html

Projections

Projections are just observable calculators: given an Event object, they
project out physical observables.

Automatic caching of results leads to slightly odd calling code:

Declaration with a string name in the init method:
void init() {

...
const SomeProj sp(foo, bar);
declare(sp, "MySP");
...

}

Application in the analyze method via the same name:
void analyze(const Event& evt) {

...
const SomeProjBase& mysp = apply<SomeProj>(evt, "MySP");
mysp.foo()
...

}

Then query it about the things it has computed, via the object/ref API

Particle finders & final-state projections

Rivet is mildly obsessive about calculating from final state objects

So a very important set of projections is those used to extract final state
particles, which inherit from FinalState

I The FinalState projection finds all final state particles in a given η
range, with a given pT cutoff.

I Subclasses ChargedFinalState and NeutralFinalState have the
predictable effect!

I IdentifiedFinalState can be used to find particular particle
species. Nowadays arguably done more nicely via a Cut

I VetoedFinalState finds particles other than specified. Ditto

I VisibleFinalState excludes invisible particles like neutrinos, LSP

NB. Most FSPs can take another FSP as a constructor argument and augment it

Using an FSP to get final state particles

void init() {
...
const ChargedFinalState cfs(Cuts::pT > 500*MeV && Cuts::abseta < 2.5);
declare(cfs, "ChFS");
...

}

void analyze(const Event& evt) {
...
const FinalState& cfs = apply<FinalState>(evt, "ChFS");
MSG_INFO("Total charged mult. = " << cfs.size());
for (const Particle& p : cfs.particles()) {
MSG_DEBUG("Particle eta = " << p.eta());

}
...

}

More complex projections like DressedLeptons, FastJets, WFinder,
TauFinder . . . implement expt-like strategies for dressing, tagging,
mass-windowing, etc.

Selection cuts

Passing ordered lists of doubles to configure “automatic” cut rules is
inflexible, illegible, and error-prone. So. . .

Combinable Cut objects:

I FinalState(Cuts::pT > 0.5*GeV && Cuts::abseta < 2.5)

I fs.particles(Cuts::absrap < 3 || (Cuts::absrap > 3.2 &&

Cuts::absrap < 5), cmpMomByEta)

Can also use cuts on PID and charge:

I fs.particlesByPt(Cuts::abspid == PID::ELECTRON), or
I FinalState(Cuts::charge != 0)

Use of functions/functors for ParticleFinder filtering is also possible:
very general, especially with C++ lambdas

Jets

One more important projection set is those which find jets
There’s a JetAlg abstract interface, but almost always use FastJet, via FastJets

Define the input particles (via a FinalState), and the jet alg & params:
const FinalState fs(-3.2, 3.2);
declare(fs, "FS");
FastJets fj(fs, FastJets::ANTIKT, 0.6,

JetAlg::ALL_MUONS, JetAlg::ALL_INVISIBLES);
declare(fj, "Jets");

Get the jets and loop over them in decreasing pT order:
const Jets jets =

apply<JetAlg>(evt, "Jets").jetsByPt(20*GeV);
for (const Jet& j : jets) {

for (const Particle& p : j.particles()) {
const double dr = deltaR(j, p); //< auto-conversion!

}
}

Remember to #include "Rivet/Projections/FastJets.hh"

NB. Lots of handy functions in Rivet/Math/MathUtils.hh!

Jet flavour

FastJets automatically ghost-tags jets using b and c hadrons (and τ ’s):

I if (myjet.bTagged()) ...

I if (myjet.bTags().size() > 1) ...

And you can use Cuts to refine the truth tag:

I myjet.bTagged(Cuts::abseta < 2.5 && Cuts::pT > 5*GeV)

Jet substructure

Looking inside jets is now common practice.

Rivet doesn’t duplicate existing tools: best just to use FastJet directly
const PseudoJets psjets = fj.pseudoJets();
const ClusterSequence* cseq = fj.clusterSeq();

Selector sel_3hardest = SelectorNHardest(3);
Filter filter(0.3, sel_3hardest);
for (const PseudoJet& pjet : psjets) {

PseudoJet fjet = filter(pjet);
...

}

Note: if using FastJet3 tools, you’ll need to add lifastjettools to the
rivet-buildplugin command line. And a -L/path/to/ arg as well, until the next
release. Just compilation, no magic

Rivet’s Jet and Particle classes auto-convert to PseudoJet:
⇒ d23 = cs.exclusive_subdmerge(jetproj.jetsByPt[0], 2)

Writing, building & running your own analysis

Let’s start with a simple “particle analysis”, just plotting some simple
particle properties like η, pT, φ, etc. Then we’ll try jets or W/Z.

To get an analysis template, which you can fill in with an FS projection
and a particle loop, run e.g. rivet-mkanalysis MY_TEST_ANALYSIS – this
will make the required files.

Once you’ve filled it in, you can either compile directly with g++, using
the rivet-config script as a compile flag helper, or run
rivet-buildplugin MY_TEST_ANALYSIS.cc

To run, first export RIVET_ANALYSIS_PATH=$PWD, then run rivet as
before. . . or add the --pwd option to the rivet command line.

BSM searches and detector effects

Detector effects

Normal in SM, top, etc. measurements to unfold detector effects.
Usually “uneconomic” to do that for BSM searches

Explicit fast detector simulation vs. smearing/efficiencies:

MC truth
Detector hits

Digitization
Trigger

Det

Reco

Reco/analysis
??

Triggers
Efficiencies

Smearing

I (Private) reco algorithms already reverse most detector effects
I Reco calibration to MC truth, so kinematics usually subleading
I Efficiency & mis-ID effs dominate – tabulated in all fast-sims
I ⇒ flexible parametrisation: effs change with analysis phase-space,

experiment reco-code version, collider run, . . .
and need to guarantee stability for preservation

Using Rivet’s fast-sim tools

Smearing is provided as “wrapper projections” on normal particle, jet,
and MET finders.

Smearing configuration via efficiency/modifier functions.

To use, first #include "Rivet/Projections/Smearing.hh"

Examples:
FinalState es1(Cuts::abseta < 5 && Cuts::abspid == PID::ELECTRON);
SmearedParticles es2(es, ELECTRON_EFF_ATLAS_RUN2, ELECTRON_SMEAR_ATLAS_RUN2);
declare(es2, "Electrons");

FastJets js1(FastJets::ANTIKT, 0.6, JetAlg::DECAY_MUONS);
SmearedJets js2(fj, JET_SMEAR_ATLAS_RUN2, JET_EFF_BTAG_ATLAS_RUN2);
declare(js2, "Jets");

...

Particles elecs = apply<ParticleFinder>(event, "Electrons").particles(10*GeV);
Jets jets = apply<JetAlg>(event, "Jets").jetsByPt(30*GeV);

Standard global functions here, but private fns or inline lambdas better when possible

Selection tools for search analyses

Search analyses typically do a lot more “object filtering” than
measurements. Lots of tools to express complex logic neatly:

I Filtering functions: filter_select(const Particles/Jets&, FN),
filter_discard(...) + ifilter_* in-place variants

I Functors for common “stateful” filtering criteria:
PtGtr(10*GeV), EtaLess(5), AbsEtaGtr(2.5), DeltaRGtr(mom, 0.4),
ParticleEffFilter(FN), ...

Lots of these in Rivet/Tools/ParticleBaseUtils.hh,
Rivet/Tools/ParticleUtils.hh, and Rivet/Tools/JetUtils.hh

I any(), all(), none(), etc. – accepting functions/functors

I Cut-flow monitor via #include "Rivet/Tools/Cutflow.hh"

Let’s try it out... preparations

On lxplus
source /cvmfs/sft.cern.ch/lcg/releases/LCG_88/gcc/6.2.0/x86_64-centos7/setup.sh

source /cvmfs/sft.cern.ch/lcg/releases/LCG_88/Python/2.7.13/x86_64-centos7-gcc62-opt/Python-env.sh

source /cvmfs/sft.cern.ch/lcg/releases/LCG_88/MCGenerators/rivet/2.7.2/x86_64-centos7-gcc62-opt/rivetenv.sh

... or using docker image
• Follow instructions in https://rivet.hepforge.org/trac/wiki/Docker

• Use Rivet version X.Y.Z = 2.7.2

... or installing locally
• Install locally using bootstrap script as described in

https://rivet.hepforge.org/trac/wiki/GettingStarted

Get some event files for testing

wget http://www.hepforge.org/archive/rivet/LHC-Zee-LOPS.hepmc.gz

wget http://www.hepforge.org/archive/rivet/LHC-Zee-MEPS1.hepmc.gz

https://rivet.hepforge.org/trac/wiki/Docker
https://rivet.hepforge.org/trac/wiki/GettingStarted

Writing a simple analysis

Let’s start simple and analyse the number of particles with pT > 100 MeV and |η| < 5.
(loosely following https://rivet.hepforge.org/trac/wiki/WritingAnAnalysis)

Create skeleton
rivet-mkanalysis MY_TEST_ANALYSIS

Boilerplate

class MY_TEST_ANALYSIS : public Analysis {

public:

DEFAULT_RIVET_ANALYSIS_CTOR(MY_TEST_ANALYSIS);

Histo1DPtr _h_nparticles;

[...]

};

// The hook for the plugin system

DECLARE_RIVET_PLUGIN(MY_TEST_ANALYSIS);

https://rivet.hepforge.org/trac/wiki/WritingAnAnalysis

Writing a simple analysis

Initialisation
void init() {

// Initialise and register projections

declare(FinalState(Cuts::abseta < 5 && Cuts::pT > 100*MeV), "FS");

// Book histograms

_h_nparticles = bookHisto1D("nparticles", 60, 0.0, 600.0);

}

Writing a simple analysis

Per-event analysis

void analyze(const Event& event) {

// Apply projections to event

FinalState fs = apply<FinalState>(event, "FS");

Particles particles = fs.particles();

// Fill histograms

_h_nparticles->fill(particles.size(), event.weight());

}

Writing a simple analysis

Finalisation of histograms

void finalize() {

scale(_h_nparticles, crossSection()/picobarn/sumOfWeights());

}

Compile!

$ rivet-buildplugin MY_TEST_ANALYSIS.cc

Run!
$ rivet --pwd -a MY_TEST_ANALYSIS -H Rivet-ZeeLOPS.yoda LHC-Zee-LOPS.hepmc.gz

Plot!
$ rivet-mkhtml Rivet-ZeeLOPS.yoda

$ firefox rivet-plots/index.html

Using more projections

Let’s also look at the pair of leptons, which we expect in our DY events:

Boilerplate

Histo1DPtr _h_nparticles, _h_zmass, _h_zpt;

Using more projections

Initialisation
void init() {

// Initialise and register projections

declare(FinalState(Cuts::abseta < 5 && Cuts::pT > 100*MeV), "FS");

FinalState fs;

declare(DressedLeptons(fs, 0.1, Cuts::pT > 20*GeV && Cuts::abseta < 2.5),

"Leptons");

// Book histograms

_h_nparticles = bookHisto1D("nparticles", 60, 0.0, 600.0);

_h_zmass = bookHisto1D("zmass", 60, 60.0, 120.0);

_h_zpt = bookHisto1D("zpt", 100, 0.0, 200.0);

}

Using more projections

Per-event analysis

void analyze(const Event& event) {

FinalState fs = apply<FinalState>(event, "FS");

Particles particles = fs.particles();

_h_nparticles->fill(particles.size(), event.weight());

Particles leptons = apply<FinalState>(event, "Leptons").particles();

if (leptons.size()==2) {

_h_zmass->fill(

(leptons[0].momentum()+leptons[1].momentum()).mass(), event.weight());

_h_zpt->fill(

(leptons[0].momentum()+leptons[1].momentum()).pT(), event.weight());

}

}

Using more projections

Finalisation of histograms

void finalize() {

scale(_h_nparticles, crossSection()/picobarn/sumOfWeights());

scale(_h_zmass, crossSection()/picobarn/sumOfWeights());

scale(_h_zpt, crossSection()/picobarn/sumOfWeights());

}

Conclusions

• Particle level analyses are the most future-proof form of
preserving measurements

• Rivet provides a framework for particle-level analyses in
elegant way

• Huge library of implementations of analyses from LEP,
Tevatron, LHC, HERA, RHIC, SPS, . . .

– ATLAS analysers: Need your help to keep this as complete as possible!

Outlook: Didn’t cover aspects relevant for some of you:
• ATLAS analysers: Rivet_i interface in Athena
• BSM aficionados: Triggers/efficiencies/smearing for reco-level objects
• N(N)LO calculators: dealing with correlated events (e.g. subtraction)
• Dark Matter searchers: Sorry, probably not very useful for your work.

Questions?

