GRK-Seminar: Mass and Symmetries after the Discovery of the Higgs Particle at the LHC

Measuring

the Electric Dipole Moment of Protons

May 22nd, 2019

Achim Stahl – RWTH Aachen University – JARA-FAME

In the beginning ...

matter

anti-matter

created matter and antimatter in equal amounts

... the Big Bang

tested in the lab

"a million times"

Achim Stahl. May 22nd, 2019

Today ...

... we only find matter,

Achim Stahl. May 22nd, 2019

Evolution of Matter

Galaxy A1689-zD1: ~700 million years after the Big Bang

matter and antimatter annihilated ...

How ?

Gala

... some matter survived

~4.5 billion years: Sun, Earth, and solar system have formed

• 13.7 billion years: Present

Big Bang

Radiation era

~ ~300,000 years: "Dark Ages" begin

~400 million years: Stars and nascent galaxies form

on years: Dark ages end

Today ...

Baryon to Photon Ratio:

$$\eta = rac{n_B - n_{\overline{B}}}{n_\gamma} pprox 5 \cdot 10^{-10}$$

 $egin{aligned} n_\gamma &pprox 0.4/mm^3\ n_B &pprox 0.2/m^3\ n_{\overline{B}} &pprox 0 \end{aligned}$

Standard Model fails by many orders of magnitude

... we only find matter,

Achim Stahl. May 22nd, 2019

The Fate of Antimatter ?

Topic of JARA-FAME

Achim Stahl. May 22nd: 2019

Content

- The Fate of antimatter Introduction
- EDM: Experimental Method
- Electrostatic Storage Rings
- Experimental Strategy and Goals

Matter and antimatter

annihilated

Achim Stahl. May 22nd, 2019

a tiny fraction of matter survived

(approx. 1 particle in 10⁹)

Achim Stahl. May 22nd, 2019

our universe

THE SAKHAROV CONDITIONS

- 1. Baryon-Number Violation
- 2. CP-Violation
- 3. Thermal Non-Equilibrium

A.D. Sakharov, *"Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe"*, Journal of Exp. and Theo. Physics Letters 5 (1967) 24 – 27.

Necessary condition for any model

BARYON-NUMBER VIOLATION

Electroweak phase transition: $T \approx 100 \text{ GeV}$

CP-VIOLATION

Standard Model !

But:
$$\eta = \frac{n_B - n_{\overline{B}}}{n_{\gamma}}$$
 too small !

NON-EQUILIBRIUM

Matter excess created in the walls between the phases

NON-EQUILIBRIUM

65

THE SAKHAROV CONDITIONS

1.	Baryon-Number Violation	theoretical ideas
2.	CP-Violation	not enough !
3.	Thermal Non-Equilibrium	several solutions

A.D. Sakharov, *"Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe"*, Journal of Exp. and Theo. Physics Letters 5 (1967) 24 – 27.

More CP-violation needed !

LEPTO- AND BARYOGENESIS

here ?

hint for leptogenesis

hint for baryogenesis

More CP-violation needed

LEPTO- AND BARYOGENESIS

Experimental search for new sources of CP-violation

Neutrino-Oscillations

Electric Dipole Moments

Electric Dipole Moment

ELECTRIC DIPOLE MOMENT

Spin: \vec{S} EDM: \vec{d}

EDM violates T CPT \rightarrow violates CP

$$\langle \vec{S} \cdot \vec{d} \rangle \stackrel{\mathsf{T}}{\Leftrightarrow} - \langle \vec{S} \cdot \vec{d} \rangle$$

EDM and QCD

T-Violation in QCD: Prefer one over the other

EDM and QCD

T-Violation in QCD: Prefer one over the other

Ţ

EDM at high energies

ATLAS Jet Event at 2.36 TeV Collision Energy 2009-12-14, 04:30 CET, Run 142308, Event 482137 http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

EDM at high energies

ATLAS Jet Event at 2.36 TeV Collision Energy 2009-12-14, 04:30 CET, Run 142308, Event 482137 http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

Experimental Method

• Field exerts a torque on the spin

- Field exerts a torque on the spin
- Spin precesses around the field direction

SPIN PRECESSION

Achim Stahl. May 22nd, 2019

eliminate magnetic fields

Problem: Magnetic effect much larger !

PROTONS in a FIELD

EXPERIMENTAL METHOD

Thomas BMT-Equation:

$$\vec{\omega} = \frac{e}{m_p} \left[a \vec{B} + \left(\frac{\gamma^2}{1 - \gamma} - a_p \right) \vec{\beta} \times \frac{\vec{E}}{c} + \frac{d}{2} \vec{C} \vec{\beta} \times \vec{B} \right) \left(+ \frac{d}{2} \vec{E} \right) \qquad a_P = \frac{g_P - 2}{2}$$

If zero: magic momentum frozen spin

Achim Stahl. May 22nd, 2019

For protons: 700.7 MeV/c

DIPOLES in a FIELD Beam-separation through B-field

Counter-rotating beams: Identifies false signal from B-field

Electrostatic Ring

ELECTROSTATIC DIPOLE

Perfect Dipole: $\vec{E} = E_0 \ \hat{e}_r$ $\varphi(r) = \varphi_0 \ (r - r_0)$

> Nominal field: 10 MV/m (+/- 200 kV over 4 cm)

ELECTROSTATIC DIPOLE Finite Element Analysis

Poisson's equation: $\Delta \varphi(x, y) = \frac{\rho}{\varepsilon_0}$

Plates: metallic surfaces with const. potential (boundary condition)
ELECTROSTATIC DIPOLE Finite Element Analysis

ELECTROSTATIC DIPOLE AGROS 2D

$$\vec{E} = -\vec{\nabla}\varphi$$

ELECTROSTATIC DIPOLE

Simple Capacitor

Field Cage

THE QUADRUPOLE FIELD

$$\varphi_Q(\vec{r}) = 2U_Q \frac{x^2 - y^2}{d^2}$$

$$\vec{E}_Q(\vec{r}) = \frac{4U_Q}{d^2}(-x, y, 0)$$

THE QUADRUPOLE FIELD

Electric field fixed by potential: $\vec{E} = -\vec{\nabla} \varphi(\vec{r})$

Potential can be fixed by metal strips $\varphi(\vec{r}_i) = U_i$

Advantage:

• Arbitrary shape of field cage

Disadvantage:

- Need many different voltages
- Finite granularity of field strips

QUADRUPOLE

 $E_y(x,y)$

QUADRUPOLE

COMBINED FUNCTION

Poisson's equation is linear: $\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$ \rightarrow potential and electric fields super-impose

Combined Function: $\vec{E}_{c.f.} = \vec{E}_{\text{Dipole}} + \vec{E}_{\text{Quadrupole}} + \cdots$ \rightarrow strips: $U_{strip} = U_{Dipole} + U_{Quadrupole} + \cdots$

COMBINED FUNCTION

Combined Function: $\vec{E}_{c.f.} = \vec{E}_{Dipole} + \vec{E}_{Quadrupole} + \cdots$ \rightarrow strips: $U_{strip} = U_{Dipole} + U_{Quadrupole} + \cdots$

COMBINED FUNCTION

BEAM OPTICS

BEAM OPTICS

Combined Function

Dipole

Quadrupole

Dipole

and the second second second

П

Dipole

QL

þ

BEAM OPTICS

Combined Function

Dipole

and the second second second

П

PROTOTYPE

ground

Strategy and Goals

EXPERIMENTAL STRATEGY: 3 STEPS

Precursor @ COSY Forschungszentrum Jülich

Ongoing

- Magnetic storage ring
- Limited E-field in RF Wien filter

Prototype Ring Forschungszentrum Jülich

Could start soon

- Electrostatic storage ring
- > $p \approx 35$ MeV/c (non-magic)
- Counterrotating beams
 or
 frozen spin

Magic Ring Open Site

Final step

- Electrostatic storage ring
- Magic momentum
- Counterrotating beams
 and frozen spin

SCIENTIFIC GOALS

Scientific Motivation

- Fate of Antimatter
- θ -puzzle of QCD $-\theta \frac{n_f g^2}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{a,\mu\nu} \quad \theta < 10^{-10} ?$
- Dark Matter:
 Oscillation EDMs from axion fields

SCIENTIFIC GOALS

Scientific Motivation

- Fate of Antimatter
- θ -puzzle of QCD $-\theta \frac{n_f g^2}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{a,\mu\nu} \quad \theta < 10^{-10} ?$
- Dark Matter:
 Oscillation EDMs from axion fields

Precursor @ COSY

COOLER SYNCHROTRON

COoler SYnchrotron (COSY) at Forschungszentrum Jülich (Germany)

COOLER SYNCHROTRON

- Cyclotron as injector
- 45 MeV H⁻, 76 MeV D⁻ via stripping injection
- ~10¹¹ protons/deuterons per injection
- Polarized (p,d) beams up to 3.7 GeV/c

COOLER SYNCHROTRON

- > 100 keV and 2 MeV electron cooler
- Stochastic cooling
- RF spin manipulation
- Internal and external target places at COSY and injector cyclotron

→ Worldwide unique facility for spin physics

PRECURSOR EXPERIMENT

SPIN COHERENCE TIME

ELECTRIC FIELD IN COSY

PRECURSOR EXPERIMENT

PRECURSOR: SIMULATION

PRECURSOR: SIMULATION

PRECURSOR: RESULT

PRECURSOR: PLANS

ProEDM

PROTO-EDM RING

- Small ring (~ 100 m circumference)
- All-electric ring
- Counter-rotating beams
- Frozen spin
- Measurement of p EDM

 $E_{kin} = 30 \text{ MeV}$

- Small ring (~ 100 m circumference)
- All-electric ring
- Counter-rotating-beams
- Frozen spin
- Measurement of p-EDM

 $E_{kin} = 45 \text{ MeV}$

PROTO-EDM RING

pEDM measurement

PROTO-EDM RING

Table 1: B	lasic beam n	arameters		
	E only	$E \times B$	unit	-
kinetic energy	30	45	MeV	-
$\beta = v/c$	0.247	0.299		
momentum	239	294	MeV/c	
magnetic rigidity $B\rho$	0.798	0.981	T·m	1
electric rigidity $E\rho$	59.071	87.941	MV	hat
γ (kinetic)	1.032	1.048		
emittance $\varepsilon_x = \varepsilon_y$	1.0	1.0	mm∙mrad	
acceptance $a_x = a_y$	1.0	10.0	mm∙mrad	_
				units
# F	B-E deflect	ors	8	units
# a	rc D quad	s	4	
# a	rc F quad	2	8	
# s	traigh qua	ds	4	
	ad length		0.400	m
stra	aight lengt	h	8.000	m
ber	iding radi	115	8.861	m
ele	ctric plate	length	6.959	m
are	length (4	5°)	15.718	m
cire	cumferenc	e total	100.473	m

Magic Ring

THE MAGIC RING

- Magic momentum: $p = 701 \text{ MeV/c} \quad E_{kin} = 233 \text{ MeV}$
- > All-electric
- Counter-rotating beams
- Frozen spin
- Measurement of p-EDM (static and oscillating)
 - Design in progress (systematic limitations!)
 - Many new ideas
 - Site-open studies
 - Ultimate sensitivity !

Conclusions

- EDM: Window to CP-Violation
- Proton: longterm improvents
- Interesting experimental challenges

New collaborators welcome

Backup

Achim Stahl. May 22nd, 2019

77

AGROS: DIPOLE mpact of imperfections on the field				
Mechanical percision: better than 0.1 mm Voltages better than 10^{-3} A. 0. 1mm le C. voltage -0.1%				
	$\frac{\Delta E_x}{/E_x(0,0)}$	$\Delta \mathbf{E}_{\mathbf{x}}(5mm)/E_{x}$	$\frac{E_y/E_x}{(5\text{mm, 5mm})}$	D. +150V
nom	0.000 %	-0.024 %	-5500 V/m	
А	0.058 %	-0.045 %	-7000 V/m	
В	0.001 %	-0.022 %	+ 6500 V/m	
С	-0.045%	-0.028 %	-5700 V/m	
D	0.003 %	-0.020 %	+6800 V/m	

y = 0 mm

y = 5 mm

1ST IDEA ON MECHANICS

Steel disks every 10 cm (?) electrodes glued into stiff plates might need stiffeners inside plates

BEAM POSITION MONITORS

MECHANICAL POSITIONING

MECHANICAL POSITIONING

- Travel ranges 50 to 1800 μm
- Resolution to 0.1 nm
- Linearity error 0.02 %
- Direct metrology with capacitive sensors
- X, XY, Z, XYZ versions

Piezo-Actuators ?

Laser alignment system used for example in CMS (Stefan Schael)

- IR-Laser (amplitude modulated)
- Si-strip detectors detect beam
- Metal layers removed for transmission of IR-beam

VACUUM SYSTEM

VACUUM SYSTEM

MAGNETIC SHIELDING

Systematics

Absolute average change of the vertical spin component ΔS_y per turn for different Δy_{RMS} and an initial Wien filter phase 0°. Wien filter magnetic field 10⁻⁴ mT (0.8 m length) and