Double Beta Decay and Lepton Number Violation

if neutrinos acquire their mass by coupling to the Higgs, in the same way as the charged leptons, why should the coupling be so different ?

 $\nu_{\rm I}$

 v^{c}

Neutrino Mass

SM massterms: $m(\overline{e}_L e_R + \overline{e}_R^c e_L^c)$

$$\mathbf{v}_{R}^{\mathbf{v}_{L}} = \mathbf{v}_{R}^{\mathbf{v}_{L}}$$

$$\mathbf{v}_{R} \neq \mathbf{v}_{D}^{\mathbf{c}}$$

Majorana $v_{M,L} = v_L + v_L^c$ $v_{M,R} = v_R^c + v_R$ Majorana Neutrino

n

 $\mathbf{v}_{\mathbf{M}} = \mathbf{v}_{\mathbf{M}}^{\mathbf{c}}$

Majorana Neutrino

 $\mathbf{v}_{\mathbf{M}} = \mathbf{v}_{\mathbf{M}}^{\mathbf{c}}$

 $\left(\begin{array}{cc} \mathbf{U} & \mathbf{m}_{\mathrm{D}} \\ \mathbf{m}_{\mathrm{D}} & \mathbf{M}_{\mathrm{D}} \end{array}\right)$

 $m_1 = m_D^2 / M_R$

mostly left-handed, active
=> V we know

 m_D normal Fermion-mass M_R ~ higher scale (GUT ?)

 $m_2 = M_R$

mostly right-handed, sterile

v has no charge \Rightarrow can be Majorana-particle \Rightarrow can explain small **v** – mass (even with normal m_D)

Neutrino is a normal Fermion, it just happend to have no charge

- \Rightarrow heavy right handed partner
- \Rightarrow decays in early Universe $\Delta L \neq 0$
- \Rightarrow creates Matter Antimatter imbalance

v has no charge \Rightarrow can be Majorana-particle \Rightarrow can explain small **v** – mass (even with normal m_D)

Neutrino is a normal Fermion, it just happend to have no charge

- \Rightarrow heavy right handed partner
- \Rightarrow decays in early Universe $\Delta L \neq 0$
- \Rightarrow creates Matter Antimatter imbalance

Search for Neutrino-less Double Beta Decay $\Lambda L \neq 0$

easiest but not easy way to see

if $\boldsymbol{\mathcal{V}}$ are Majorana-type

- ⇒ checks Majorana character
- \Rightarrow very sensitive to m_v

Double Beta Decay and Lepton Number Violation $\Delta L \neq 0$

n

easiest but not easy way to see

if V are Majorana-type

mid term: **a few 10²⁶ yrs** ($m_{\beta\beta} \sim 40-100 \text{ meV}$) long term: **a few 10²⁷ yrs** ($m_{\beta\beta} \sim 10-20 \text{ meV}$)

Double Beta Decay and Lepton Number Violation $\Delta L \neq 0$

n

Double Beta Decay and Lepton Number Violation $\Delta L \neq 0$

Search for N

n

 $\Delta L \neq 0$

	GERDA	
Ge detectors	Majorana	very good ΔE (narrow ROI)
	LEGEND	
liquid noble gas	EXO	
Xe	nEXO	large detector masses
loaded liquid	KamLAND-Zen	self shielding
scintillator	KamLAND2-Zer	1
	SNO+	
gaseous detectors	SuperNEMO	
Xe, Se,Nd,Ca	NEXT	tracking
	PANDA - X	
CdZnTe detectors	COBRA	
cryo bolometers Te	CUORE	larger variety of isotopes
cryo + light Te, Mo	Cupid, AMoRe	
compatativa limita	rupping	in preparation P ⁸ D and future projects
competenve innits	Turning	Rad and future projects

liquid Xenon TPC enriched in ¹³⁶Xe (80.6 %), charge and light detection

arXiv 1906.02723

WIPP New Mexico USA

 $\Delta E \sim 70 \text{ keV FWHM}$

self shielding, multi site recognition

EXO 200: 170 kg_{isotope} total / 80 kg_{isotope} active volume

results:234 kg·yr exposuresensitivity $5.0 \cdot 10^{25}$ yr $T_{1/2}^{0\nu\beta\beta} >$ $3.5 \cdot 10^{25}$ yr

background in ROI 170 / FWHM·t_{isotope}·yr

Avalanche photodiode (APD) array observes prompt scintillation

collection grids give give x,y position

liquid Xenon single TPC **5000 kg enriched IXe** expected to be at **SNOLAB** improved performance: energy and position resolution

R&D on Ba-tagging

goal $T_{1/2}^{0\nu\beta\beta} > 9,2 \cdot 10^{27}$ yr exclusion 5,7 $\cdot 10^{27}$ yr discovery

background in ROI ~ 0.6 / FWHM·t_{isotope}·yr

arXiv 1710.05075

 $\Delta L \neq 0$

3 m diam. ballon: **liquid scintillator** loaded with enriched Xenon inserted into KamLAND

 $\Delta E \sim 250 \text{ keV FWHM}$

results: 383 kg Xe / 110 kg_{isotope} in FV ~ 600 kg·yr $T_{1/2}^{0\nu\beta\beta} > 10.7 \cdot 10^{25}$ yr sensitivity 5.6 \cdot 10^{25} yr background in ROI ~ 60 / FWHM · t_{isotope} · yr

Liquid Scintillator - SNO+

infrastructure at SNOLAB

Phase I: acrylic vessel filled with LS + 4000 kg of nat-Te (~30% Te-130)

LS filling 2019 Te loading 2020

sensitivity goal $T_{1/2}^{0\nu\beta\beta} > 1.9 \cdot 10^{26}$ yr

Phase II: more Te, better FWHM

THEIA project: 50 kton water-based liquid scintillator solar-v will be dominant background

$\Delta L \neq 0$

calorimetry at mK temperature

in natural TeO₂ crystals ¹³⁰Te (30%)

CUORE 750 kg TeO₂ (206 kg 130 Te) 988 crystals

results 2019:

369,9 kg.yr (103 kg·yr ¹³⁰Te)

 $\Delta E \sim 8 \text{ keV FWHM}$

 $T_{1/2}^{0\nu\beta\beta} > 2,3.10^{25} \text{ yr}$

background in ROI ~ 450 / FWHM·t_{isotope} · yr

goals:

goal sensitivity

 $T_{1/2}^{0\nu\beta\beta} > 9.5 \cdot 10^{25} \text{ yr}$ background

~ 180 / FWHM·t_{isotope}·yr

potential upgrade with calorimetry + light CUORE => CUPID

AMORE @ Yangyang UGL Korea goal

sensitivity $T_{1/2}^{0\nu\beta\beta} > 3.10^{26}$ yr for ¹⁰⁰Mo 250kg·yr exposure

AMORE-Pilot results $2kg CaMoO_4$, 0,3 kg*yrs exposure still very high background $T_{1/2}^{0\nu\beta\beta} > 9,5\cdot 10^{22} \text{ yr}$

CANDLES @ Kamioka / Japan ⁴⁸Ca hightes Q-value 4,27MeV, lowest abundance 0,187%

 $\begin{array}{l} 305 \text{ kg CaF scintillator detectors} \\ \text{ in liquid scintillator} \\ \text{result from 131 days} \\ T_{1/2}{}^{0\nu\beta\beta} > 6,2\cdot 10^{22} \text{ yr} \end{array}$

working on scintillating bolometers first demonstration results

Ge Semiconductor - MAJORANA

Ge detectors Cu/Pb shielding

Sanford Lab , USA 44.1 kg ⁷⁶Ge (88%) running

PRC 100 025501 (2019)

results

26 kg∙yr

 $T_{1/2}^{0\nu\beta\beta} > 2.7 \cdot 10^{25} \text{ yr}$

background in ROI 18 / FWHM·t_{isotope}·yr

$\Delta E \sim 3 \text{keV FWHM}$

LAr veto combines

selfshielding / veto of liquid noble gas high resolution of Ge detectors

pulse shape discrimination

multi site and surface event recognition

GERDA Phase II started Dec 2015 35,6 kg enr. Ge (86%)

goals:

- 100 kgyr
- sensitivity > 10^{26} yr
- bkg 3 / FWHM t yr

GERDA

$\Delta L \neq 0$

$\Delta L \neq 0$

Large Enriched Germanium Experiment for Neutrinoless BB Decay

pulse shape discrimination multi site and surface event recognition

- i) $\beta\beta$ decay is localized (pointlike) – single site event
- ii) signal generation mostly when charges reach region close to small electrode
- iii) different drift times for multi site events => slower signal rise
- iv) α decays at unprotected contact surface show very fast rise

- 97% of events between 600-1300keV are $2\nu\beta\beta$
- Background 250 times lower compared to Heidelberg-Moscow Exp. (~10y)

pulse shape discrimination

- single site / multi site
- \Rightarrow γ lines supressed by ~ 6
- surface / bulk
- \Rightarrow all α (surface) events removed

Science 10.112 / science.aav8613 (2019)

pulse shape discrimination multi site and surface event recognition

GERDA results

LAr veto

+

background free $0V\beta\beta$ experiment \rightarrow potential for discovery (up to ~ 10^{26} yr)

background 250 times lower compared to Heidelberg-Moscow E

makes sense to grow larger

(background goal for LEGEND 200 almost reached)

new collaboration formed LEGEND Majorana + GERDA members + others

use GERDA concept and staged approach to 1000kg

 \Rightarrow one worldwide collaboration on ⁷⁶Ge

LEGEND 200: first 200kg in GERDA setup @ Gran Sasso

• starting 2021

sensitivity $> 10^{27}$ yr

∧l_≠0

- ⁷⁶Ge available for 190kg of detectors
- funded by NSF, INFN, MPI, BMBF

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

sensitivity $> 10^{28}$ yr

LEGEND 1000: 1000kg phase depends on US down selection process

Search for Neutrinoless Double Beta Decay

∆L ≠ 0

M.J.Dolinski, A.W.P.Poon, W.Rodejohann "Neutrinoless Double-Beta Decay: Status and Prospects"; arXiv:1902.04097

∆L≠0

low background essential for discovery potential

LEGEND-1000

10-

CUPID

10

 ΔE_{FWHM} (keV)

100

1902.04097

1000

