

SIGNAL FORMATION AND SIGNAL PROCESSING IN DETECTORS

LECTURES AT THE UNIVERSITY OF FREIBURG

MARCH 9-14, 2020

LECTURE 2

NORBERT WERMES UNIVERSITY OF BONN

- 1. What is a detector "signal"?
- 2. Charge transport in gases and solids
- 3. Induced signals on electrodes
 - Schottky-Ramo Theorem
 - Current, charge or voltage?
 - Applying Ramo to detectors
 - Structured electrodes
 - (calculation of E_W by "conformal mapping")
- 4. Signal fluctuations and (electronic) noise
 - Why bother?
 - Signal fluctuations (Fano noise)
 - Electronic noise

- 5. Readout of signals
 - Amplification
 - (Excursion: Laplace transform)
 - Filtering
 - Discrimination
 - Digitisation
 - (Example: a readout chip)
- 6. Signal transmission off detector
- 7. Noise of a readout system
 - Explicit calculation of noise
 - ATLAS pixel detector
 - ATLAS strip detector
 - ATLAS Liq. Argon calorimeter

Signal Processing, UFreiburg, 3/2020, N. Wermes

Signal Processing, UFreiburg, 3/2020, N. Wermes

Remember: Charge Sensitive Amplifier (CSA)

charge (sensitive) amplifier (CSA)
(= current integrator)

The signal current is integrated on C_f

$$v_{out}(t) = -a_0 v_{in}(t) = -\frac{1}{C_f} \int_0^t i_S dt' = -\frac{Q_S(t)}{C_f}$$

$$A_Q = \left| \frac{v_{out}}{Q_S} \right| \approx \frac{1}{C_f}$$
gain

Frequency behaviour

Signal Processing, UFreiburg, 3/2020, N. Wermes

5

Gain × Bandwidth product

Signal Processing, UFreiburg, 3/2020, N. Wermes

UNIVERSITÄT BONN

CSA input impedance and "timing"

CSA: discharging C_f

Signal Processing, UFreiburg, 3/2020, N. W

(e) Reset via current source: circuit diagram.

(f) Reset via current source: output voltage.

Short excursion: Laplace Transform

- Convenient method to switch from time to frequency domain and back.
- Very similar to Fourier transform (Laplace encompasses Fourier)

$$F(s) = \mathcal{L}[f(t)] = \int_0^\infty f(t) e^{-st} dt$$

$$s = \sigma + i\omega$$

 σ = a constant generating convergence for time-wise constraint functions

$$\mathcal{L}^{-1}[F(s)] = \frac{1}{2\pi i} \int_{\sigma-i\infty}^{\sigma+i\infty} F(s) e^{st} ds = \begin{cases} f(t) \text{ for } t \ge 0\\ 0 & \text{for } t < 0 \end{cases}$$

Laplace transform

Operation	Time domain	Frequency domain
or function	$f(t) = \mathcal{L}^{-1}[F(s)]$	$F(s) = \mathcal{L}[f(t)]$
linearity	$a_1 f_1(t) + a_2 f_2(t)$	$a_1F_1(s) + a_2F_2(s)$
convolution	$\int_0^\infty f(t-t')g(t')dt'$	F(s)G(s)
nth derivative	$rac{d^n}{dt^n}f(t)$	$s^n F(s)$
time integration	$\int_0^t f(t) dt$	$\frac{1}{s}F(s)$
scaling of t	f(at)	$rac{1}{a}F(rac{s}{a})$
time shift	$f(t-t_0)$	$e^{-st_0}F(s)$
damping	$e^{-s_0 t} f(t)$	$F(s+s_0)$
multiplication	$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} F(s)$
δ function	$\delta(t)$	1
derivative of the δ function	$rac{d^n}{dt^n}\delta(t)$	s^n
step function	$\Theta(t)$	$\frac{1}{s}$
falling exponential	e^{-at}	$\frac{1}{s+a}$
rising exponential	$1 - e^{-at}$	$\frac{a}{s(s+a)}$
power function	t^n	$\frac{n!}{s^{n+1}}$

 \triangleright

Laplace Transform: example CR-RC filter (shaper)

necessary

(i) to avoid pile-up of signals (ii) to reduce the bandwidth => reduce noise (see later)

in time domain

 $v_{sh}(t) = A \frac{t}{\tau} e^{-\frac{t}{\tau}}$ peaking at τ with v(τ) = A / 2.71

 $H(s) = A \frac{s\tau}{(1+s\tau)^2}$ in frequency domain 1/s

for N = 117

Fig. 17.12 Step response output of $CR-(RC)^M$ shaper stages of different order M. Amplitudes and times are normalised to their respective peak amplitude.

With increasing M

=> shape more Gaussian and, if one chooses a shorter peaking time, also narrower in absolute terms.
 => better double-pulse resolution

However, the electronic effort is substantially larger than for CR–RC shapers.

Bipolar shaping

JNIVERSITÄT BONN

By adding a further high-pass filter to any unipolar shaper a bipolar pulse shape is obtained with equal area in both wings. This can be done by adding a CR high-pass filter after M low-pass filters.

advantages

- digests high count rates
- is simple and robust against baseline fluct.
- is good for time-critical applications (use zero-crossing time as observable)

less good

- somewhat more power consumption
- somewhat worse S/N
- needs larger chip area

Signal Processing, UFreiburg, 3/2020, N. Wermes

Unipolar and bipolar filtering

Signal Processing, UFreiburg, 3/2020, N. Wermes

The amplifier system = preamp + shaper (= filter)

Without further corrections unipolar shaping also features unwanted undershoots in realistic applications. Origin is the (slow) discharge of the feedback capacitor C_f .

"ballistic deficit" or "shaping loss"

- If pulse evolution at the shaper input takes much longer than the shaper $\tau_{\rm CR}$
- caused e.g.
 - by a large charge collection time
 - by a large input capacitance
 - by an intrinsically slow preamplifier.
- => The v_{out} (shaper) is trimmed by the slow rise of the preamplifier output pulse.

The falling edge of the shaper output already sets in before the preamplifier output has reached its maximum value.

skip S&H?

Signal Processing, UFreiburg, 3/2020, N. Wermes

The "sample and hold" technique

- If signal shape and arrival time are known
- => sample v_{in} at a fixed time, hold them for Δt, and process later
- Sample pulse (derived from trigger and delayed coincident with the peak) opens the switches S_A for sampling on the C_i.
- readout the switches S_B are successively closed, hence sequentially transferring the stored voltages serially onto the ADC
- By fast sampling the pulse in successive time intervals and storing the voltages in a series of sample-hold cells, called analog memory, one can memorise the whole pulse shape (wave form sampling).

The discriminator

= voltage comparator needed to filter out noise hits

(a) Readout system with amplifier, shaper, and discriminator.

standard = leading edge discrimination

Constant fraction discriminator

when stable timing is an issue

- goal: discriminate at the same fraction, constant in time.
- An inverted and attenuated pulse is superimposed on the delayed pulse.
- Note time-stable zerocrossing point.

(Elements of ...) Digitisation

$$= 20 \log_{10} (2^n \sqrt{12}) \approx (6.02 n + 10.8) \,\mathrm{dB}$$

(n = no. of bits)

What matters?

- Resolution: precision of the code;
- INL (integral non-linearity): proportionality of output to input;
- DNL (differential non-linearity): homogeneity of digitisation steps;
- Conversion speed
- Rate capability: how fast successive signals can still can be correctly digitised
- Stability: sensitivity of conversion quality with wrt. to time, temperature, other params

Signal Processing, UFreiburg, 3/2020, N. Wermes

INL describes the total deviation from the expected linear behaviour. INL = maximum deviation of the measured midpoints from ideal line given as fraction of V_{max} or (usually) in units of the voltage step which corresponds to the lowest-valued bit (LSB units).

Signal Processing, UFreiburg, 3/2020, N. Wermes

ADC errors ... Differential Non-Linearity

DNL = measure of the homogeneity of subsequent digitisations

The midpoints of the voltages of subsequent codes should ideally be separated by exactly 1 LSB. The DNL describes local relative deviations of ADC codings from the (ideal) step width

(1 LSB):

DNL_i =
$$\frac{V_{i+1} - V_i}{\text{LSB}} - 1$$
 for $i = 0, 1, 2, ..., 2^n - 2$

specified as a fraction or a multiple of ±1 LSB.

DNL errors larger than -1 LSB are required to guarantee no 'missing codes'.

Signal Proc Kolanoski, Wermes 2015

and plot DNL_i as a function of the

192

256

128

SAR = Successive Approximation Register

Flash ADC

Wilkinson (\rightarrow Dual Slope) ADC

Pipeline ADC

... more

Signal Processing, UFreiburg, 3/2020, N. Wermes

FLASH ADC

Signal Processing, UFreiburg, 3/2020, N. Wermes

Dual Slope (Wilkinson) ADC

- Feedback capacitor is linearly charged and discharged, controlled by a counter.
- Charging for a time t_1 , usually until the counter reaches its maximum value determined by V_{in} .
- Then the counter is reset and the input is switched to $-V_{ref}$ (discharging starts).
- Slope (and time) of discharge depends on –V_{ref}
- Slope (and time) of charge depends on V_{in} .
- Discharging proceeds with constant slope (set by $-V_{ref}$) but with variable duration t_2 until V_0 reaches zero.
- The duration (t_2) depends on the height of V₀ reached after the end of the charging process.
- => The counter value at t_2 encodes V_{in} and is transferred into the register.

ADC type	Rel. speed (samples per s)	$\begin{array}{c} \text{Resolution} \\ \text{(bits)} \end{array}$	Chip area	Power consumption
SAR	slow-medium ($< 2 \text{Ms/s}$)	8–16	\mathbf{small}	low
Dual-slope	slow $(< 100 \text{ks/s})$	12 - 20	medium	low
Flash	very fast $(< 5 \mathrm{Gs/s})$	4 - 12	large	high
Pipeline	fast $(< 500 \mathrm{Ms/s})$	8 - 16	medium	medium

Signal Processing, UFreiburg, 3/2020, N. Wermes

DAC, TDC, etc.

DACs are characterised similarly to ADCs by resolution, linearity, and conversion speed. Integral (INL) and differential (DNL) nonlinearity are also defined as for ADCs

AN EXAMPLE FOR WHAT WE DISCUSSED SO FAR

(ATLAS) PIXEL READOUT CHIP

Pixel Frontend Chip

- ATLAS FE chips (FE-I3 and FE-I4)
 - 250 nm (IBL 130 nm) CMOS technology
 - pixel cell size: 50 x 400 μ m²
 - 18 columns x 160 rows = 2880 cells
 - parallel processing in all cells
 - - amplification
 - - zero suppression

Pixel cell: amplifier + quasi shaper + discriminator

Bus to column controller

L. Blanquart et al., NIM-A565:178-187, 2006

Pixel Frontend Chip

Requirements on the electronics performance

Distribution of pixel cell thresholds

Pixel Frontend Chip

- ATLAS FE-Chip
 - 250 nm CMOS technology
 - pixel cell size: 50 x 400 μ m²
 - 18 columns x 160 rows = 2880 cells
 - parallel processing in all cells
 - amplification
 - zero suppression

- end of column logic
 - storage of hit information during trigger latency (2.5 μs)
 - hit selection upon L1 trigger

- Hits are removed if no trigger conicidence occurs.
- Hit information agreeing with L1 trigger time are read out.

Signal Processing, UFreiburg, 3/2020, N. Wermes

skip transmission lines

Pixel R/O-Chip for HL-LHC rates (and radiation)

- Effort and costs so large that joint approach (cross experiments) is needed -> RD53 (20 Institutes)
- Higher hit rate (not smaller pixel size) requires higher logic density -> 65nm TSMC

UNIVERSITÄT BONN

Pixel R/O philosophy changes -> better architectures

3rd generation

- region architectures with grouped logic
 -> regional hit draining
- surrounded by synthesized logic ("digital sea")
- RD53 like

"analog islands in digital sea"

Signal transmission off the detector (transmission lines)

Coaxial cable and microstrip lines

JNIVERSITÄT BONN

Signal Processing, UFreiburg, 3/2020, N. Wermes

damping

of transmission line

Avoid reflections at unterminated ends ...

Termination schemes

Z

standard

(receiving-end termination)

(additional) sending-end termination

however: 50% reduction of signal from left.

Cable damping and eye diagram

$$V(x,t) = V_0 e^{i\omega t - \gamma x} = V_0 e^{i(\omega t \mp \beta x)} e^{\mp \alpha x} \qquad \Longrightarrow \qquad v(t) = v_0 \operatorname{erfc}\left(\frac{1}{2\sqrt{2}}\right)$$

 τ_0 = cable-characteristic, frequencydependent rise time function

Signal Processing, UFreiburg, 3/2020, N. Wermes

(a) Measurement set-up.

Pre-emphasis

(a) Damping correction by means of *pre-emphasis*-filter (double logarithmic representation).

(b) Eye diagram without (left) and with (right) correction.

Noise of a readout <u>system</u>

the dominant noise of a system is hidden in these parts

Signal Processing, UFreiburg, 3/2020, N. Wermes

Most critical wrt noise: the (pre)amplifier

UNIVERSITÄT BONN

Layout: nMOS and pMOS

Point at the first point of the path:

(e.g. from leakage current of a Si detector)

Signal Processing, UFreiburg, 3/2020, N. Wermes

"parallel current noise can be described by serial voltage noise"

Signal Processing, UFreiburg, 3/2020, N. Wermes

three physical noise sources:

- number fluctuations of quanta
- velocity fluctuations of quanta

shot noise and 2. 1/f noise
 thermal noise

where do they appear in a typical pixel detector readout chain?

 \rightarrow \rightarrow

Signal Processing, UFreiburg, 3/2020, N. Wermes

three physical noise sources:

number fluctuations of quanta \rightarrow velocity fluctuations of quanta \rightarrow

- 1. shot noise and 2. 1/f noise
- 3. thermal noise

where do they appear in a typical pixel detector readout chain ?

IIVERSITÄT BONN

three physical noise sources:

- number fluctuations of quanta \rightarrow
- velocity fluctuations of quanta \rightarrow

- 1. shot noise and 2. 1/f noise
- 3. thermal noise

where do they appear in a typical pixel detector readout chain ?

Signal Processing, UFreiburg, 3/2020, N. Wermes

CR – RC shaper (N=M=1)

It is useful to treat the serial voltage noise sources (1/f and thermal noise) as equivalent parallel current noise via the capacitance C_D at the input of the preamplifier. This is possible via the relationship

Signal Processing, UFreiburg, 3/2020, N. Wermes

This noise current, flowing through the feedback capacitance C_f , generates a noise voltage behind the preamplifier:

$$\left\langle v_{\mathrm{pa}}^2 \right\rangle = \left\langle i_{\mathrm{in}}^2 \right\rangle \, \left(\frac{1}{\omega C_f} \right)^2$$

$$\frac{d\langle v_{\text{pa}}^2\rangle}{d\omega} = \frac{eI_0}{\pi\omega^2 C_f^2} + K_f \frac{1}{C'_{ox}WL} \frac{C_D^2}{C_f^2} \frac{1}{\omega} + \frac{4}{3\pi} \frac{kT}{g_m} \frac{C_D^2}{C_f^2}$$
$$= \sum_{k=-2}^0 c_K \omega^k$$

Signal Processing, UFreiburg, 3/2020, N. Wermes

 $c_{-2} = \frac{e}{\pi} I_0 \frac{1}{C_f^2}, \qquad c_{-1} = K_f \frac{1}{C_{\text{ox}} WL} \frac{C_D^2}{C_f^2}, \qquad c_0 = \frac{4}{3\pi} kT \frac{1}{g_m} \frac{C_D^2}{C_f^2}$

... what about thermal noise in R-feedback?

Is/was argued to be small ...

it acts on the preamplifier input in a very similar way as the leakage current shot noise contribution, i.e.

$$\frac{d\left\langle v_{\rm pa}^2\right\rangle}{d\omega} = \frac{eI_0}{\pi\omega^2 C_f^2} \qquad \qquad \underbrace{^{2eI_0 \to \frac{4kT}{R_f}}}_{2eI_0 \to \frac{4kT}{R_f}} \qquad \qquad \underbrace{\frac{d\left\langle v_{\rm pa}^2\right\rangle_{R_f}}{d\omega} = \frac{2kT}{R_f} \frac{1}{\pi\omega^2 C_f^2}}_{\frac{1}{\pi\omega^2 C_f^2}}$$

Its magnitude is usually small in comparison to the other contributions, in particular to the leakage-current-induced shot noise.

Signal Processing, UFreiburg, 3/2020, N. Wermes

Signal Processing, UFreiburg, 3/2020, N. Wermes

consequences for noise BW limitation => lower noise on the expense of speed

for noise need square

$$\begin{split} \left\langle v_{\rm sh}^2 \right\rangle &= \int_0^\infty \frac{d \left\langle v_{\rm pa}^2 \right\rangle}{d\omega} \, \left| H(\omega) \right|^2 \, d\omega \\ \left\langle v_{\rm sh}^2 \right\rangle &= \sum_{k=-2}^0 \int_0^\infty c_k \omega^k \, |H(\omega)|^2 \, d\omega \\ &= A^2 \frac{1}{2} \sum_{k=-2}^0 c_k \tau^{-k-1} \, \Gamma\left(1 + \frac{k+1}{2}\right) \, \Gamma\left(1 - \frac{k+1}{2}\right) \end{split}$$

 $\Gamma(x+1) = x\Gamma(x), \qquad \Gamma(\frac{1}{2}) = \sqrt{\pi}, \qquad \Gamma(1) = 1$

Signal Processing, UFreiburg, 3/2020, N. Wermes

$$\langle v_{\rm sh}^2 \rangle = \frac{\pi}{4} A^2 \left(c_{-2} \tau + \frac{2}{\pi} c_{-1} + c_0 \frac{1}{\tau} \right)$$

with

$$c_{-2} = \frac{e}{\pi} I_0 \frac{1}{C_f^2}, \qquad c_{-1} = K_f \frac{1}{C'_{ox}WL} \frac{C_D^2}{C_f^2}, \qquad c_0 = \frac{4}{3\pi} kT \frac{1}{g_m} \frac{C_D^2}{C_f^2}$$

$$ENC = \frac{\text{noise output voltage (V)}}{\text{output voltage of a signal of } 1 e^- (V/e^-)}$$

$$\mathrm{ENC}^2 = \frac{\langle v_{\mathrm{sh}}^2 \rangle}{v_{\mathrm{sig}}^2}$$

Signal Processing, UFreiburg, 3/2020, N. Wermes

Equivalent noise charge

for 1e at the input we get
$$v_{sig} = \frac{A}{2.71} \frac{e}{C_f}$$

peak of shaper pulse
 $ENC^2 = \frac{\langle v_{sh}^2 \rangle}{v_{sig}^2}$
 $ENC^2(e^{-2}) = \frac{(2.71)^2}{4e^2} \left(eI_0 \tau + 2C_D^2 K_f \frac{1}{C'_{ox}WL} + \frac{4}{3} \frac{kT}{g_m} \frac{C_D^2}{\tau} \right)$
 $ENC^2 = a_{shot} \tau + a_{1/f} C_D^2 + a_{therm} \frac{C_D^2}{\tau}$
 $\frac{ENC^2}{e^2} = 11 \frac{I_0}{nA} \frac{\tau}{ns} + 740 \frac{1}{WL/(\mu m^2)} \frac{C_D^2}{(100 \text{ fF})^2} + 4000 \frac{1}{g_m/mS} \frac{C_D^2}{\tau} (100 \text{ fF})^2}{\tau}$

Signal Processing, UFreiburg, 3/2020, N. Wermes

 e^2

Optimal filter time

$$\operatorname{ENC}^{2} = a_{\operatorname{shot}} \tau + a_{1/\mathrm{f}} C_{D}^{2} + a_{\operatorname{therm}} \frac{C_{D}^{2}}{\tau}$$

$$\tau_{\rm opt} = \left(\frac{a_{\rm therm}}{a_{\rm shot}} C_D^2\right)^{1/2} = \left(\frac{4kT}{3 e I_0 g_m} C_D^2\right)^{1/2}$$

Signal Processing, UFreiburg, 3/2020, N. Wermes

Examples

Pixel detector. As an example featuring small electrodes and correspondingly small input capacitances we choose a silicon pixel detector (section 8.7) with parameters $C_D = 200 \,\mathrm{fF}, I_0 = 1 \,\mathrm{nA}, \tau = 50 \,\mathrm{ns}, W = 20 \,\mathrm{\mu m}, L = 0.5 \,\mathrm{\mu m}, g_m = 0.5 \,\mathrm{mS}$, where we assumed a typical leakage current before the detector received substantial radiation damage. With (17.110) an equivalent noise charge of

 $\text{ENC}^2 \approx (24 \, e^-)^2 (\text{shot}) + (17 \, e^-)^2 (1/\text{f}) + (25 \, e^-)^2 (\text{therm}) \approx (40 \, e^-)^2$

Strip detector. For a typical silicon microstrip detector (see section 8.6.2) after radiation damage one obtains with $C_D = 20 \text{ pF}$, $I_0 = 1 \text{ }\mu\text{A}$, $\tau = 50 \text{ ns}$, $W = 2000 \text{ }\mu\text{m}$, $L = 0.4 \text{ }\mu\text{m}$, $g_m = 5 \text{ mS}$:

 $\text{ENC}^2 \approx (750 \, e^-)^2 (\text{shot}) + (200 \, e^-)^2 (1/\text{f}) + (800 \, e^-)^2 (\text{therm}) = (1100 \, e^-)^2.$

Liquid argon calorimeter. As an example of a detector with a large electrode capacitance we take a liquid argon calorimeter cell with typical values as given by the ATLAS electromagnetic calorimeter (see section 15.5.3.2 on page 597) in the central region. With the parameters $C_D = 1.5 \text{ nF}$, $I_0 = \langle 2 \mu A, \tau = 50 \text{ ns}, W = 3000 \mu m$, $L = 0.25 \mu m$, $g_m = 100 \text{ mS}$, i.e. assuming only a small (negligible) parallel shot noise (leakage current), one obtains:

 $\text{ENC}^2 \approx (1000 \, e^-)^2 (\text{shot}) + (15000 \, e^-)^2 (1/\text{f}) + (13500 \, e^-)^2 (\text{therm}) \approx (20200 \, e^-)^2.$

Signal Processing, UFreiburg, 3/2020, N. Wermes

Noise in a pixel/strip/liq.Ar detector (ionisation detector)

... with CSA preamplifier & shaper

		CD	10	ĩ	w	L	g _m	ENC therm	ENC 1/f	ENC shot	ENC tot
Signal Processir	pixel	200 <u>fF</u>	1 <u>nA</u>	50 ns	20 µm	0.5 µm	0.5 <u>mS</u>	25 e⁻	17 e⁻	24 e ⁻	40 e⁻
	strip	20 pF	1 µA	50 ns	2000 µm	0.4 µm	5 <u>mS</u>	800 e⁻	200 e⁻	750 e⁻	1100 e [.]
	liq. <u>Ar</u>	1.5 <u>n</u> F	2 µA	50 ns	3000 µm	0.25 µm	100 mS	1000 e ⁻	15 000 e-	13 500 e-	20200 e-

- Rossi, Fischer, Rohe, Wermes, Pixel Detectors: from Fundamentals to Applications, Springer 2006
- > Spieler, Semiconductor Detector Systems, Oxford Univ. Press. 2005
- > Blum, Riegler, Rolandi, Particle Detection with Wire Chambers, 2010
- > Leroy and Rancoita, Radiation Interaction in Matter and Detection, World Scientific, 4th ed, 2016
- Leroy and Rancoita, Silicon Solid State Devices and Radiation Detection, 2012
- > Grupen and Shwartz, Particle Detectors, Cambridge Univ. Press, 2008
- Kolanoski, Wermes, Teilchendetektoren … Grundlagen und Anwendungen (2016) in German
- Kolanoski, Wermes, Particle Detectors ... Fundamentals and Applications (2nd Edition in English, available in 2019)
- M. Garcia-Sciveres, N. Wermes, Review of advances in pixel detectors for experiments with high rate and radiation, Reports on Progress in Physics 81 (2018) no.6, 066101

Signal Processing, UFreiburg, 3/2020, N. Wermes

