Vector Boson Scattering and Anomalous Gauge Couplings

Anja Vest

anja.vest@cern.ch

Seminar im Graduiertenkolleg "Physik an Hadron-Beschleunigern" Universität Freiburg – 20. Mai 2015

Introduction & Motivation

- Vector Boson Scattering at the LHC
- Look at Physics beyond the Standard Model
- Summary and Outlook

The Standard Model of particle physics (SM)

The Standard Model explains 3 of the 4 fundamental interactions

• Each interaction is mediated by exchanging gauge bosons

• All of them arise from local gauge symmetries,

```
SU(3)_C \times SU(2)_L \times U(1)_Y
```

generated by three types of charges

• The gauge bosons only couple to particles carrying the charge of the respective interaction

The Standard Model – electroweak symmetry breaking

The symmetry of the electroweak interaction forbids that elementary particles have mass

I This is not what we observe!

The Standard Model – electroweak symmetry breaking

The symmetry of the electroweak interaction forbids that elementary particles have mass

I This is not what we observe!

⇒ Solution: spontaneous electroweak symmetry breaking (EWSB) via Brout-Englert-Higgs mechanism

after EWSB:

- $\rightarrow~{\rm massless}~\gamma$
- \rightarrow massive W^{\pm} and Z bosons and their longitudinal polarization states
- ightarrow physical Higgs boson H^0

 $V(\phi) = -\mu^2 \phi^{\dagger} \phi - \lambda (\phi^{\dagger} \phi)^2$

The Higgs boson

arXiv:1412.8662

Particle content of the Standard Model

- Matter particles (fermions):
 - 6 quarks
 - 6 leptons
 - in 3 generations
- Force mediators (gauge bosons):
 - \bullet Photon γ
 - $\bullet \ W^{\pm}, Z \text{ bosons}$
 - $\bullet \ {\sf Gluons} \ g$
- $\bullet~{\rm Higgs}~{\rm boson}~H^0$

SM – Electroweak gauge boson self-interactions

- Electroweak gauge bosons carry weak charge
 ⇒ their self-interactions should exist
- Triple gauge couplings (TGC)

• Quartic gauge couplings (QGC)

• No neutral self-couplings

Introduction & motivation

The Standard Model

Introduction & motivation

The Standard Model

Some mechanism must regulate the WW scattering cross section to restore unitarity (probability conservation) \rightarrow scalar particle needed

A light SM Higgs boson cancels increase for large energies $(M_H \le \sqrt{\frac{8\pi\sqrt{2}}{3G_F}} \approx 1 \text{ TeV})$

Total cross sections as a function of the $V_L V_L$ center-of-mass energy:

 \Rightarrow VV scattering is a key process to experimentally probe the SM nature of EWSB!

Experimental tests of the EW theory at LEP

- EW interactions measured extensively by the LEP experiments
- Triple gauge boson couplings validated by $e^+e^- \rightarrow W^+W^-$ cross section measurements
- SM confirmed at very high precision

Experimental tests of the EW theory at LEP

Measured processes with QGC vertices at LEP:

- Significant observation of $e^+e^- \rightarrow \nu\nu\gamma\gamma$ and $e^+e^- \rightarrow W^+W^-\gamma$ with very small background OPAL, L3, OPAL, DELPHI
- Consistent with ISR/FSR processes
- No real observation of any process including QGC vertices at LEP (nor at Tevatron)

Large Hadron Collider (LHC) at CERN

- pp collisions in 27 km circumference ring
- centre-of-mass energy:
 - $\sqrt{s}=7~{\rm TeV}$ in 2010/2011
 - $\sqrt{s} = 8$ TeV in 2012
 - $\sqrt{s} = 13$ TeV about to start

Introduction & motivation

The multi-purpose detectors ATLAS & CMS

Candidate $Z \rightarrow \mu \mu$ event with high pile-up

ATLAS Experiment © 2013 CERN

Particles from interaction of interest must be separated from "pile-up"

At $\sqrt{s} = 13$ TeV: up to ~ 130 interactions per bunch crossing

Vector boson scattering at the LHC

 W^-

Vector boson scattering in "exclusive" $\gamma \gamma \rightarrow WW$

- First $VV \rightarrow VV$ analysis at the LHC!
 - CMS, $\sqrt{s}=$ 7 TeV, $\mathcal{L}=$ 5 fb $^{-1}$ JHEP 07 (2013) 116

$$pp \to p^{(*)}W^+W^-p^{(*)} \to p^{(*)}e^+\bar{\nu}\mu^-\nu p^{(*)}$$

both very forward-scattered protons escape detection

- Event selection:
 - 2 high p_T isolated opposite charge μe
 - $m(\mu^{\pm}e^{\mp}) > 20 \text{ GeV}, \ p_T(\mu^{\pm}e^{\mp}) > 30 \text{ GeV}$
 - 0 extra tracks from primary vertex
- 2 events observed

 $2.2\,\pm\,0.4$ signal and 0.84 \pm 0.15 background expected

• Measured cross section: $\sigma = 2.2^{+3.3}_{-2.0}$ fb (~ 1 σ) (predicted: $\sigma = 4.0 \pm 0.7$ fb)

 \rightarrow upper limit: $\sigma <$ 10.6 fb @ 95% C.L.

 W^{-}

Vector boson scattering in VVjj final states

Initial state: protons in LHC serve as source of vector boson beams

Vector boson scattering in VVjj final states

Vector boson scattering in VVjj final states

Final state: measurable signature in the detectors:

 $\rightarrow\,$ decay products of 2 electroweak gauge bosons + 2 "tagging" jets

VBF and Higgs boson decays to WW^*

Evidence for VBF Higgs production in $H^0 \to WW^* \to \ell \nu \ell \nu$!

 \rightarrow Significance: 3.2 s.d. (expected: 2.7 s.d.)

VVjj production process classification

VVjj production process classification

Strong VVjj production: $\mathcal{O}(lpha_{ m w}^4 lpha_s^2)$ @ LO

gauge invariantly separable: suppressed by VBS topology cuts

VBS processes (heavy vector bosons only)

Leading order cross sections (SHERPA) at $\sqrt{s} = 8$ TeV:

final state	sensitive to $VV \rightarrow$	$\sigma^{\rm EW}[{\rm fb}]$	$\sigma^{\rm strong}[{\rm fb}]$	$\sigma^{\rm EW}/\sigma^{\rm strong}$
$\ell^{\pm}\ell^{\pm}\nu\nu' jj$	$W^{\pm}W^{\pm}$	19.5	18.8	\sim 1:1
$\ell^+\ell^- \nu \nu' j j$	$W^{\pm}W^{\mp}$, ZZ	93.7	3192	\sim 1:35
$\ell^+\ell^-\ell'^\pm\nu' jj$	$W^{\pm}Z$	30.2	687	\sim 1:20
$\ell^+\ell^-\ell'^+\ell'^-jj$	ZZ	1.5	106	\sim 1:70*

* includes γ^* , would be also 1:20 – 1:30 with higher m_{ll} cut

(generator cuts: $m_{\ell\ell} > 4$ GeV, $p_T^l > 5$ GeV, $p_T^j > 15$ GeV)

 \Rightarrow Most promising measurable VVjj final state in terms of VBS:

same electric charge-sign ("same-sign") $W^{\pm}W^{\pm}jj$

 $\rightarrow\,$ no LO gg or gq initial state

numbers by P. Anger

 \Rightarrow strong $W^{\pm}W^{\pm}jj$ contributions very small

Same-sign $W^{\pm}W^{\pm}jj$ production at the LHC

• $W^{\pm}W^{\pm}jj$ VBS: no s-channel diagrams

lowest order: $W^{\pm}W^{\pm} + 2$ jets, there is no SM inclusive $W^{\pm}W^{\pm}$ production!

- Event selection according to signature:
 - $\rightarrow\,$ exactly 2 same-sign leptons, $p_T^\ell>$ 25 GeV $(e^\pm e^\pm,\,e^\pm\mu^\pm,\,{\rm and}\,\,\mu^\pm\mu^\pm)$

$W^{\pm}W^{\pm}jj$: Background suppression cuts

- Uncertainty on the modeling of low mass Drell-Yan processes $\Rightarrow m_{\ell\ell} > \rm 20~GeV$
- Prompt background (3 or more prompt leptons)

 $\rightarrow~WZ/\gamma^*$ and ZZ +jets, $t\bar{t}+W/Z$, tZj

 \Rightarrow veto events with any additional $e(\mu)$ with $p_T > 7(6)$ GeV

Conversions

- $\rightarrow\,$ prompt photon conversion: $W\gamma$
- → charge mis-ID due to bremsstrahlung with conversion (data driven): Z/γ^* +jets, di-leptonic $t\bar{t}$ decays, $W^{\pm}W^{\mp}$ +jets
- \Rightarrow Z-veto in ee channel: $|m_{ee} m_Z| > 10 \text{ GeV}$
- Other non-prompt background: (data driven)
 - \rightarrow leptons from hadron decays in jets: W+jets, semi-leptonic $t\bar{t}$ decays, dijet events
 - \Rightarrow veto events containing b-jets (reduces $t\bar{t}$)

$W^{\pm}W^{\pm}jj$ production – control regions

Phys. Rev. Lett. 113, 141803

$W^{\pm}W^{\pm}jj$ production

EW+strong measurement

("Inclusive signal region")

 $ightarrow m_{jj} >$ 500 GeV (jets with largest p_T)

invariant mass of the 2 tagging jets

$W^{\pm}W^{\pm}jj$ production

EW+strong measurement

("Inclusive signal region")

 $ightarrow \, m_{jj} >$ 500 GeV (jets with largest p_T)

EW measurement

("VBS signal region")

ightarrow additional cut on $|\Delta y_{jj}| >$ 2.4

 $|\Delta y_{jj}|$ between the 2 tagging jets

Main uncertainties from jet energy scales (up to $\sim 15\%$) and theory modelling (up to $\sim 8\%$)

$W^{\pm}W^{\pm}jj$: Lepton centrality

 $\zeta = \min[\min(\eta_{\ell 1}, \eta_{\ell 2}) - \min(\eta_{j 1}, \eta_{j 2}), \max(\eta_{j 1}, \eta_{j 2}) - \max(\eta_{\ell 1}, \eta_{\ell 2})]$

 \rightarrow Both leptons between tagging jets (in η): $\zeta > 0$

 $\rightarrow\,$ One or both leptons with larger η than closest jet: $\zeta<0$

$W^{\pm}W^{\pm}jj$ event yields

Phys. Rev. Lett. 113, 141803

VBS Signal Region							
	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	Total			
$W^{\pm}W^{\pm}$ jj Electroweak	2.55 ± 0.25	7.3 ± 0.6	4.0 ± 0.4	13.9 ± 1.2			
$W^{\pm}W^{\pm}$ jj Strong	0.25 ± 0.06	0.71 ± 0.14	0.38 ± 0.08	1.34 ± 0.26			
WZ/γ^* , ZZ , $t\bar{t}+W/Z$	2.2 ± 0.5	4.2 ± 1.0	1.9 ± 0.5	8.2 ± 1.9			
$W + \gamma$	0.7 ± 0.4	1.3 ± 0.7	-	2.0 ± 1.0			
OS prompt leptons	1.39 ± 0.27	0.64 ± 0.24	-	2.0 ± 0.5			
Other non-prompt	0.50 ± 0.26	1.5 ± 0.6	0.34 ± 0.19	2.3 ± 0.7			
Total Predicted	7.6 ± 1.0	15.6 ± 2.0	6.6 ± 0.8	29.8 ± 3.5			
Data	6	18	10	34			

 $W^{\pm}W^{\pm}jj$ sample composition in VBS signal region (all channels combined)

$W^{\pm}W^{\pm}jj$ candidate event

Phys. Rev. Lett. 113, 141803

 $\begin{array}{l} \mbox{Jets: } p_T^{j1} = 271 \ {\rm GeV}, \ p_T^{j2} = 54 \ {\rm GeV}, \ \eta^{j1} = 2.9, \ \eta^{j2} = -3.4 \\ \mbox{Muons: } p_T^{\mu 1} = 180 \ {\rm GeV}, \ p_T^{\mu 2} = 38 \ {\rm GeV}, \ \eta^{\mu 1} = 1.4, \ \eta^{\mu 2} = -1.3 \end{array}$

 $E_{\rm T}^{\rm miss} = 75 {
m ~GeV}$

$W^{\pm}W^{\pm}jj$ production cross sections

Phys. Rev. Lett. 113, 141803

	Measurement	Theory prediction PowhegBox+Pythia8
Inclusive signal r	region (EW+strong $W^\pm W^\pm$	$^{\pm}jj$ production)
Cross section [fb]	$2.1\pm0.5(\text{stat})\pm0.3(\text{syst})$	1.52 ± 0.11
Significance	4.5 s.d.	3.4 s.d.
VBS signa	Il region (EW $W^\pm W^\pm j j$ pr	oduction)
Cross section [fb]	$1.3\pm0.4(\text{stat})\pm0.2(\text{syst})$	0.95 ± 0.06
Significance	3.6 s.d.	2.8 s.d.

 \rightarrow Interference between EW and strong $W^{\pm}W^{\pm}jj$ production: ~ 7 ± 4 % (LO, evaluated with SHERPA), included in EW signal

First evidence of a process dominated by VBS and containing a quartic electroweak gauge boson vertex!

$W^{\pm}W^{\pm}jj$ production cross sections

Phys. Rev. Lett. 113, 141803

Inclusive phase space (EW+strong measurement)

VBS phase space (EW measurement)

Overview of ATLAS SM cross sections

TWiki StandardModelPublicResults

$W^{\pm}W^{\pm}jj$ production – CMS

EW+strong measurement

Backgrounds:

- non-prompt
 - → leptonic decays of heavy quarks, hadrons misidentified as leptons, electrons from photon conversions in tt decays
 - \Rightarrow veto events with any b-jets (reduces $t\bar{t}$)
- WZjj: 3 or more prompt leptons
 - $\Rightarrow\,$ veto events with any additional lepton with loose criteria

Cross section in **extended** fiducial phase space:

 $(p_T^\ell>$ 10 GeV, $|\eta_\ell|<$ 2.5, $p_T^j>$ 20 GeV, $|\eta_j|<$ 5.0, $m_{jj}>$ 300 GeV, $|\Delta\eta_{jj}|>$ 2.5)

- measured: $\sigma = 4.0 \stackrel{+2.4}{_{-2.0}} (\text{stat}) \stackrel{+1.1}{_{-1.0}} (\text{syst}) \text{ fb} (\text{expected: } \sigma = 5.8 \pm 1.2 \text{ fb})$
- significance: 2.0 s.d. (expected: 3.1 s.d.)

Anja Vest, TU Dresden

Phys. Rev. Lett. 114 (2015) 051801

$W^{\pm}W^{\pm}jj$ candidate event

Jets:
$$p_T^{j1} = 73 \text{ GeV}, p_T^{j2} = 61 \text{ GeV},$$
 $E_T^{\text{miss}} = 95 \text{ GeV}$

 Leptons: $p_T^{\mu} = 114 \text{ GeV}, p_T^e = 33 \text{ GeV}$
 $m_{jj} = 596 \text{ GeV}$

 Ania Vest, TU Dresden
 3

Look at physics beyond the SM

Look at physics beyond the SM

- The SM may be considered as a low-energy effective theory of a more complete but unknown theory
- Model independent approach: effective Lagrangian (SM + higher-dimension operators):

$$\mathscr{L}_{\text{eff}} = \mathscr{L}_{\text{SM}} + \sum_{\text{dimension } d} \sum_{i} \frac{c_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

 $\rightarrow\,$ valid only, if new physics out of direct LHC reach, $s\ll\Lambda^2$

- New physics in EW sector modify gauge boson self-interactions $\rightarrow\,$ VBS could still be strong and differ from SM predictions
- Look at genuine dimension 8 QGC operators with no effect on TGC

Look at physics beyond the SM

• Relevant effective aQGC parametrizations (examples):

EW chiral Lagrangian approach (non-linear representation, dim 4)	Effective Field Theory description (linear representation, dim 8)
WWWW, WWZZ	all VVVV
$lpha_4$, $lpha_5$	$f_{S,i}/\Lambda^4$, $f_{M,i}/\Lambda^4$, $f_{T,i}/\Lambda^4$
Appelquist et al. (1980)	Eboli et al. (2006), arXiv:hep-ph/0606118

EWchL approach can be translated in EFT description and vice versa

- $\rightarrow\,$ switch of operator basis, dependent on vertex
- $ightarrow lpha_{4/5} \leftrightarrow rac{f_{S,0/1}}{\Lambda^4}$ conversion <code>arXiv:1309.7890, arXiv:1310.6708</code>
- $\rightarrow WWWW \text{ vertex: } \alpha_4 = \tfrac{f_{S,0}}{\Lambda^4} \tfrac{v^4}{8} \quad \text{and} \quad \alpha_4 + 2 \cdot \alpha_5 = \tfrac{f_{S,1}}{\Lambda^4} \tfrac{v^4}{8}$

Unitarization

- With aQGCs unitarity may be violated even in presence of a SM Higgs
 - \Rightarrow unitarization scheme needed!
 - ightarrow all unitarization schemes are arbitrary and introduce model dependence!
- K-matrix method (WHIZARD arXiv:0806.4145)
 - scattering amplitude $\mathcal{A}(s)$ projected on Argand

 \rightarrow saturation of the amplitude

→ allows for probing the entire kinematic phase space without being unphysical

Anja Vest, TU Dresden

Constraints on aQGCs from $W^{\pm}W^{\pm}jj$

Phys. Rev. Lett. 113, 141803

Exclusion limits on α_4 and α_5 extracted from cross section in VBS phase space

• aQGC samples from $W_{HIZARD} + P_{YTHIA8}$ with K-matrix unitarization

 $\hat{=}$ Scale of new physics: $\Lambda > 500 - 650$ GeV (rule of thumb: $\Lambda = v/\sqrt{\alpha_i}$ arXiv:1307.8170)

Constraints on aQGCs from $W\gamma\gamma$ production

arXiv:1503.03243

- First evidence for $W\gamma\gamma$ production!
- Constraints on aQGC parameters

		Observed $[\text{TeV}^{-4}]$	Expected $[\text{TeV}^{-4}]$
	$f_{\rm T0}/\Lambda^4$	$[-0.9, 0.9] \times 10^2$	$[-1.2, 1.2] \times 10^2$
n = 0	$f_{\mathrm{M2}}/\Lambda^4$	$[-0.8, 0.8] \times 10^4$	$[-1.1, 1.1] \times 10^4$
	$f_{ m M3}/\Lambda^4$	$[-1.5, 1.4] \times 10^4$	$[-1.9, 1.8] \times 10^4$
	$f_{\rm T0}/\Lambda^4$	$[-7.6, 7.3] \times 10^2$	$[-9.6, 9.5] \times 10^2$
n = 1	$f_{\mathrm{M2}}/\Lambda^4$	$[-4.4, 4.6] \times 10^4$	$[-5.7, 5.9] \times 10^4$
	$f_{ m M3}/\Lambda^4$	$[-8.9, 8.0] \times 10^4$	$[-11.0, 10.0] \times 10^4$
	$f_{\rm T0}/\Lambda^4$	$[-2.7, 2.6] \times 10^3$	$[-3.5, 3.4] \times 10^3$
n = 2	$f_{ m M2}/\Lambda^4$	$[-1.3, 1.3] \times 10^5$	$[-1.6, 1.7] \times 10^5$
	$f_{ m M3}/\Lambda^4$	$[-2.9, 2.5] \times 10^5$	$[-3.7, 3.3] \times 10^5$

Constraints on $H^{\pm\pm} \to W^{\pm}W^{\pm}$

From $W^{\pm}W^{\pm}jj$ measurement (CMS):

 \to 95% CL upper limits on the cross section times branching fraction, $\sigma_{H^{\pm\pm}}\times \mathcal{B}(H^{\pm\pm}\to W^\pm W^\pm)$

Summary

- Vector boson scattering processes provide a very important test of the EW theory and of the dynamics of EW symmetry breaking
- First LHC results:
 - $\rightarrow W^{\pm}W^{\pm}jj$ production: first evidence for a process with VBS and containing an EW quartic gauge coupling
 - $\rightarrow\,$ exclusion limits set on anomalous QGC parameters

• Need to explore vector boson scattering at higher energies, complementary to studying Higgs boson properties

Outlook – LHC @ 13/14 TeV

- Look also at $W^{\pm}W^{\mp}jj$, WZjj, ZZjj and $W/Z\gamma jj$ final states, ...
- Extract longitudinal polarization states V_L
- Cross sections at 8 and 13 TeV (in VBS phase space optimized for 8 TeV):

final state	sensitive to	$\sigma^{\rm EW}[{\rm fb}]$		$\sigma^{\rm strong}[{\rm fb}]$		background
	$VV \rightarrow$	8 TeV	13 TeV	8 TeV	13 TeV	
$\ell^{\pm}\ell^{\pm}\nu\nu' jj$	$W^{\pm}W^{\pm}$	1.13	3.97	0.110	0.346	$W^{\pm}Z$, inst.
$\ell^+\ell^- u u' j j$	$W^{\pm}W^{\mp}$, ZZ	3.64	12.3	5.51	21.8	$tar{t}$ and $Z+{ m jets}$
$\ell^+\ell^-\ell'^\pm\nu' jj$	$W^{\pm}Z$	0.571	2.34	1.12	4.38	4ℓ production
$\ell^+\ell^-\ell'^+\ell'^-jj$	ZZ	0.027	0.098	0.024	0.100	inst.

by Ch. Gumpert, CERN-THESIS-2014-290

 $\rightarrow~$ At 13 TeV with \sim 5 fb $^{-1}$ similar significance expected than with 8 TeV data

Outlook – Beyond the LHC

Above $\sqrt{\hat{s}} = m_{VV} \approx 1 - 2$ TeV it will become possible to experimentally probe the SM nature of EWSB by VBS measurements

 \rightarrow Probing in particular unitarization of WW scattering, and explore dynamics well above EWSB

http://fcc.web.cern.ch

Backup

Unitarity of a theory is necessary for its consistency

- ensures that probabilities always sum to 1
- implies the optical theorem
- \Rightarrow the imaginary part of a probability amplitude Im(M) of a 2-body forward scattering is related to the total cross section
- $\Rightarrow\,$ the total cross section must not diverge

• total cross sections as a function of the VV center-of-mass energy: arXiv:0806.4145

• unitarity preservation visible only in VV scattering at large $\sqrt{\hat{s}} = m_{VV} \gtrsim 1$ TeV $\Rightarrow VV$ scattering is a key process to experimentally probe the SM nature of EWSB!

Inclusive signal region

- exactly 2 leptons with same electric charge
 - $e^{\pm}e^{\pm}$, $e^{\pm}\mu^{\pm}$ and $\mu^{\pm}\mu^{\pm}$ final states
 - $p_T^\ell > 25~{
 m GeV}$, $|\eta^\ell| < 2.5$
 - $m_{\ell\ell} > 20~{\rm GeV}$
 - $\Delta R_{\ell\ell} > 0.3$
- ullet \geq 2 jets reconstructed with the anti-k $_t$ algorithm, jet size R = 0.4
 - $p_T^{
 m jet} >$ 30 GeV, $|\eta^{
 m jet}| <$ 4.5
 - $\Delta R_{j\ell} > 0.3$
- $E_{\mathrm{T}}^{\mathrm{miss}}$ > 40 GeV
- ${\, \bullet \,}$ invariant mass of the two jets with the largest $p_T: \; m_{jj} > 500 \; {\rm GeV}$

VBS signal region

• rapidity separation between these jets: $|\Delta y_{jj}| > 2.4$

$W^{\pm}W^{\pm}jj$: kinematic distributions

Phys. Rev. Lett. 113, 141803

Anja Vest, TU Dresden

47

	Inclusive Region					
	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$			
Prompt	3.0 ± 0.7	6.1 ± 1.3	2.6 ± 0.6			
Conversions	3.2 ± 0.7	2.4 ± 0.8	-			
Other non-prompt	0.61 ± 0.30	1.9 ± 0.8	0.41 ± 0.22			
$W^{\pm}W^{\pm}jj$ Strong	0.89 ± 0.15	2.5 ± 0.4	1.42 ± 0.23			
$W^{\pm}W^{\pm}jj$ Electroweak	3.07 ± 0.30	9.0 ± 0.8	4.9 ± 0.5			
Total background	6.8 ± 1.2	10.3 ± 2.0	3.0 ± 0.6			
Total predicted	10.7 ± 1.4	21.7 ± 2.6	9.3 ± 1.0			
Data	12	26	12			

$W^{\pm}W^{\pm}jj$ – systematic uncertainties

Systematic Uncertainties $ee/e\mu/\mu\mu$ (%) - VBS SR						
Background		Signal				
Jet uncertainties	13/15/15	Theory $W^{\pm}W^{\pm}jj$ -ewk	6.0			
Theory WZ/γ^*	4.5/5.4/7.8	Jet uncertainties	5.1			
MC statistics	8.9/6.4/8.4	Luminosity	2.8			
Fake rate	4.0/7.2/6.8	MC statistics	4.5/2.7/3.7			
OS lepton bkg/Conversion rate	5.5/4.4/-	$E_{\mathrm{T}}^{\mathrm{miss}}$ reconstruction	1.1			
$E_{\mathrm{T}}^{\mathrm{miss}}$ reconstruction	2.9/3.2/1.4	Lepton reconstruction	1.9/1.0/0.7			
Theory $W+\gamma$	3.1/2.6/-	b-tagging efficiency	0.6			
Luminosity	1.7/2.1/2.4	Trigger efficiency	0.1/0.3/0.5			
Theory $W^\pm W^\pm j j$ -strong	0.9/1.5/2.6					
Lepton reconstruction	1.7/1.1/1.1					
b-tagging efficiency	0.8/0.9/0.7					
Trigger efficiency	0.1/0.2/0.4					

Backup

$W^{\pm}W^{\pm}jj$ production – control regions

Phys. Rev. Lett. 113, 141803

New resonances in electroweak sector

	J = 0	J = 1	J = 2
I = 0	σ^0 (Higgs)	$\frac{\omega^0}{(\gamma'/Z'^2)}$	f^0 (Graviton?)
I = 0 I = 1	π^{\pm}, π^{0} (2HDM?)	$\rho^{\pm}, \rho^{0} (W'/Z'?)$	a^{\pm}, a^{0}
I=2	$\phi^{\pm\pm}, \phi^{\pm}, \phi^0$ (Higgs triplett?)	_	$t^{\pm\pm}, t^{\pm}, t^0$

- width Γ of the resonances for their decays into longitudinal EW gauge bosons dependent on their mass M and coupling q
- example: vector isovector resonance ρ : $\Gamma \sim q^2 M_{o}$
- α_i parametrize low-mass tail of these resonances
- unitarization only guaranteed for explicitly included resonance(s) at unique values of the coupling g

$W^{\pm}Zjj$: experimental tasks

- $W^{\pm}Z$ (+ n jets) can have **any** number of jets: n = 0, 1, 2, 3, ...
 - \rightarrow lowest order: $W^{\pm}Z + 0$ jets
- 3 high p_T , isolated leptons
- 1 opposite-sign lepton pair forming Z within 81 GeV $< m_{\ell\ell} <$ 101 GeV
- residual lepton + $E_{\rm T}^{\rm miss}$ forming W
- results:
 - 1094 events observed
 - 277 background events expected (mainly Z+jets & fake leptons)
 - $\sigma_{\text{total}} = 20.3^{+0.8}_{-0.7} (\text{stat})^{+1.2}_{-1.1} (\text{syst})^{+0.7}_{-0.6} (\text{lumi}) \text{ pb} \ (\sigma_{\text{MCFM}} = 20.3 \pm 0.8 \text{ pb})$
- for $W^{\pm}Z$ VBS measurement: require additional 2 jets

Modeling of anomalous quartic gauge couplings

EW chiral Lagrangian approach (non-linear realization of the gauge symmetry)

• aQGC operators (dimension 4):

$$\mathscr{L}_4 = \boldsymbol{\alpha_4} (\operatorname{Tr}[\mathbf{V}_{\mu}\mathbf{V}_{\nu}])^2 \quad \mathscr{L}_5 = \boldsymbol{\alpha_5} (\operatorname{Tr}[\mathbf{V}_{\mu}\mathbf{V}^{\mu}])^2$$

- $\mathbf{V}_{\mu} = \Sigma (D_{\mu}\Sigma)^{\dagger}$, $\Sigma = e^{-i \frac{\mathbf{w}}{v}}$, w: goldstone scalar field triplett
- aQGC parametrizations: α_4 and α_5

EWchL historically motivated as a Higgs-less model, a posteriori modified to include the SM Higgs boson

EFT approach (linear realization of gauge symmetry) • operators (dimension 8): $\mathscr{L}_{S,0} = \frac{f_{S,0}}{\Lambda^4} [(D_\mu \Phi)^{\dagger} D_\nu \Phi] \times [(D^\mu \Phi)^{\dagger} D^\nu \Phi]$ $\mathscr{L}_{S,1} = \frac{f_{S,1}}{\Lambda^4} [(D_\mu \Phi)^{\dagger} D^\mu \Phi] \times [(D_\nu \Phi)^{\dagger} D^\nu \Phi]$ • parametrizations: $\frac{f_{S,0}}{\Lambda^4}$ and $\frac{f_{S,1}}{\Lambda^4}$

Unitarization schemes

K-matrix: saturation of amplitude to achieve unitarity form factor: suppression of amplitude to get below unitarity bound

https://indico.desy.de/getFile.py/access?contribId=8&sessionId=2&resId=0&materialId=slides&confId=7512 Anja Vest, TU Dresden

Unitarization

- With aQGCs unitarity may be violated even in presence of a SM Higgs (effective parametrization always violates unitarity at some m_{VV})
 - \Rightarrow unitarization scheme needed!
 - $\rightarrow\,$ all unitarization schemes are arbitrary and introduce model dependence!
- Form factors $\mathcal{F}(s) = (1 + \hat{s}/\Lambda_{\mathrm{FF}}^2)^{-n}$
 - $\rightarrow\,$ suppression of amplitude
 - additional arbitrary parameters: exponent n and form factor scale $\Lambda_{\rm FF}$
 - can be generally used for arbitrary anomalous operators
 - needs "fine tuning"

for n = 2 at $\Lambda_{\rm FF} = 2$ TeV:

amplitude suppressed by a factor of 4

Kinematic distributions, unitarized

- comparison of unitarization with K-matrix method (WHIZARD, $\alpha_{4/5}$) and form factors (VBFNLO, $f_{S,0/1}$) at generator level
- example process: $pp \rightarrow qqe^+\nu e^+\nu$

 $\Delta \phi$ (leptons) differential cross-section distribution:

JHEP 07 (2013) 116

Constraints on aQGCs from $\gamma\gamma \rightarrow WW$

- sensitive to $WW\gamma\gamma$ vertex
- additional cut at $p_T(\mu^{\pm}e^{\mp}) > 100$ GeV:

 \rightarrow 0 events left

- 1D and 2D limits (95% CL) on aQGC parameters a_0^W/Λ^2 and a_c^W/Λ^2 :
 - $|a_0^W/\Lambda^2| < 0.00015 \text{ GeV}^{-2}$
 - $|a_c^W/\Lambda^2| < 0.0005 \text{ GeV}^{-2}$
- unitarization with form factor with $\Lambda_{\rm FF}=500~{\rm GeV},~n=2$
- un-unitarized limits (without form factor):
 - 30 40 times better, but dominated by $\sqrt{\hat{s}}$ above unitarity
 - $\times 100$ improvement wrt. D0
 - $\times 3000$ improvement wrt. LEP

Anja Vest, TU Dresden

57

Limits on aQGCs for $WW\gamma\gamma$

- non-linear realization of the gauge symmetry \rightarrow chiral EW Lagrangian: $\mathscr{L}_{4} = \alpha_{4} \frac{g^{2}}{2} \Big\{ [(W^{+}W^{+})(W^{-}W^{-}) + (W^{+}W^{-})^{2}] + \frac{2}{c_{w}^{2}} (W^{+}Z)(W^{-}Z) + \frac{1}{2c_{w}^{4}} (ZZ)^{2} \Big\}$ $\mathscr{L}_{5} = \alpha_{4} \frac{g^{2}}{2} \Big\{ (W^{+}W^{-})^{2} + \frac{2}{c^{2}} (W^{+}W^{-})(ZZ) + \frac{1}{2c^{4}} (ZZ)^{2} \Big\}$
- effective parametrization of physics beyond kinematic reach, e.g. resonances at new physics scale $\Lambda = v/\sqrt{\alpha_i}$
 - wide \rightarrow continuum, narrow \rightarrow particles

	wwww	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{O}_{S,0}, \mathcal{O}_{S,1}$	X		Х						
$\mathcal{O}_{M,0}$, $\mathcal{O}_{M,1}$, $\mathcal{O}_{M,6}$, $\mathcal{O}_{M,7}$	X	Х	Х	X	X	Х	Х		
$\mathcal{O}_{M,2}$, $\mathcal{O}_{M,3}$, $\mathcal{O}_{M,4}$, $\mathcal{O}_{M,5}$		Х	Х	X	X	Х	Х		
${\mathcal O}_{T,0}$, ${\mathcal O}_{T,1}$, ${\mathcal O}_{T,2}$	X	Х	Х	X	X	Х	Х	Х	Х
${\mathcal O}_{T,5}$, ${\mathcal O}_{T,6}$, ${\mathcal O}_{T,7}$		Х	Х	X	X	Х	Х	Х	Х
$\mathcal{O}_{T,8}$, $\mathcal{O}_{T,9}$			X			Х	X	X	X

Prospects for VBS at $\sqrt{s}=$ 14 TeV cern-esg-005, Atlas-Phys-

- LHC @ 14 TeV $ightarrow \sqrt{\hat{s}} = m_{VV} pprox$ 1 2 TeV
- ullet signal chosen: anomalous VBS ZZ tensor singlet resonance f^0
 - $\rightarrow~$ exactly four selected leptons: two opposite sign, same flavor pairs
 - $\rightarrow~$ hard benchmark, sensitivity higher for other resonances

$m_{\rm resonance}$	coupling	width	$300 \ \mathrm{fb}^{-1}$	$3000 \ \mathrm{fb}^{-1}$
500 GeV 1 <mark>TeV</mark> 1 TeV	g = 1 g = 1.75 g = 2.5	$\begin{split} \Gamma &= 2 \text{ GeV} \\ \Gamma &= 50 \text{ GeV} \\ \Gamma &= 100 \text{ GeV} \end{split}$	$\begin{array}{c} 2.4\sigma \\ 1.7\sigma \\ 3.0\sigma \end{array}$	7.5σ 5.5σ 9.4σ

