

University of Sussex

SUSY searches at the LHC Run 2

Iacopo Vivarelli

University of Sussex Seminar - Albert-Ludwig-Universität Freiburg 17th February 2016

- SUSY is a hypothetical (broken) symmetry that relates bosons and fermions
 - a new set of fields differing in spin by 1/2 w.r.t. the SM partners

SUSY is not an exact symmetry

Sparticle masses ≠ particle masses

Minimal SUSY extension of SM (MSSM)

University of Sussex

- Recipe: supersymmetrise the SM lagrangian, then add SUSY breaking terms:
 - LSUSY = LSUSY conserving + LSUSY soft breaking

$$W\ni \frac{1}{2}\lambda_{ijk}L_iL_jE_k^c+\lambda_{ijk}'L_iQ_jD_k^c+\frac{1}{2}\lambda_{ijk}''U_i^cD_j^cD_k^c+\mu_iL_iH_u$$

Lepton and baryon number violation allowed → **proton decay**

If R-parity conserved, the Lightest Supersymmetric Particle (LSP) is stable

MSSM parameters:

SUSY conserving sector	SUSY breaking sector
3 coupling constants for SU(3)xSU(2)sU(1)	5 3x3 hermitian mass matrices (one per EW multiplet)
4 Yukawa couplings per generation	3 complex 3x3 matrices (Higgs trilinear couplings to sfermions)
	3 mass terms for the Higgs sector + 2 additional off-diagonal terms
	Higgs VEV expectation angle β

A total of 124 parameters: too much?

Beyond MSSM

Higgs boson mass stability in a nutshell

University of Sussex

Higgs mass has a quadratic dependency from physics at a higher scale

With SUSY, quadratic effects are cancelled exactly

Searching for EW scale SUSY?

University of Sussex

Residual logarithmic corrections set a (rough and subjective)
 scale of ~ TeV for the mass of some SUSY particles

More of **a guideline** than an actual upper limit.

Superpartners of quarks and gluons have large production cross sections at LHC

Strong **pre-LHC** expectation for **"fast" discovery** of squarks and gluinos at LHC

M.Papucci, J.Ruderman, A. Weiler

^{*} This implies two light neutralinos $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$ and one chargino $\tilde{\chi}_1^\pm$

What do we expect to measure?

Gluino pair production

Stop pair production

Higgsino pair production

But...

The Higgs boson mass is a bit on the "high" side for the MSSM

$$m_h^2 = m_Z^2 \cos^2 2\beta + \frac{3y_t^2 m_t^2}{4\pi^2} \left[\log \left(\frac{m_S^2}{m_t^2} \right) + X_t^2 \left(1 - \frac{X_t^2}{12} \right) \right] + \cdots$$

This is M_S in the formula

Experimental setup

ATLAS and CMS

University of Sussex

CMS

- high-resolution EM calorimeter
- excellent tracking performance in ID and muon spectrometer, heavily used for jet and MET measurement as well

ATLAS

- high-granularity "pointing" EM calorimeter
- good resolution for hadronic calorimetry
- good tracking in ID and muon spectrometer

LHC - performance of the machine

Pileup conditions more relaxed than at $\sqrt{s} = 8 \text{ TeV}$

University of Sussex

τ lepton performance cross-checked with the Z peak

Detector performance quickly **reached (and surpassed)** those of Run 1

SUSY searches at 13 TeV

Is Run 2 better than Run 1?

University of Sussex

Parton luminosities at $\sqrt{s} = 13$ TeV are **larger** than at $\sqrt{s} = 8$ TeV

For heavy final states the new Run 2 dataset is already beating Run 1

(2 M_X for pair-produced particles)

conference notes

multi b-jets NEW

2b + MET NEW

University of Sussex

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

ATLAS-CONF-2015-067 Link

ATLAS-CONF-2015-066 Link

conference notes						
Short Title of prelimi	nary conference note	Date	√s ()	L (fb-1)	Document	Plots
OL 2-6 jets NEW	*	012/2015	13	3.2	ATLAS-CONF-2015-062	Link
OL 7-10 jets jets NEW		012/2015	13	3.2	ATLAS-CONF-2015-077	Link
1L + jets NEW		012/2015	13	3.2	ATLAS-CONF-2015-076₽	Link
2L Z+MET NEW	*	012/2015	13	3.2	ATLAS-CONF-2015-082	Linker
SS/3L NEW	*	012/2015	13	3.2	ATLAS-CONF-2015-078	Link

012/2015 13

012/2015 13

3.2

3.2

about 40 signal regions in total

http://cms-results.web.cern.ch/cms-results/ public-results/preliminary-results/LHC-Jamboree-2015/SUS.html

about 400 signal regions in total

CMS-PAS-SUS-15-002	Search for supersymmetry in the multijet and missing transverse momentum channel in pp collisions at 13 TeV	
CMS-PAS-SUS-15-003	Search for new physics in the all-hadronic final state with the $M_{ m T2}$ variable	*
CMS-PAS-SUS-15-005	Search for new physics in final states with jets and missing transverse momentum in $\sqrt{s}=$ 13 TeV pp collisions with the $\alpha_{\rm T}$ variable	
CMS-PAS-SUS-15-004	Inclusive search for supersymmetry using the razor variables at $\sqrt{s}=$ 13 TeV	
CMS-PAS-SUS-15-007	Search for supersymmetry in pp collisions at $\sqrt{s}=$ 13 TeV in the single-lepton final state using the sum of masses of large radius jets	*
CMS-PAS-SUS-15-008	Search for SUSY in same-sign dilepton events at $\sqrt{s}=$ 13 TeV	
CMS-PAS-SUS-15-011	Search for new physics in final states with two opposite-sign same-flavor leptons, jets and $E_{ m T}^{ m miss}$ in pp collisions at $\sqrt{s}=$ 13 TeV	*

- Heavy sparticles produced in the primary collision
- They decay into lighter objects, emitting (high) P_T jets and possibly other objects (leptons, photons) and MET (LSP)
- A "typical" SUSY event will have large MET and large H_T
- Useful variables:

$$H_T = \sum_{jets} p_T^{jets} (+ \sum_l p_T^l + \dots)$$
$$M_{eff} = E_T^{miss} + H_T$$

Intermezzo

University of Sussex

Neutralinos and jets have low p_T, unless in presence of ISR

QCD production cross section quickly decreases with the increasing mass of the final state produced Final object boost increases

Compressed kinematics, lower p₁ for quarks and

neutralinos

CMS M_{T2} search

US University of Sussex

https://cds.cern.ch/record/2114816/files/SUS-15-003-pas.pdf

University of Sussex

Underlying idea:

- Collect all hadronic decay products into two jets j1, j2.
 - Then M_{T2}(j1,j2,E_T^{miss}) has an endpoint at m_{gluino}
 - Typically M_{T2} << m_{gluino} for the background

$$m_{\mathrm{T2}}(\mathbf{p}_{\mathrm{T}}^{\ell_1}, \mathbf{p}_{\mathrm{T}}^{\ell_2}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}) = \min_{\mathbf{q}_{\mathrm{T}} + \mathbf{r}_{\mathrm{T}} = \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}} \left\{ \max[\ m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell_1}, \mathbf{q}_{\mathrm{T}}), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell_2}, \mathbf{r}_{\mathrm{T}}) \] \right\}$$

- About 250 signal regions classified according to N_{jet}, N_{bjet}, H_T (scalar sum of jet p_T), M_{T2}
- Background processes:
 - "Lost lepton" (W+jets, top pair production)
 - "Irreducible" (mainly Z->νν)
 - "Instrumental" (fake E_Tmiss mostly multijet)

CMS M_{T2} search

University of Sussex

 $Z \rightarrow \nu \nu$ estimated from γ +jets events in each bin of N_{jet} , N_b , H_T

"Lost lepton" background estimated with 1-lepton control regions (CR)

- an upper cut on m_T(lep,E_T^{miss}) ensures no signal contamination
- b-jet veto for the W CR, one b-jet for the top pair production CR

CMS M_{T2} search - result

University of Sussex

No significant excess above SM expectations

CMS M_{T2} search

University of Sussex

Exclusion limits obtained from the **statistical combination** of the signal regions

Interpreted in gluino pair production with three different decay patterns assumed

Gluino pair production excluded **up to m_{gluino} = 1650 GeV** (depending on assumptions)

- KISS (Keep It Stupid Simple) (and as model independent as possible)
- Very different approach: 7 signal regions
 - defined mainly by jet multiplicity and m_{eff} = H_T + E_T^{miss}

trigger	Requirement	Signal Region							
9901	rtequirement	2jl	2jm	2jt	4 jt	5j	6jm	6jt	
7	$E_{\mathrm{T}}^{\mathrm{miss}} \; [\mathrm{GeV}] >$				200				
ءِ 🗖	$p_{\mathrm{T}}(j_1) \; [\mathrm{GeV}] >$	200	300			200			
itio	$p_{\mathrm{T}}(j_2) \; [\mathrm{GeV}] >$	200	50	200	200 100				
efir	$p_{\mathrm{T}}(j_3) \; [\mathrm{GeV}] >$	_				100			
al d	$p_{\mathrm{T}}(j_4) \; [\mathrm{GeV}] >$	_				100			
signal definition	$p_{\mathrm{T}}(j_5) \; [\mathrm{GeV}] >$	_				100			
	$p_{\mathrm{T}}(j_{6}) \; [\mathrm{GeV}] >$	ı			100		00		
_	$\Delta\phi(\mathrm{jet}_{1,2,(3)},m{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}}>$	0.8 0.4 0.8		0.4					
	$\Delta\phi({ m jet}_{i>3}, {\pmb E}_{ m T}^{ m miss})_{ m min} >$	_			0.2				
multijet rejection	$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}} \; [\mathrm{GeV}^{1/2}] >$	15 20		20	_				
	Aplanarity >	_			0.04				
	$E_{\rm T}^{\rm miss}/m_{\rm eff}(N_{\rm j})>$	_		0.2	0.3	25	0.2		
main discriminant	$m_{\rm eff}({\rm incl.})~{\rm [GeV]}>$	1200	1600	2000	2200	1600	1600	2000	

ATLAS OL

University of Sussex

Model independent limits

Signal Region	2jl	$2\mathrm{jm}$	2jt	4jt	5j	6jm	6jt	
MC expected events								
Diboson	33	33	4.0	0.7	2.4	1.1	0.5	
$Z/\gamma^* + jets$	151	94	12	1.8	4.9	2.5	1.3	
W+jets	72	42	4.5	0.9	3.0	1.6	0.9	
$t\bar{t}(+\mathrm{EW}) + \mathrm{single\ top}$	18	17	1.2	0.9	2.7	1.6	1.1	
Multi-jet	0.6	0.8	0.03	_	_	_	_	
Total MC	275	188	22	4.3	13	6.7	3.8	
Fitted background events								
Diboson	33 ± 17	33 ± 17	4.0 ± 2.0	0.67 ± 0.35	2.4 ± 1.3	1.1 ± 0.6	0.5 ± 0.4	
$Z/\gamma^* + jets$	127 ± 12	85 ± 8	12 ± 4	1.5 ± 0.6	4.5 ± 1.3	2.0 ± 0.7	1.1 ± 0.6	
W+jets	61 ± 4	32 ± 5	2.9 ± 0.8	0.7 ± 0.4	3.3 ± 1.0	1.7 ± 0.7	1.0 ± 0.6	
$t\bar{t}(+\mathrm{EW}) + \mathrm{single\ top}$	14.6 ± 2.9	10.5 ± 2.6	0.7 ± 0.5	0.6 ± 0.4	1.4 ± 0.5	0.8 ± 0.4	0.46 ± 0.33	
Multi-jet	0.51 ± 0.06	0.6 ± 0.5	_	_	_	_	_	
Total bkg	237 ± 22	163 ± 20	20 ± 5	3.5 ± 0.8	11.7 ± 2.2	5.5 ± 1.2	3.1 ± 0.9	
Observed	264	186	25	6	7	4	3	
$\langle \epsilon \sigma \rangle_{\mathrm{obs}}^{95} \; [\mathrm{fb}]$ S_{obs}^{95} S_{exp}^{95}	\sim 24	21	5.9	2.5	2.0	1.6	1.6	
$S_{ m obs}^{95}$	76	67	19	8.2	6.3	5.3	5.0	
S_{exp}^{95}	52^{+22}_{-15}	46^{+19}_{-12}	$14.1^{+5.1}_{-3.1}$	$5.7^{+2.2}_{-1.6}$	$8.5^{+3.3}_{-2.1}$	$6.5_{-1.6}^{+2.5}$	$5.0^{+2.3}_{-1.4}$	
$p_0(\mathbf{Z})$	0.11 (1.20)	0.12 (1.15)	0.18 (0.93)	0.14 (1.08)	0.5 (0.0)	0.5 (0.0)	0.5 (0.0)	

• Answers the question: what cross section is excluded, assuming efficiency x acceptance = 100%?

CMS Vs ATLAS

CMS 1-lepton multijets

US University of Sussex

University of Sussex

· Basic idea:

 Reconstruct R=1.2 Anti-k_T jets. The sum of their masses M_J is sensitive to signal and independent on m_T(lep,E_T^{miss})

CMS 1-lepton multijets

R4: $6 \le n_j \le 8$, $n_b = 2$ 1.1 R4: $n_j \ge 9$, $n_b = 2$ 1.0 R4: $6 \le n_j \le 8$, $n_b \ge 3$ 1.3 R4: $n_j \ge 9$, $n_b \ge 3$ 1.0 R1: all n_j , n_b R2: $6 \le n_j \le 8$, $n_b = 1$ R2: $n_j \ge 9$, $n_b = 1$ R2: $n_j \ge 9$, $n_b \ge 2$ R2: $n_j \ge 9$, $n_b \ge 2$ R3: all n_j , n_b R4: $6 \le n_j \le 8$, $n_b \ge 1$	$ \begin{array}{c} -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -$	MET \(\le 400 \) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	2.9 0.2 0.3 0.5 0.2 0.6 3.5 0.2 0.3 0.3 0.6 0.3 0.7	330.1 ± 18.2 47.1 ± 6.9 6.0 ± 2.4 42.0 ± 6.5 7.0 ± 2.6 12.0 ± 3.5 1.0 ± 1.0 21.0 ± 4.6 3.4 ± 1.4 0.3 ± 0.3 3.0 ± 1.2 0.5 ± 0.3 1.0 ± 0.5 0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8 1.0 ± 1.0	329.4 ± 18.0 49.4 ± 6.8 6.6 ± 2.5 41.0 ± 6.2 6.5 ± 2.5 11.1 ± 3.2 0.9 ± 0.9 21.6 ± 4.2 3.6 ± 1.0 0.4 ± 0.2 3.0 ± 0.8 0.4 ± 0.2 0.9 ± 0.3 0.1 ± 0.1 16.2 ± 3.9 6.7 ± 2.5	330 47 6 42 7 12 1 21 6 1 2 0 0 0		P_2 P_1	\tilde{g} \tilde{g} \tilde{g} \tilde{g} \tilde{g} \tilde{t} 2.1 fb ⁻¹ (13 Te
R2: $6 \le n_j \le 8$, $n_b = 1$ R2: $n_j \ge 9$, $n_b = 1$ R2: $6 \le n_j \le 8$, $n_b = 2$ R2: $n_j \ge 9$, $n_b = 2$ R2: $n_j \ge 9$, $n_b \ge 3$ R3: $all \ n_j, n_b$ R4: $6 \le n_j \le 8$, $n_b \ge 3$ R3: $all \ n_j, n_b$ R4: $6 \le n_j \le 8$, $n_b = 1$ R4: $n_j \ge 9$, $n_b = 1$ R4: $n_j \ge 9$, $n_b \ge 3$ R4: $n_j \ge 9$, $n_b \ge 3$ R5: $n_j \ge 9$, $n_b \ge 3$ R6: $n_j \le 8$, $n_b \ge 1$ R7: $n_j \ge 9$, $n_b \ge 1$ R8: $n_j \ge 9$, $n_b \ge 2$ R9: $n_j \ge 9$, $n_b \ge 2$ R1: $n_j \ge 9$, $n_b \ge 2$ R3: $n_j \ge 9$, $n_b \ge 2$	$.91 \pm 0.05 \pm 0.82$ $.12 \pm 0.05 \pm 0.42$ $.04 \pm 0.10 \pm 0.94$ $.25 \pm 0.11 \pm 0.75$ $.04 \pm 0.09 \pm 0.96$ MET	0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3	0.2 0.3 0.3 0.5 0.2 0.6 3.5 0.2 0.3 0.3 0.6 0.3 0.7	47.1 ± 6.9 6.0 ± 2.4 42.0 ± 6.5 7.0 ± 2.6 12.0 ± 3.5 1.0 ± 1.0 21.0 ± 4.6 3.4 ± 1.4 0.3 ± 0.3 3.0 ± 1.2 0.5 ± 0.3 1.0 ± 0.5 0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8	49.4 ± 6.8 6.6 ± 2.5 41.0 ± 6.2 6.5 ± 2.5 11.1 ± 3.2 0.9 ± 0.9 21.6 ± 4.2 3.6 ± 1.0 0.4 ± 0.2 3.0 ± 0.8 0.4 ± 0.2 0.9 ± 0.3 0.1 ± 0.1 16.2 ± 3.9	47 6 42 7 12 1 21 6 1 2 0 0 0		P_2 P_1	ī
R2: $n_j \ge 9$, $n_b = 1$ R2: $6 \le n_j \le 8$, $n_b = 2$ R2: $n_j \ge 9$, $n_b = 2$ R2: $n_j \ge 9$, $n_b \ge 3$ R3: $all \ n_j, n_b$ R4: $6 \le n_j \le 8$, $n_b \ge 1$ R4: $6 \le n_j \le 8$, $n_b = 1$ R4: $6 \le n_j \le 8$, $n_b = 2$ R4: $n_j \ge 9$, $n_b = 2$ R4: $n_j \ge 9$, $n_b \ge 3$ R4: $n_j \ge 9$, $n_b \ge 3$ R4: $n_j \ge 9$, $n_b \ge 3$ R4: $n_j \ge 9$, $n_b \ge 3$ R5: $n_j \ge 9$, $n_b \ge 3$ R6: $n_j \le 8$, $n_b \ge 1$ R7: $n_j \ge 9$, $n_b \ge 1$ R8: $n_j \ge 9$, $n_b \ge 1$ R9: $n_j \ge 9$, $n_b \ge 1$ R1: $n_j \ge 9$, $n_b \ge 1$ R2: $n_j \ge 9$, $n_b \ge 1$ R3: $n_j \ge 9$, $n_b \ge 2$ R5: $n_j \ge 9$, $n_b \ge 2$ R6: $n_j \le 8$, $n_b \ge 2$ R7: $n_j \ge 9$, $n_b \ge 2$ R8: $n_j \ge 9$, $n_b \ge 1$ R9: $n_j \ge 9$, $n_b \ge 1$ R1: $n_j \ge 9$, $n_b \ge 1$ R2: $n_j \ge 9$, $n_b \ge 1$ R3: $n_j \ge 9$, $n_b \ge 1$ R4: $n_j \ge 9$, $n_b \ge 1$	$.91 \pm 0.05 \pm 0.82$ $.12 \pm 0.05 \pm 0.42$ $.04 \pm 0.10 \pm 0.94$ $.25 \pm 0.11 \pm 0.75$ $.04 \pm 0.09 \pm 0.96$ MET	0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	0.3 0.3 0.5 0.2 0.6 3.5 0.2 0.3 0.3 0.6 0.3 0.7 EV	6.0 ± 2.4 42.0 ± 6.5 7.0 ± 2.6 12.0 ± 3.5 1.0 ± 1.0 21.0 ± 4.6 3.4 ± 1.4 0.3 ± 0.3 3.0 ± 1.2 0.5 ± 0.3 1.0 ± 0.5 0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8	6.6 ± 2.5 41.0 ± 6.2 6.5 ± 2.5 11.1 ± 3.2 0.9 ± 0.9 21.6 ± 4.2 3.6 ± 1.0 0.4 ± 0.2 3.0 ± 0.8 0.4 ± 0.2 0.9 ± 0.3 0.1 ± 0.1 16.2 ± 3.9	6 42 7 12 1 21 6 1 2 0 0 0 0 0 15		P ₁	ī
R2: $6 \le n_j \le 8$, $n_b = 2$ R2: $n_j \ge 9$, $n_b = 2$ R2: $6 \le n_j \le 8$, $n_b \ge 3$ R2: $n_j \ge 9$, $n_b \ge 3$ R3: all n_j , n_b R4: $6 \le n_j \le 8$, $n_b = 1$ R4: $n_j \ge 9$, $n_b = 1$ R4: $n_j \ge 9$, $n_b = 2$ R4: $n_j \ge 9$, $n_b \ge 3$ R4: $n_j \ge 9$, $n_b \ge 3$ R4: $n_j \ge 9$, $n_b \ge 3$ R1: all n_j , n_b R2: $6 \le n_j \le 8$, $n_b \ge 1$ R2: $n_j \ge 9$, $n_b \ge 1$ R2: $n_j \ge 9$, $n_b \ge 1$ R2: $n_j \ge 9$, $n_b \ge 1$ R3: all n_j , $n_b \ge 2$ R3: all n_j , $n_b \ge 2$ R4: $6 \le n_j \le 8$, $n_b \ge 1$	$.91 \pm 0.05 \pm 0.82$ $.12 \pm 0.05 \pm 0.42$ $.04 \pm 0.10 \pm 0.94$ $.25 \pm 0.11 \pm 0.75$ $.04 \pm 0.09 \pm 0.96$ MET	0.1 0.1 0.1 0.2 0.2 0.1 0.3 0.3 0.3 0.3 0.3 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.3 0.5 0.2 0.6 3.5 0.2 0.3 0.3 0.6 0.3 0.7 EV	42.0 ± 6.5 7.0 ± 2.6 12.0 ± 3.5 1.0 ± 1.0 21.0 ± 4.6 3.4 ± 1.4 0.3 ± 0.3 3.0 ± 1.2 0.5 ± 0.3 1.0 ± 0.5 0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8	41.0 ± 6.2 6.5 ± 2.5 11.1 ± 3.2 0.9 ± 0.9 21.6 ± 4.2 3.6 ± 1.0 0.4 ± 0.2 3.0 ± 0.8 0.4 ± 0.2 0.9 ± 0.3 0.1 ± 0.1 16.2 ± 3.9	42 7 12 1 21 6 1 2 0 0 0		P_1	ī
R2: $n_j \ge 9$, $n_b = 2$ R2: $6 \le n_j \le 8$, $n_b \ge 3$ R3: $all \ n_j$, n_b R4: $6 \le n_j \le 8$, $n_b = 1$ R4: $6 \le n_j \le 8$, $n_b = 1$ R4: $6 \le n_j \le 8$, $n_b = 2$ R4: $6 \le n_j \le 8$, $n_b \ge 2$ R4: $6 \le n_j \le 8$, $n_b \ge 3$ R4: $6 \le n_j \le 8$, $n_b \ge 3$ R1: $all \ n_j$, n_b R2: $6 \le n_j \le 8$, $n_b = 1$ R2: $n_j \ge 9$, $n_b = 1$ R2: $n_j \ge 9$, $n_b = 1$ R2: $n_j \ge 9$, $n_b \ge 2$ R3: $all \ n_j$, n_b R4: $6 \le n_j \le 8$, $n_b \ge 2$ R3: $all \ n_j$, n_b R4: $6 \le n_j \le 8$, $n_b \ge 1$	$.91 \pm 0.05 \pm 0.82$ $.12 \pm 0.05 \pm 0.42$ $.04 \pm 0.10 \pm 0.94$ $.25 \pm 0.11 \pm 0.75$ $.04 \pm 0.09 \pm 0.96$ MET	0.1 0.1 0.2 0.2 0.1 0.3 0.3 0.3 0.3 0.3 1.3 0.1 0.1 0.1	0.5 0.2 0.6 3.5 0.2 0.3 0.3 0.6 0.3 0.7	7.0 ± 2.6 12.0 ± 3.5 1.0 ± 1.0 21.0 ± 4.6 3.4 ± 1.4 0.3 ± 0.3 3.0 ± 1.2 0.5 ± 0.3 1.0 ± 0.5 0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8	6.5 ± 2.5 11.1 ± 3.2 0.9 ± 0.9 21.6 ± 4.2 3.6 ± 1.0 0.4 ± 0.2 3.0 ± 0.8 0.4 ± 0.2 0.9 ± 0.3 0.1 ± 0.1	7 12 1 21 6 1 2 0 0 0		P_1	ī
R2: $6 \le n_j \le 8, n_b \ge 3$ R2: $n_j \ge 9, n_b \ge 3$ R3: all n_j, n_b R4: $6 \le n_j \le 8, n_b = 1$ R4: $n_j \ge 9, n_b = 1$ R4: $n_j \ge 9, n_b = 2$ R4: $n_j \ge 9, n_b \ge 2$ R4: $n_j \ge 9, n_b \ge 3$ R1: all n_j, n_b R2: $6 \le n_j \le 8, n_b \ge 3$ R2: $n_j \ge 9, n_b \ge 3$ R3: all n_j, n_b R4: $n_j \ge 9, n_b \ge 3$ R5: $n_j \ge 9, n_b \ge 3$ R6: $n_j \ge 9, n_b \ge 3$ R7: all $n_j, n_b \ge 2$ R8: $n_j \ge 9, n_b \ge 2$ R9: $n_j \ge 9, n_b \ge 2$ R1: all n_j, n_b R2: $n_j \ge 9, n_b \ge 2$ R3: all n_j, n_b R4: $n_j \ge 9, n_b \ge 3$	$.91 \pm 0.05 \pm 0.82$ $.12 \pm 0.05 \pm 0.42$ $.04 \pm 0.10 \pm 0.94$ $.25 \pm 0.11 \pm 0.75$ $.04 \pm 0.09 \pm 0.96$ MET	0.1 0.2 0.2 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	0.2 0.6 3.5 0.2 0.3 0.6 0.3 0.7 EV	12.0 ± 3.5 1.0 ± 1.0 21.0 ± 4.6 3.4 ± 1.4 0.3 ± 0.3 3.0 ± 1.2 0.5 ± 0.3 1.0 ± 0.5 0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8	11.1 ± 3.2 0.9 ± 0.9 21.6 ± 4.2 3.6 ± 1.0 0.4 ± 0.2 3.0 ± 0.8 0.4 ± 0.2 0.9 ± 0.3 0.1 ± 0.1 16.2 ± 3.9	12 1 21 6 1 2 0 0 0		P_1	ī
R2: $n_j \ge 9$, $n_b \ge 3$ R3: all n_j , n_b R4: $6 \le n_j \le 8$, $n_b = 1$ R4: $n_j \ge 9$, $n_b = 1$ R4: $n_j \ge 9$, $n_b = 2$ R4: $n_j \ge 9$, $n_b = 2$ R4: $n_j \ge 9$, $n_b \ge 3$ R4: $n_j \ge 9$, $n_b \ge 3$ R1: all n_j , n_b R2: $6 \le n_j \le 8$, $n_b \ge 1$ R2: $n_j \ge 9$, $n_b = 1$ R2: $n_j \ge 9$, $n_b \ge 2$ R3: all n_j , n_b R4: $n_j \ge 9$, $n_b \ge 2$ R3: all n_j , n_b R4: $n_j \ge 9$, $n_b \ge 2$ R3: all n_j , n_b R4: $n_j \ge 9$, $n_b \ge 2$ R3: all n_j , n_b	$.91 \pm 0.05 \pm 0.82$ $.12 \pm 0.05 \pm 0.42$ $.04 \pm 0.10 \pm 0.94$ $.25 \pm 0.11 \pm 0.75$ $.04 \pm 0.09 \pm 0.96$ MET	0.1 0.2 0.2 0.1 0.3 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.1	0.6 3.5 0.2 0.3 0.3 0.6 0.3 0.7 EV	1.0 ± 1.0 21.0 ± 4.6 3.4 ± 1.4 0.3 ± 0.3 3.0 ± 1.2 0.5 ± 0.3 1.0 ± 0.5 0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8	0.9 ± 0.9 21.6 ± 4.2 3.6 ± 1.0 0.4 ± 0.2 3.0 ± 0.8 0.4 ± 0.2 0.9 ± 0.3 0.1 ± 0.1 16.2 ± 3.9	1 21 6 1 2 0 0 0		P_1	ī
R3: $\operatorname{all} n_j, n_b$ R4: $6 \le n_j \le 8, n_b = 1$ R4: $n_j \ge 9, n_b = 1$ R4: $n_j \ge 9, n_b = 2$ R4: $6 \le n_j \le 8, n_b = 2$ R4: $6 \le n_j \le 8, n_b \ge 3$ R4: $n_j \ge 9, n_b \ge 3$ R1: $\operatorname{all} n_j, n_b$ R2: $6 \le n_j \le 8, n_b \ge 1$ R2: $n_j \ge 9, n_b \ge 1$ R2: $n_j \ge 9, n_b \ge 2$ R3: $\operatorname{all} n_j, n_b$ R4: $n_j \ge 9, n_b \ge 2$ R3: $\operatorname{all} n_j, n_b$ R4: $n_j \ge 9, n_b \ge 2$ R3: $\operatorname{all} n_j, n_b$ R4: $n_j \ge 9, n_b \ge 2$ R3: $\operatorname{all} n_j, n_b$ R4: $n_j \ge 9, n_b \ge 1$ R4: $n_j \ge 9, n_b \ge 1$ R5: $n_j \ge 9, n_b \ge 1$	$.91 \pm 0.05 \pm 0.82$ $.12 \pm 0.05 \pm 0.42$ $.04 \pm 0.10 \pm 0.94$ $.25 \pm 0.11 \pm 0.75$ $.04 \pm 0.09 \pm 0.96$ MET	0.2 0.2 0.1 0.3 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.4	3,5 0.2 0.3 0.3 0.6 0.3 0.7 EV	21.0 ± 4.6 3.4 ± 1.4 0.3 ± 0.3 3.0 ± 1.2 0.5 ± 0.3 1.0 ± 0.5 0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8	21.6 ± 4.2 3.6 ± 1.0 0.4 ± 0.2 3.0 ± 0.8 0.4 ± 0.2 0.9 ± 0.3 0.1 ± 0.1 16.2 ± 3.9	21 6 1 2 0 0 0 0		P_1	ī
R4: $6 \le n_j \le 8, n_b = 1$ 1.3 R4: $n_j \ge 9, n_b = 1$ 0.5 R4: $6 \le n_j \le 8, n_b = 2$ 1.4 R4: $n_j \ge 9, n_b = 2$ 1.5 R4: $n_j \ge 9, n_b \ge 3$ 1.6 R1: all n_j, n_b R2: $6 \le n_j \le 8, n_b \ge 3$ 1.6 R1: all n_j, n_b R2: $6 \le n_j \le 8, n_b = 1$ R2: $n_j \ge 9, n_b = 1$ R2: $n_j \ge 9, n_b \ge 2$ R3: all n_j, n_b R4: $6 \le n_j \le 8, n_b \ge 2$ R3: all n_j, n_b R4: $6 \le n_j \le 8, n_b = 1$ 1.5	$.91 \pm 0.05 \pm 0.82$ $.12 \pm 0.05 \pm 0.42$ $.04 \pm 0.10 \pm 0.94$ $.25 \pm 0.11 \pm 0.75$ $.04 \pm 0.09 \pm 0.96$ MET	0.2 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.4	0.2 0.3 0.3 0.6 0.3 0.7 eV 0.4 0.1 0.2	3.4 ± 1.4 0.3 ± 0.3 3.0 ± 1.2 0.5 ± 0.3 1.0 ± 0.5 0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8	3.6 ± 1.0 0.4 ± 0.2 3.0 ± 0.8 0.4 ± 0.2 0.9 ± 0.3 0.1 ± 0.1 16.2 ± 3.9	6 1 2 0 0 0		$P_{\rm i}$	ī
R4: $n_j \ge 9$, $n_b = 1$ 0.9 R4: $6 \le n_i \le 8$, $n_b = 2$ 1.7 R4: $n_j \ge 9$, $n_b = 2$ 1.0 R4: $n_j \ge 9$, $n_b \ge 3$ 1.2 R4: $n_j \ge 9$, $n_b \ge 3$ 1.0 R1: all n_j , n_b R2: $6 \le n_j \le 8$, $n_b = 1$ R2: $n_j \ge 9$, $n_b = 1$ R2: $6 \le n_j \le 8$, $n_b \ge 2$ R3: all n_j , n_b R4: $6 \le n_j \le 8$, $n_b \ge 2$ R3: all n_j , n_b R4: $6 \le n_j \le 8$, $n_b \ge 1$	$.91 \pm 0.05 \pm 0.82$ $.12 \pm 0.05 \pm 0.42$ $.04 \pm 0.10 \pm 0.94$ $.25 \pm 0.11 \pm 0.75$ $.04 \pm 0.09 \pm 0.96$ MET	0.1 0.3 0.3 0.3 0.3 0.3 7 > 400 Ge 0.1 0.1 0.1	0.3 0.6 0.3 0.7 eV 0.4 0.1 0.2	0.3 ± 0.3 3.0 ± 1.2 0.5 ± 0.3 1.0 ± 0.5 0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8	$0.4 \pm 0.2 \\ 3.0 \pm 0.8 \\ 0.4 \pm 0.2 \\ 0.9 \pm 0.3 \\ 0.1 \pm 0.1$ 16.2 ± 3.9	1 2 0 0 0 0		P_1	ī
R4: $6 \le n_j \le 8$, $n_b = 2$ 1.7 R4: $n_j \ge 9$, $n_b = 2$ 1.0 R4: $6 \le n_j \le 8$, $n_b \ge 3$ 1.3 R4: $n_j \ge 9$, $n_b \ge 3$ 1.0 R1: all n_j , n_b R2: $6 \le n_j \le 8$, $n_b = 1$ R2: $n_j \ge 9$, $n_b = 1$ R2: $n_j \ge 9$, $n_b \ge 2$ R2: $n_j \ge 9$, $n_b \ge 2$ R3: all n_j , n_b R4: $6 \le n_j \le 8$, $n_b \ge 1$	$.12 \pm 0.05 \pm 0.42$ $.04 \pm 0.10 \pm 0.94$ $.25 \pm 0.11 \pm 0.75$ $.04 \pm 0.09 \pm 0.96$ MET	0.3 0.3 0.3 0.3 0.3 7 > 400 Ge 0.1 0.1 0.1	0.3 0.6 0.3 0.7 eV 0.4 0.1 0.2	3.0 ± 1.2 0.5 ± 0.3 1.0 ± 0.5 0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8	3.0 ± 0.8 0.4 ± 0.2 0.9 ± 0.3 0.1 ± 0.1 16.2 ± 3.9	2 0 0 0 0		P_1	ī
R4: $n_j \ge 9$, $n_b = 2$ R4: $6 \le n_j \le 8$, $n_b \ge 3$ R4: $n_j \ge 9$, $n_b \ge 3$ R1: all n_j , n_b R2: $6 \le n_j \le 8$, $n_b = 1$ R2: $n_j \ge 9$, $n_b = 1$ R2: $n_j \ge 9$, $n_b = 1$ R2: $n_j \ge 9$, $n_b \ge 2$ R3: all n_j , n_b R4: $6 \le n_j \le 8$, $n_b \ge 1$ R4: $6 \le n_j \le 8$, $n_b \ge 1$	$.04 \pm 0.10 \pm 0.94$ $.25 \pm 0.11 \pm 0.75$ $.04 \pm 0.09 \pm 0.96$ MET	0.3 0.3 0.3 7 > 400 Ge 0.1 0.1 0.1 0.4	0.6 0.3 0.7 eV 0.4 0.1 0.2	0.5 ± 0.3 1.0 ± 0.5 0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8	0.4 ± 0.2 0.9 ± 0.3 0.1 ± 0.1 16.2 ± 3.9	0 0 0		///	ī
R4: $6 \le n_j \le 8, n_b \ge 3$ 1.3 R4: $n_j \ge 9, n_b \ge 3$ 1.4 R1: all n_j, n_b R2: $6 \le n_j \le 8, n_b = 1$ R2: $n_j \ge 9, n_b = 1$ R2: $n_j \le 8, n_b \ge 2$ R2: $n_j \ge 9, n_b \ge 2$ R3: all n_j, n_b R4: $6 \le n_j \le 8, n_b \ge 1$ 1.3	.25 ± 0.11 ± 0.75 .04 ± 0.09 ± 0.96 MET	0.3 0.3 7 > 400 Ge 0.1 0.1 0.1 0.4	0.3 0.7 eV 0.4 0.1 0.2	1.0 ± 0.5 0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8	0.9 ± 0.3 0.1 ± 0.1 16.2 ± 3.9	0 0			ī.
R4: $6 \le n_j \le 8, n_b \ge 3$ 1.3 R4: $n_j \ge 9, n_b \ge 3$ 1.4 R1: all n_j, n_b R2: $6 \le n_j \le 8, n_b = 1$ R2: $n_j \ge 9, n_b = 1$ R2: $n_j \le 8, n_b \ge 2$ R2: $n_j \ge 9, n_b \ge 2$ R3: all n_j, n_b R4: $6 \le n_j \le 8, n_b \ge 1$ 1.3	.04 ± 0.09 ± 0.96 MET	0.3 C > 400 Ge 0.1 0.1 0.1 0.4	0.7 eV 0.4 0.1 0.2	0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8	0.1 ± 0.1 16.2 ± 3.9	15			0.1 fb ⁻¹ /10 Ta
R4: $n_j \ge 9$, $n_b \ge 3$ 1.0 R1: all n_j , n_b R2: $6 \le n_j \le 8$, $n_b = 1$ R2: $n_j \ge 9$, $n_b = 1$ R2: $n_j \le 9$, $n_b \ge 2$ R2: $n_j \ge 9$, $n_b \ge 2$ R3: all n_j , n_b R4: $6 \le n_j \le 8$, $n_b = 1$ 1.3	.04 ± 0.09 ± 0.96 MET	0.1 0.1 0.1 0.1 0.4	0.7 eV 0.4 0.1 0.2	15.0 ± 3.9 8.0 ± 2.8	0.1 ± 0.1 16.2 ± 3.9	15			0.4 fb-1/40 Ta
R1: all n_j, n_b R2: $6 \le n_j \le 8, n_b = 1$ R2: $n_j \ge 9, n_b = 1$ R2: $n_j \le 9, n_b \ge 2$ R2: $n_j \ge 9, n_b \ge 2$ R3: all n_j, n_b R4: $6 \le n_j \le 8, n_b = 1$		0.1 0.1 0.1 0.1 0.4	0.4 0.1 0.2	15.0 ± 3.9 8.0 ± 2.8	16.2 ± 3.9	15			0.1 fb-1/10 T
R2: $6 \le n_j \le 8, n_b = 1$ R2: $n_j \ge 9, n_b = 1$ R2: $6 \le n_j \le 8, n_b \ge 2$ R2: $n_j \ge 9, n_b \ge 2$ R3: all n_j, n_b R4: $6 \le n_j \le 8, n_b = 1$		0.1 0.1 0.1 0.4	0.4 0.1 0.2	8.0 ± 2.8					0 1 fb-1/10 T
R2: $6 \le n_j \le 8, n_b = 1$ R2: $n_j \ge 9, n_b = 1$ R2: $6 \le n_j \le 8, n_b \ge 2$ R2: $n_j \ge 9, n_b \ge 2$ R3: all n_j, n_b R4: $6 \le n_j \le 8, n_b = 1$	111111	0.1 0.1 0.4	0.1	8.0 ± 2.8			1	CMS Preliminary	/ /
R2: $n_j \ge 9$, $n_b = 1$ R2: $6 \le n_j \le 8$, $n_b \ge 2$ R2: $n_j \ge 9$, $n_b \ge 2$ R3: all n_j , n_b R4: $6 \le n_j \le 8$, $n_b = 1$	8	0.1 0.4	0.2		U.F C.J		1800	Civio Fremmary	2.110 (10.16
R2: $6 \le n_j \le 8$, $n_b \ge 2$ R2: $n_j \ge 9$, $n_b \ge 2$ R3: all n_j , n_b R4: $6 \le n_j \le 8$, $n_b = 1$	9	0.4			1.7 ± 1.2	1		~~ ~	المعارف المالية
R2: $n_j \ge 9$, $n_b \ge 2$ R3: all n_j , n_b R4: $6 \le n_j \le 8$, $n_b = 1$ 1.1	- 5		0.7	3.0 ± 1.7	2.5 ± 1.4	3	(1)	$pp \rightarrow g g, g \rightarrow t t \widetilde{\chi}^0$	NLO+NLL exclusion
R3: all n_j, n_b R4: $6 \le n_j \le 8, n_b = 1$ 1.3			0.2		0.9 ± 0.9	1	Ö 1600		
R4: $6 \le n_j \le 8$, $n_b = 1$ 1.3	min The same	0.4		1.0 ± 1.0		1	2 1600	Observed ± 1	σ.,
	45 1 0 45 1 0 45	0.4	0.8	4.0 ± 2.0	2.8 ± 1.4	4	0 -		tneory
$R4: n_i \geq 9, n_b = 1$ 1.0		0.6	0.2	2.4 ± 1.9	1.2 ± 0.7	0	€ 1400	Expected ± 1 of	O _{experiment}
***	$.01 \pm 0.15 \pm 0.92$	0.4	0.3	0.3 ± 0.3	0.3 ± 0.3	1	□ 1400	The second second	evherment
R4: $6 \le n_j \le 8$, $n_b \ge 2$ 1.2		1.8	0.4	1.0 ± 0.9	0.5 ± 0.4	0			
R4: $n_j \ge 9, n_b \ge 2$ 0.5	$.90 \pm 0.13 \pm 0.81$	1.5	0.9	0.2 ± 0.3	0.1 ± 0.1	0	1200	And the second s	
ata j , $\widetilde{g} \rightarrow t\widetilde{t}\widetilde{\chi}_1^0$ (1500,100) j , $\widetilde{g} \rightarrow t\widetilde{t}\widetilde{\chi}_1^0$ (1200,800) 1 true lepton 2 true leptons		17. O 00 47.	(vap 001)sinaya 10 ²	Data Data — \$\tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{t}\tilde{g}\tilde{t}\tilde{g}\tild	500,100) Sin 200,800) ton tons Oth	gle top	1000 800 600		
			Data / MC 1.5 1.5 2.0	414			200 200	800 1000 1200	0 1400 1600 1800 m _ã [Ge

ATLAS multi-b

ATLAS-CONF-2015-067

University of Sussex

Main idea:

- gluino mediated stop and sbottom production yields high jet multiplicity and bjet multiplicity
- Three sets of signal regions (with at least 3 bjets):
 - G→bbχ₁⁰: 4 jets, 3 b-jets, different E_T^{miss} and m_{eff} selections
 - G→ttχ₁⁰: 0- and 1-lepton regions, 3 or 4 bjets, different m_T(b,E_T^{miss}), m_T(I,E_T^{miss}), E_T^{miss}, m_{eff} selections
 - Boosted top candidate for large $\Delta m(g, \chi_1^0)$

ATLAS multi-b

- Control region for top pair production: 1-lepton and upper m_T(I,E_T^{miss}) cut
- A set of validation regions to validate all extrapolations from CR to SR
- Main systematic uncertainties: top pair production modelling and mistag rate

	SR- Gbb - A	SR- Gbb - B	SR- Gbb - C
Observed events	0	1	5
Fitted background events	1.4 ± 0.7	1.5 ± 0.5	7.5 ± 1.4
$t\bar{t}$	0.7 ± 0.5	0.83 ± 0.32	3.9 ± 1.0
Z+jets	0.25 ± 0.26	0.25 ± 0.22	1.4 ± 0.6
W+jets	0.19 ± 0.10	0.15 ± 0.06	0.95 ± 0.34
Single-top	0.22 ± 0.10	0.16 ± 0.15	0.67 ± 0.33
$t\bar{t}W,t\bar{t}Z,t\bar{t}H,t\bar{t}t\bar{t}$	< 0.1	< 0.1	0.18 ± 0.10
Diboson	_	< 0.1	0.43 ± 0.25
MC-only prediction	1.7	1.6	7.1
$\mu_{tar{t}}$	0.7 ± 0.3	0.9 ± 0.4	1.1 ± 0.4

	SR-Gtt-0l-A	SR-Gtt-0L-B	SR-Gtt-0L-C
Observed events	1	1	1
Fitted background events	2.0 ± 0.7	2.8 ± 1.7	3.2 ± 1.7
$t\bar{t}$	1.3 ± 0.6	2.2 ± 1.6	2.4 ± 1.7
Z+jets	0.24 ± 0.17	0.13 ± 0.13	0.16 ± 0.09
W+jets	0.21 ± 0.14	0.15 ± 0.16	0.20 ± 0.21
Single-top	0.14 ± 0.16	0.15 ± 0.13	0.18 ± 0.16
$t\bar{t}W,t\bar{t}Z,t\bar{t}h,t\bar{t}t\bar{t}$	< 0.1	0.10 ± 0.06	0.11 ± 0.06
Diboson	< 0.1	< 0.1	0.18 ± 0.18
MC-only prediction	1.8	1.9	2.6
$\mu_{tar{t}}$	1.2 ± 0.4	1.7 ± 0.7	1.4 ± 0.6

	SR-Gtt-1L-A	SR-Gtt-1L-B
Observed events	2	0
Fitted background events	1.3 ± 0.4	1.1 ± 0.6
$t\bar{t}$	0.91 ± 0.33	0.8 ± 0.5
Z+jets	-	-
W+jets	< 0.1	< 0.1
Single-top	0.19 ± 0.15	0.15 ± 0.13
$t\bar{t}W,t\bar{t}Z,t\bar{t}h,t\bar{t}t\bar{t}$	0.18 ± 0.10	0.18 ± 0.10
Diboson	-	_
MC-only prediction	1.3	1.2
$\mu_{tar{t}}$	1.0 ± 0.3	0.9 ± 0.3

Exclusion limits

University of Sussex

ATLAS-CONF-2015-067

SS/3L analyses

University of Sussex

- Gluinos are majorana fermions → increased (w.r.t. background) probability of SS leptons
- In general, very low SM background → sensitive to new processes

CMS

64 signal regions divided by the p_T of leptons, H_T, E_T^{miss}, M_T^{min}

One more interpretation on top of those done by ATLAS

University of Sussex

University of Sussex

Fake lepton background estimate

- General approach to fake lepton background estimation based on a loose/tight matrix method
- Example with 1 lepton (easily extendable to multi-lepton signatures):

- A fake lepton lepton can arise from:
 - Jet mis-identification
 - Off-axis HF semileptonic decays
 - Photon conversion
- Strategy: define a "loose" (pre-selected) and a "tight" (signal) lepton selection.
- Then, solve the following system of equations

$$N^{loose} = N^{loose}_{real} + N^{loose}_{fake}$$

 $N^{tight} = \varepsilon_{real}N^{loose}_{real} + \varepsilon_{fake}N^{loose}_{fake}$

Need to be measured independently from data

Simply count how many of them

SS/3L

University of Sussex

Charge flip background estimated from the Z → ee peak (with two electrons with SS)

Obviously irrelevant for muons

Dedicated
validation regions
for irreducible
background

SS/3L - SR example

University of Sussex

No significant excess found in any of the four signal regions

ATLAS-CONF-2015-082

University of Sussex

- Basic idea: Z boson + E_T^{miss} is a final state with very limited SM background (essentially WZ and ZZ production)
- Selection: 2 jets, E_T^{miss} > 225 GeV, H_T > 600 GeV

arXiv:1503.03290

Excess in run 1

non-resonant background dominated by flavour symmetric processes (mainly ttbar)

ATLAS Z+ETmiss

University of Sussex

- Flavour symmetric background (top pair production, WW, etc.): ee:µµ:eµ events are in ratio 1:1:2
- Validated with a sideband fit to m_{II}

 $\frac{\epsilon(\mu)}{\epsilon(e)}$

- **Z+E**T^{miss} background tricky (it mainly comes from detector effects)
- Estimated from γ+jets events

- idea: γ+jets and Z
 +jets events are the same (beside Z mass and lepton/photon resolution
- measure E_T^{miss}
 shape in γ+jets and
 use it to predict
 signal region yields

ATLAS Z+ETmiss

University of Sussex

Excess still there in run 2!

Expected events: **10.3 ±2.3**Observed: **21 (2.2σ)**10 in ee, 11 in μμ

What does CMS say?

- 47 signal regions, looking on- and off-Z (CMS had 2.6 σ below the Z peak)
 - Defined with different jet and b-jet multiplicity, E_Tmiss, H_T, m_{II}
 - Background estimation similar to the ATLAS case.

CMS Vs ATLAS

University of Sussex

q

q

Summarising

Conclusions

- A nice **restart of the LHC**
- SUSY searches sensitive to gluino production mostly
- No discovery, but some interesting excess to be followed up
- 2016 (30 fb⁻¹ foreseen) will overcome SUSY sensitivity for all production mechanisms

BACKUP

Region	$E_{\mathbf{T}}^{\mathbf{miss}}$ [GeV]	$H_{\mathbf{T}}$ $[\mathbf{GeV}]$	$n_{ m jets}$	$m_{\ell\ell} \ [{f GeV}]$	SF/DF	$\Delta\phi(\mathbf{jet}_{12},m{p}_{\mathrm{T}}^{\mathrm{miss}})$	$m_{\mathrm{T}}(\ell_3, E_{\mathrm{T}}^{\mathrm{miss}})$ [GeV]	$n_{ ext{b-jets}}$
Signal regions								
SRZ	> 225	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF	> 0.4	-	-
Control regions								
Z normalisation	< 60	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF	> 0.4	-	-
CR- FS	> 225	> 600	≥ 2	$61 < m_{\ell\ell} < 121$	DF	> 0.4	-	-
CRT	> 225	> 600	≥ 2	$m_{\ell\ell}\notin[81,101]$	SF	> 0.4	-	-
Validation region	S							
VRZ	< 225	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF	> 0.4	-	_
VRT	100 - 200	> 600	≥ 2	$m_{\ell\ell} \notin [81, 101]$	SF	> 0.4	-	-
VRS	100 - 200	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF	> 0.4	-	-
$VR ext{-}FS$	100 - 200	> 600	≥ 2	$61 < m_{\ell\ell} < 121$	DF	> 0.4	-	-
VR-WZ	100 - 200	-	-	-	3ℓ	-	< 100	0
VR-ZZ	< 100	-	-	-	4ℓ	-	-	0
VR-3L	60 – 100	> 200	≥ 2	$81 < m_{\ell\ell} < 101$	3ℓ	> 0.4	-	-

	VRS	VR-WZ	VR-ZZ	VR-3L
Observed events	56	89	20	7
Total expected background events	52.6 ± 9.1	87 ± 10	15.5 ± 3.4	6.5 ± 1.6
Flavour symmetric $(t\bar{t}, Wt, WW \text{ and } Z \rightarrow \tau\tau)$ events	18.9 ± 4.8	1.3 ± 0.4	0	0.3 ± 0.2
WZ/ZZ events	7.5 ± 1.7	82 ± 10	15.5 ± 3.4	4.9 ± 1.6
Z/γ^* + jets events	24.8 ± 7.6	2.7 ± 2.8	0	0.2 ± 0.2
Rare top events	1.4 ± 0.2	0.9 ± 0.4	0.04 ± 0.02	1.0 ± 0.1
And the second s				

Region	Flavour-symmetry	Sideband fit
SRZ	5.1 ± 2.0	6.1 ± 1.7
VRS	18.9 ± 4.8	20.5 ± 5.6

	SRZ
Observed events	21
Total expected background events	10.3 ± 2.3
Flavour symmetric ($t\bar{t}$, Wt , WW and $Z \rightarrow \tau\tau$) events	5.1 ± 2.0
WZ/ZZ events	2.9 ± 0.8
Z/γ^* + jets events	1.9 ± 0.8
Rare top events	0.4 ± 0.1
p-value	0.013
Significance	2.2
Observed (Expected) S ⁹⁵	$20.0\ (10.2^{+4.4}_{-3.0})$

Source	Relative systematic uncertainty $[\%]$
	SRZ
Total systematic uncertainty	22
Flavour symmetry (statistical)	14
Flavour symmetry (systematic)	12
$Z/\gamma^* + \text{jets (systematic)}$	7.8
WZ generator uncertainty	7.6
$Z/\gamma^* + \text{jets (statistical)}$	2.2

Heavy use of kinematical end-points

mT2: an extension of the transverse mass variable

$$m_{\text{T2}}(\mathbf{p}_{\text{T}}^{\ell_1}, \mathbf{p}_{\text{T}}^{\ell_2}, \mathbf{p}_{\text{T}}^{\text{miss}}) = \min_{\mathbf{q}_{\text{T}} + \mathbf{r}_{\text{T}} = \mathbf{p}_{\text{T}}^{\text{miss}}} \left\{ \max[\ m_{\text{T}}(\mathbf{p}_{\text{T}}^{\ell_1}, \mathbf{q}_{\text{T}}), m_{\text{T}}(\mathbf{p}_{\text{T}}^{\ell_2}, \mathbf{r}_{\text{T}}) \] \right\}$$

 amT2: a generalisation of the mT2

$$\psi^0 = (\widetilde{B}, \widetilde{W}^0, \widetilde{H}_d^0, \widetilde{H}_u^0)$$
 Neutralinos
$$\mathcal{L}_{\text{neutralino mass}} = -\frac{1}{2} (\psi^0)^T \mathbf{M}_{\widetilde{N}} \psi^0 + \text{c.c.}$$

$$\mathbf{M}_{\widetilde{N}} = \begin{pmatrix} M_1 & 0 & -c_{\beta} \, s_W \, m_Z & s_{\beta} \, s_W \, m_Z \\ 0 & M_2 & c_{\beta} \, c_W \, m_Z & -s_{\beta} \, c_W \, m_Z \\ -c_{\beta} \, s_W \, m_Z & c_{\beta} \, c_W \, m_Z & 0 & -\mu \\ s_{\beta} \, s_W \, m_Z & -s_{\beta} \, c_W \, m_Z & -\mu & 0 \end{pmatrix}$$

$$\mathbf{m}_{\widetilde{\mathbf{t}}}^2 = \begin{pmatrix} stops and stottoms \\ m_{Q_3}^2 + m_t^2 + \Delta_{\widetilde{u}_L} & v(a_t^*\sin\beta - \mu y_t\cos\beta) \\ v(a_t\sin\beta - \mu^* y_t\cos\beta) & m_{\overline{u}_3}^2 + m_t^2 + \Delta_{\widetilde{u}_R} \end{pmatrix}$$

$$\mathbf{m}_{\widetilde{\mathbf{b}}}^{\mathbf{2}} = \begin{pmatrix} m_{Q_3}^2 + \Delta_{\tilde{d}_L} & v(a_b^* \cos \beta - \mu y_b \sin \beta) \\ v(a_b \cos \beta - \mu^* y_b \sin \beta) & m_{\overline{d}_3}^2 + \Delta_{\tilde{d}_R} \end{pmatrix}$$

But...

