University of Sussex ### SUSY searches at the LHC Run 2 ### Iacopo Vivarelli University of Sussex Seminar - Albert-Ludwig-Universität Freiburg 17th February 2016 - SUSY is a hypothetical (broken) symmetry that relates bosons and fermions - a new set of fields differing in spin by 1/2 w.r.t. the SM partners # SUSY is not an exact symmetry Sparticle masses ≠ particle masses ### Minimal SUSY extension of SM (MSSM) University of Sussex - Recipe: supersymmetrise the SM lagrangian, then add SUSY breaking terms: - LSUSY = LSUSY conserving + LSUSY soft breaking $$W\ni \frac{1}{2}\lambda_{ijk}L_iL_jE_k^c+\lambda_{ijk}'L_iQ_jD_k^c+\frac{1}{2}\lambda_{ijk}''U_i^cD_j^cD_k^c+\mu_iL_iH_u$$ #### **Lepton and baryon number violation allowed** → **proton decay** If R-parity conserved, the Lightest Supersymmetric Particle (LSP) is stable #### **MSSM** parameters: | SUSY conserving sector | SUSY breaking sector | |---|--| | 3 coupling constants for SU(3)xSU(2)sU(1) | 5 3x3 hermitian mass matrices (one per EW multiplet) | | 4 Yukawa couplings per generation | 3 complex 3x3 matrices (Higgs trilinear couplings to sfermions) | | | 3 mass terms for the Higgs sector
+ 2 additional off-diagonal terms | | | Higgs VEV expectation angle β | A total of 124 parameters: too much? ### Beyond MSSM ### Higgs boson mass stability in a nutshell University of Sussex Higgs mass has a quadratic dependency from physics at a higher scale With SUSY, quadratic effects are cancelled exactly ### Searching for EW scale SUSY? University of Sussex Residual logarithmic corrections set a (rough and subjective) scale of ~ TeV for the mass of some SUSY particles More of **a guideline** than an actual upper limit. Superpartners of quarks and gluons have large production cross sections at LHC Strong **pre-LHC** expectation for **"fast" discovery** of squarks and gluinos at LHC M.Papucci, J.Ruderman, A. Weiler ^{*} This implies two light neutralinos $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$ and one chargino $\tilde{\chi}_1^\pm$ ### What do we expect to measure? ### Gluino pair production ### Stop pair production ### Higgsino pair production ### But... The Higgs boson mass is a bit on the "high" side for the MSSM $$m_h^2 = m_Z^2 \cos^2 2\beta + \frac{3y_t^2 m_t^2}{4\pi^2} \left[\log \left(\frac{m_S^2}{m_t^2} \right) + X_t^2 \left(1 - \frac{X_t^2}{12} \right) \right] + \cdots$$ #### This is M_S in the formula # Experimental setup ### ATLAS and CMS University of Sussex ### **CMS** - high-resolution EM calorimeter - excellent tracking performance in ID and muon spectrometer, heavily used for jet and MET measurement as well ### **ATLAS** - high-granularity "pointing" EM calorimeter - good resolution for hadronic calorimetry - good tracking in ID and muon spectrometer ### LHC - performance of the machine Pileup conditions more relaxed than at $\sqrt{s} = 8 \text{ TeV}$ University of Sussex τ lepton performance cross-checked with the Z peak Detector performance quickly **reached (and surpassed)** those of Run 1 # SUSY searches at 13 TeV ### Is Run 2 better than Run 1? University of Sussex **Parton luminosities** at $\sqrt{s} = 13$ TeV are **larger** than at $\sqrt{s} = 8$ TeV For heavy final states the new Run 2 dataset is already beating Run 1 (2 M_X for pair-produced particles) conference notes multi b-jets NEW 2b + MET NEW University of Sussex https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults ATLAS-CONF-2015-067 Link ATLAS-CONF-2015-066 Link | conference notes | | | | | | | |------------------------|----------------------|----------|--------|----------|----------------------|--------| | Short Title of prelimi | nary conference note | Date | √s () | L (fb-1) | Document | Plots | | OL 2-6 jets NEW | * | 012/2015 | 13 | 3.2 | ATLAS-CONF-2015-062 | Link | | OL 7-10 jets jets NEW | | 012/2015 | 13 | 3.2 | ATLAS-CONF-2015-077 | Link | | 1L + jets NEW | | 012/2015 | 13 | 3.2 | ATLAS-CONF-2015-076₽ | Link | | 2L Z+MET NEW | * | 012/2015 | 13 | 3.2 | ATLAS-CONF-2015-082 | Linker | | SS/3L NEW | * | 012/2015 | 13 | 3.2 | ATLAS-CONF-2015-078 | Link | | | | | | | | | 012/2015 13 012/2015 13 3.2 3.2 # about 40 signal regions in total http://cms-results.web.cern.ch/cms-results/ public-results/preliminary-results/LHC-Jamboree-2015/SUS.html about 400 signal regions in total | CMS-PAS-SUS-15-002 | Search for supersymmetry in the multijet and missing transverse momentum channel in pp collisions at 13 TeV | | |--------------------|---|---| | CMS-PAS-SUS-15-003 | Search for new physics in the all-hadronic final state with the $M_{ m T2}$ variable | * | | CMS-PAS-SUS-15-005 | Search for new physics in final states with jets and missing transverse momentum in $\sqrt{s}=$ 13 TeV pp collisions with the $\alpha_{\rm T}$ variable | | | CMS-PAS-SUS-15-004 | Inclusive search for supersymmetry using the razor variables at $\sqrt{s}=$ 13 TeV | | | CMS-PAS-SUS-15-007 | Search for supersymmetry in pp collisions at $\sqrt{s}=$ 13 TeV in the single-lepton final state using the sum of masses of large radius jets | * | | CMS-PAS-SUS-15-008 | Search for SUSY in same-sign dilepton events at $\sqrt{s}=$ 13 TeV | | | CMS-PAS-SUS-15-011 | Search for new physics in final states with two opposite-sign same-flavor leptons, jets and $E_{ m T}^{ m miss}$ in pp collisions at $\sqrt{s}=$ 13 TeV | * | - Heavy sparticles produced in the primary collision - They decay into lighter objects, emitting (high) P_T jets and possibly other objects (leptons, photons) and MET (LSP) - A "typical" SUSY event will have large MET and large H_T - Useful variables: $$H_T = \sum_{jets} p_T^{jets} (+ \sum_l p_T^l + \dots)$$ $$M_{eff} = E_T^{miss} + H_T$$ ### Intermezzo University of Sussex Neutralinos and jets have low p_T, unless in presence of ISR **QCD** production cross section quickly decreases with the increasing mass of the final state produced Final object boost increases Compressed kinematics, lower p₁ for quarks and neutralinos ### CMS M_{T2} search US University of Sussex https://cds.cern.ch/record/2114816/files/SUS-15-003-pas.pdf University of Sussex #### Underlying idea: - Collect all hadronic decay products into two jets j1, j2. - Then M_{T2}(j1,j2,E_T^{miss}) has an endpoint at m_{gluino} - Typically M_{T2} << m_{gluino} for the background $$m_{\mathrm{T2}}(\mathbf{p}_{\mathrm{T}}^{\ell_1}, \mathbf{p}_{\mathrm{T}}^{\ell_2}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}) = \min_{\mathbf{q}_{\mathrm{T}} + \mathbf{r}_{\mathrm{T}} = \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}} \left\{ \max[\ m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell_1}, \mathbf{q}_{\mathrm{T}}), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell_2}, \mathbf{r}_{\mathrm{T}}) \] \right\}$$ - About 250 signal regions classified according to N_{jet}, N_{bjet}, H_T (scalar sum of jet p_T), M_{T2} - Background processes: - "Lost lepton" (W+jets, top pair production) - "Irreducible" (mainly Z->νν) - "Instrumental" (fake E_Tmiss mostly multijet) ### CMS M_{T2} search University of Sussex $Z \rightarrow \nu \nu$ estimated from γ +jets events in each bin of N_{jet} , N_b , H_T "Lost lepton" background estimated with 1-lepton control regions (CR) - an upper cut on m_T(lep,E_T^{miss}) ensures no signal contamination - b-jet veto for the W CR, one b-jet for the top pair production CR ### CMS M_{T2} search - result University of Sussex No significant excess above SM expectations ### CMS M_{T2} search University of Sussex Exclusion limits obtained from the **statistical combination** of the signal regions Interpreted in gluino pair production with three different decay patterns assumed Gluino pair production excluded **up to m_{gluino} = 1650 GeV** (depending on assumptions) - KISS (Keep It Stupid Simple) (and as model independent as possible) - Very different approach: 7 signal regions - defined mainly by jet multiplicity and m_{eff} = H_T + E_T^{miss} | trigger | Requirement | Signal Region | | | | | | | | |--------------------|--|---------------|------|------|---------|------|------|------|--| | 9901 | rtequirement | 2jl | 2jm | 2jt | 4 jt | 5j | 6jm | 6jt | | | 7 | $E_{\mathrm{T}}^{\mathrm{miss}} \; [\mathrm{GeV}] >$ | | | | 200 | | | | | | ءِ 🗖 | $p_{\mathrm{T}}(j_1) \; [\mathrm{GeV}] >$ | 200 | 300 | | | 200 | | | | | itio | $p_{\mathrm{T}}(j_2) \; [\mathrm{GeV}] >$ | 200 | 50 | 200 | 200 100 | | | | | | efir | $p_{\mathrm{T}}(j_3) \; [\mathrm{GeV}] >$ | _ | | | | 100 | | | | | al d | $p_{\mathrm{T}}(j_4) \; [\mathrm{GeV}] >$ | _ | | | | 100 | | | | | signal definition | $p_{\mathrm{T}}(j_5) \; [\mathrm{GeV}] >$ | _ | | | | 100 | | | | | | $p_{\mathrm{T}}(j_{6}) \; [\mathrm{GeV}] >$ | ı | | | 100 | | 00 | | | | _ | $\Delta\phi(\mathrm{jet}_{1,2,(3)},m{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}}>$ | 0.8 0.4 0.8 | | 0.4 | | | | | | | | $\Delta\phi({ m jet}_{i>3}, {\pmb E}_{ m T}^{ m miss})_{ m min} >$ | _ | | | 0.2 | | | | | | multijet rejection | $E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}} \; [\mathrm{GeV}^{1/2}] >$ | 15 20 | | 20 | _ | | | | | | | Aplanarity > | _ | | | 0.04 | | | | | | | $E_{\rm T}^{\rm miss}/m_{\rm eff}(N_{\rm j})>$ | _ | | 0.2 | 0.3 | 25 | 0.2 | | | | main discriminant | $m_{\rm eff}({\rm incl.})~{\rm [GeV]}>$ | 1200 | 1600 | 2000 | 2200 | 1600 | 1600 | 2000 | | ### ATLAS OL University of Sussex ### Model independent limits | Signal Region | 2jl | $2\mathrm{jm}$ | 2jt | 4jt | 5j | 6jm | 6jt | | |--|------------------|------------------|----------------------|---------------------|---------------------|---------------------|---------------------
--| | MC expected events | | | | | | | | | | Diboson | 33 | 33 | 4.0 | 0.7 | 2.4 | 1.1 | 0.5 | | | $Z/\gamma^* + jets$ | 151 | 94 | 12 | 1.8 | 4.9 | 2.5 | 1.3 | | | W+jets | 72 | 42 | 4.5 | 0.9 | 3.0 | 1.6 | 0.9 | | | $t\bar{t}(+\mathrm{EW}) + \mathrm{single\ top}$ | 18 | 17 | 1.2 | 0.9 | 2.7 | 1.6 | 1.1 | | | Multi-jet | 0.6 | 0.8 | 0.03 | _ | _ | _ | _ | | | Total MC | 275 | 188 | 22 | 4.3 | 13 | 6.7 | 3.8 | | | Fitted background events | | | | | | | | | | Diboson | 33 ± 17 | 33 ± 17 | 4.0 ± 2.0 | 0.67 ± 0.35 | 2.4 ± 1.3 | 1.1 ± 0.6 | 0.5 ± 0.4 | | | $Z/\gamma^* + jets$ | 127 ± 12 | 85 ± 8 | 12 ± 4 | 1.5 ± 0.6 | 4.5 ± 1.3 | 2.0 ± 0.7 | 1.1 ± 0.6 | | | W+jets | 61 ± 4 | 32 ± 5 | 2.9 ± 0.8 | 0.7 ± 0.4 | 3.3 ± 1.0 | 1.7 ± 0.7 | 1.0 ± 0.6 | | | $t\bar{t}(+\mathrm{EW}) + \mathrm{single\ top}$ | 14.6 ± 2.9 | 10.5 ± 2.6 | 0.7 ± 0.5 | 0.6 ± 0.4 | 1.4 ± 0.5 | 0.8 ± 0.4 | 0.46 ± 0.33 | | | Multi-jet | 0.51 ± 0.06 | 0.6 ± 0.5 | _ | _ | _ | _ | _ | | | Total bkg | 237 ± 22 | 163 ± 20 | 20 ± 5 | 3.5 ± 0.8 | 11.7 ± 2.2 | 5.5 ± 1.2 | 3.1 ± 0.9 | | | Observed | 264 | 186 | 25 | 6 | 7 | 4 | 3 | | | $\langle \epsilon \sigma \rangle_{\mathrm{obs}}^{95} \; [\mathrm{fb}]$ S_{obs}^{95} S_{exp}^{95} | \sim 24 | 21 | 5.9 | 2.5 | 2.0 | 1.6 | 1.6 | | | $S_{ m obs}^{95}$ | 76 | 67 | 19 | 8.2 | 6.3 | 5.3 | 5.0 | | | S_{exp}^{95} | 52^{+22}_{-15} | 46^{+19}_{-12} | $14.1^{+5.1}_{-3.1}$ | $5.7^{+2.2}_{-1.6}$ | $8.5^{+3.3}_{-2.1}$ | $6.5_{-1.6}^{+2.5}$ | $5.0^{+2.3}_{-1.4}$ | | | $p_0(\mathbf{Z})$ | 0.11 (1.20) | 0.12 (1.15) | 0.18 (0.93) | 0.14 (1.08) | 0.5 (0.0) | 0.5 (0.0) | 0.5 (0.0) | | • Answers the question: what cross section is excluded, assuming efficiency x acceptance = 100%? ### CMS Vs ATLAS ## CMS 1-lepton multijets US University of Sussex University of Sussex #### · Basic idea: Reconstruct R=1.2 Anti-k_T jets. The sum of their masses M_J is sensitive to signal and independent on m_T(lep,E_T^{miss}) ## CMS 1-lepton multijets | R4: $6 \le n_j \le 8$, $n_b = 2$ 1.1
R4: $n_j \ge 9$, $n_b = 2$ 1.0
R4: $6 \le n_j \le 8$, $n_b \ge 3$ 1.3
R4: $n_j \ge 9$, $n_b \ge 3$ 1.0
R1: all n_j , n_b
R2: $6 \le n_j \le 8$, $n_b = 1$
R2: $n_j \ge 9$, $n_b = 1$
R2: $n_j \ge 9$, $n_b \ge 2$
R2: $n_j \ge 9$, $n_b \ge 2$
R3: all n_j , n_b
R4: $6 \le n_j \le 8$, $n_b \ge 1$ | $ \begin{array}{c} -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -$ | MET \(\le 400 \) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 | 2.9
0.2
0.3
0.5
0.2
0.6
3.5
0.2
0.3
0.3
0.6
0.3
0.7 | 330.1 ± 18.2 47.1 ± 6.9 6.0 ± 2.4 42.0 ± 6.5 7.0 ± 2.6 12.0 ± 3.5 1.0 ± 1.0 21.0 ± 4.6 3.4 ± 1.4 0.3 ± 0.3 3.0 ± 1.2 0.5 ± 0.3 1.0 ± 0.5 0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8 1.0 ± 1.0 | 329.4 ± 18.0 49.4 ± 6.8 6.6 ± 2.5 41.0 ± 6.2 6.5 ± 2.5 11.1 ± 3.2 0.9 ± 0.9 21.6 ± 4.2 3.6 ± 1.0 0.4 ± 0.2 3.0 ± 0.8 0.4 ± 0.2 0.9 ± 0.3 0.1 ± 0.1 16.2 ± 3.9 6.7 ± 2.5 | 330
47
6
42
7
12
1
21
6
1
2
0
0
0 | | P_2 P_1 | \tilde{g} \tilde{g} \tilde{g} \tilde{g} \tilde{g} \tilde{t} 2.1 fb ⁻¹ (13 Te | |---|--|--|---|--|---|--|--------------------|--|---| | R2: $6 \le n_j \le 8$, $n_b = 1$
R2: $n_j \ge 9$, $n_b = 1$
R2: $6 \le n_j \le 8$, $n_b = 2$
R2: $n_j \ge 9$, $n_b = 2$
R2: $n_j \ge 9$, $n_b \ge 3$
R3: $all \ n_j, n_b$
R4: $6 \le n_j \le 8$, $n_b \ge 3$
R3: $all \ n_j, n_b$
R4: $6 \le n_j \le 8$, $n_b = 1$
R4: $n_j \ge 9$, $n_b = 1$
R4: $n_j \ge 9$, $n_b \ge 3$
R4: $n_j \ge 9$, $n_b \ge 3$
R5: $n_j \ge 9$, $n_b \ge 3$
R6: $n_j \le 8$, $n_b \ge 1$
R7: $n_j \ge 9$, $n_b \ge 1$
R8: $n_j \ge 9$, $n_b \ge 2$
R9: $n_j \ge 9$, $n_b \ge 2$
R1: $n_j \ge 9$, $n_b \ge 2$
R3: 2$ | $.91 \pm 0.05 \pm 0.82$
$.12 \pm 0.05 \pm 0.42$
$.04 \pm 0.10 \pm
0.94$
$.25 \pm 0.11 \pm 0.75$
$.04 \pm 0.09 \pm 0.96$
MET | 0.1
0.1
0.1
0.1
0.1
0.2
0.2
0.1
0.3
0.3
0.3
0.3
0.3
0.3
0.3 | 0.2
0.3
0.3
0.5
0.2
0.6
3.5
0.2
0.3
0.3
0.6
0.3
0.7 | 47.1 ± 6.9 6.0 ± 2.4 42.0 ± 6.5 7.0 ± 2.6 12.0 ± 3.5 1.0 ± 1.0 21.0 ± 4.6 3.4 ± 1.4 0.3 ± 0.3 3.0 ± 1.2 0.5 ± 0.3 1.0 ± 0.5 0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8 | 49.4 ± 6.8 6.6 ± 2.5 41.0 ± 6.2 6.5 ± 2.5 11.1 ± 3.2 0.9 ± 0.9 21.6 ± 4.2 3.6 ± 1.0 0.4 ± 0.2 3.0 ± 0.8 0.4 ± 0.2 0.9 ± 0.3 0.1 ± 0.1 16.2 ± 3.9 | 47
6
42
7
12
1
21
6
1
2
0
0
0 | | P_2 P_1 | ī | | R2: $n_j \ge 9$, $n_b = 1$
R2: $6 \le n_j \le 8$, $n_b = 2$
R2: $n_j \ge 9$, $n_b = 2$
R2: $n_j \ge 9$, $n_b \ge 3$
R3: $all \ n_j, n_b$
R4: $6 \le n_j \le 8$, $n_b \ge 1$
R4: $6 \le n_j \le 8$, $n_b = 1$
R4: $6 \le n_j \le 8$, $n_b = 2$
R4: $n_j \ge 9$, $n_b = 2$
R4: $n_j \ge 9$, $n_b \ge 3$
R4: $n_j \ge 9$, $n_b \ge 3$
R4: $n_j \ge 9$, $n_b \ge 3$
R4: $n_j \ge 9$, $n_b \ge 3$
R5: $n_j \ge 9$, $n_b \ge 3$
R6: $n_j \le 8$, $n_b \ge 1$
R7: $n_j \ge 9$, $n_b \ge 1$
R8: $n_j \ge 9$, $n_b \ge 1$
R9: $n_j \ge 9$, $n_b \ge 1$
R1: $n_j \ge 9$, $n_b \ge 1$
R2: $n_j \ge 9$, $n_b \ge 1$
R3: $n_j \ge 9$, $n_b \ge 2$
R5: $n_j \ge 9$, $n_b \ge 2$
R6: $n_j \le 8$, $n_b \ge 2$
R7: $n_j \ge 9$, $n_b \ge 2$
R8: $n_j \ge 9$, $n_b \ge 1$
R9: $n_j \ge 9$, $n_b \ge 1$
R1: $n_j \ge 9$, $n_b \ge 1$
R2: $n_j \ge 9$, $n_b \ge 1$
R3: $n_j \ge 9$, $n_b \ge 1$
R4: $n_j \ge 9$, $n_b \ge 1$ | $.91 \pm 0.05 \pm 0.82$
$.12 \pm 0.05 \pm 0.42$
$.04 \pm 0.10 \pm 0.94$
$.25 \pm 0.11 \pm 0.75$
$.04 \pm 0.09 \pm 0.96$
MET | 0.1
0.1
0.1
0.1
0.2
0.2
0.1
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3 | 0.3
0.3
0.5
0.2
0.6
3.5
0.2
0.3
0.3
0.6
0.3
0.7
EV | 6.0 ± 2.4 42.0 ± 6.5 7.0 ± 2.6 12.0 ± 3.5 1.0 ± 1.0 21.0 ± 4.6 3.4 ± 1.4 0.3 ± 0.3 3.0 ± 1.2 0.5 ± 0.3 1.0 ± 0.5 0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8 | 6.6 ± 2.5 41.0 ± 6.2 6.5 ± 2.5 11.1 ± 3.2 0.9 ± 0.9 21.6 ± 4.2 3.6 ± 1.0 0.4 ± 0.2 3.0 ± 0.8 0.4 ± 0.2 0.9 ± 0.3 0.1 ± 0.1 16.2 ± 3.9 | 6 42 7 12 1 21 6 1 2 0 0 0 0 0 15 | | P ₁ | ī | | R2: $6 \le n_j \le 8$, $n_b = 2$
R2: $n_j \ge 9$, $n_b = 2$
R2: $6 \le n_j \le 8$, $n_b \ge 3$
R2: $n_j \ge 9$, $n_b \ge 3$
R3: all n_j , n_b
R4: $6 \le n_j \le 8$, $n_b = 1$
R4: $n_j \ge 9$, $n_b = 1$
R4: $n_j \ge 9$, $n_b = 2$
R4: $n_j \ge 9$, $n_b \ge 3$
R4: $n_j \ge 9$, $n_b \ge 3$
R4: $n_j \ge 9$, $n_b \ge 3$
R1: all n_j , n_b
R2: $6 \le n_j \le 8$, $n_b \ge 1$
R2: $n_j \ge 9$, $n_b \ge 1$
R2: $n_j \ge 9$, $n_b \ge 1$
R2: $n_j \ge 9$, $n_b \ge 1$
R3: all n_j , $n_b \ge 2$
R3: all n_j , $n_b \ge 2$
R4: $6 \le n_j \le 8$, $n_b \ge 1$ | $.91 \pm 0.05 \pm 0.82$
$.12 \pm 0.05 \pm 0.42$
$.04 \pm 0.10 \pm 0.94$
$.25 \pm 0.11 \pm 0.75$
$.04 \pm 0.09 \pm 0.96$
MET | 0.1
0.1
0.1
0.2
0.2
0.1
0.3
0.3
0.3
0.3
0.3
1.5
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0 | 0.3
0.5
0.2
0.6
3.5
0.2
0.3
0.3
0.6
0.3
0.7
EV | 42.0 ± 6.5 7.0 ± 2.6 12.0 ± 3.5 1.0 ± 1.0 21.0 ± 4.6 3.4 ± 1.4 0.3 ± 0.3 3.0 ± 1.2 0.5 ± 0.3 1.0 ± 0.5 0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8 | 41.0 ± 6.2 6.5 ± 2.5 11.1 ± 3.2 0.9 ± 0.9 21.6 ± 4.2 3.6 ± 1.0 0.4 ± 0.2 3.0 ± 0.8 0.4 ± 0.2 0.9 ± 0.3 0.1 ± 0.1 16.2 ± 3.9 | 42
7
12
1
21
6
1
2
0
0
0 | | P_1 | ī | | R2: $n_j \ge 9$, $n_b = 2$
R2: $6 \le n_j \le 8$, $n_b \ge 3$
R3: $all \ n_j$, n_b
R4: $6 \le n_j \le 8$, $n_b = 1$
R4: $6 \le n_j \le 8$, $n_b = 1$
R4: $6 \le n_j \le 8$, $n_b = 2$
R4: $6 \le n_j \le 8$, $n_b \ge 2$
R4: $6 \le n_j \le 8$, $n_b \ge 3$
R4: $6 \le n_j \le 8$, $n_b \ge 3$
R1: $all \ n_j$, n_b
R2: $6 \le n_j \le 8$, $n_b = 1$
R2: $n_j \ge 9$, $n_b = 1$
R2: $n_j \ge 9$, $n_b = 1$
R2: $n_j \ge 9$, $n_b \ge 2$
R3: $all \ n_j$, n_b
R4: $6 \le n_j \le 8$, $n_b \ge 2$
R3: $all \ n_j$, n_b
R4: $6 \le n_j \le 8$, $n_b \ge 1$ | $.91 \pm 0.05 \pm 0.82$
$.12 \pm 0.05 \pm 0.42$
$.04 \pm 0.10 \pm 0.94$
$.25 \pm 0.11 \pm 0.75$
$.04 \pm 0.09 \pm 0.96$
MET | 0.1
0.1
0.2
0.2
0.1
0.3
0.3
0.3
0.3
0.3
1.3
0.1
0.1
0.1 | 0.5
0.2
0.6
3.5
0.2
0.3
0.3
0.6
0.3
0.7 | 7.0 ± 2.6 12.0 ± 3.5 1.0 ± 1.0 21.0 ± 4.6 3.4 ± 1.4 0.3 ± 0.3 3.0 ± 1.2 0.5 ± 0.3 1.0 ± 0.5 0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8 | 6.5 ± 2.5 11.1 ± 3.2 0.9 ± 0.9 21.6 ± 4.2 3.6 ± 1.0 0.4 ± 0.2 3.0 ± 0.8 0.4 ± 0.2 0.9 ± 0.3 0.1 ± 0.1 | 7
12
1
21
6
1
2
0
0
0 | | P_1 | ī | | R2: $6 \le n_j \le 8, n_b \ge 3$
R2: $n_j \ge 9, n_b \ge 3$
R3: all n_j, n_b
R4: $6 \le n_j \le 8, n_b = 1$
R4: $n_j \ge 9, n_b = 1$
R4: $n_j \ge 9, n_b = 2$
R4: $n_j \ge 9, n_b \ge 2$
R4: $n_j \ge 9, n_b \ge 3$
R1: all n_j, n_b
R2: $6 \le n_j \le 8, n_b \ge 3$
R2: $n_j \ge 9, n_b \ge 3$
R3: all n_j, n_b
R4: $n_j \ge 9, n_b \ge 3$
R5: $n_j \ge 9, n_b \ge 3$
R6: $n_j \ge 9, n_b \ge 3$
R7: all $n_j, n_b \ge 2$
R8: $n_j \ge 9, n_b \ge 2$
R9: $n_j \ge 9, n_b \ge 2$
R1: all n_j, n_b
R2: $n_j \ge 9, n_b \ge 2$
R3: all n_j, n_b
R4: $n_j \ge 9, n_b \ge 3$ | $.91 \pm 0.05 \pm 0.82$
$.12 \pm 0.05 \pm 0.42$
$.04 \pm 0.10 \pm 0.94$
$.25 \pm 0.11 \pm 0.75$
$.04 \pm 0.09 \pm 0.96$
MET | 0.1
0.2
0.2
0.1
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3 | 0.2
0.6
3.5
0.2
0.3
0.6
0.3
0.7
EV | 12.0 ± 3.5 1.0 ± 1.0 21.0 ± 4.6 3.4 ± 1.4 0.3 ± 0.3 3.0 ± 1.2 0.5 ± 0.3 1.0 ± 0.5 0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8 | 11.1 ± 3.2 0.9 ± 0.9 21.6 ± 4.2 3.6 ± 1.0 0.4 ± 0.2 3.0 ± 0.8 0.4 ± 0.2 0.9 ± 0.3 0.1 ± 0.1 16.2 ± 3.9 | 12
1
21
6
1
2
0
0
0 | | P_1 | ī | | R2: $n_j \ge 9$, $n_b \ge 3$
R3: all n_j , n_b
R4: $6 \le n_j \le 8$, $n_b = 1$
R4: $n_j \ge 9$, $n_b = 1$
R4: $n_j \ge 9$, $n_b = 2$
R4: $n_j \ge 9$, $n_b = 2$
R4: $n_j \ge 9$, $n_b \ge 3$
R4: $n_j \ge 9$, $n_b \ge 3$
R1: all n_j , n_b
R2: $6 \le n_j \le 8$, $n_b \ge 1$
R2: $n_j \ge 9$, $n_b = 1$
R2: $n_j \ge 9$, $n_b \ge 2$
R3: all n_j , n_b
R4: $n_j \ge 9$, $n_b \ge 2$
R3: all n_j , n_b
R4: $n_j \ge 9$, $n_b \ge 2$
R3: all n_j , n_b
R4: $n_j \ge 9$, $n_b \ge 2$
R3: all n_j , n_b | $.91 \pm 0.05 \pm 0.82$
$.12 \pm 0.05 \pm 0.42$
$.04 \pm 0.10 \pm 0.94$
$.25 \pm 0.11 \pm 0.75$
$.04 \pm 0.09 \pm 0.96$
MET | 0.1
0.2
0.2
0.1
0.3
0.3
0.3
0.3
0.3
0.1
0.1
0.1
0.1 | 0.6
3.5
0.2
0.3
0.3
0.6
0.3
0.7
EV | 1.0 ± 1.0 21.0 ± 4.6 3.4 ± 1.4 0.3 ± 0.3 3.0 ± 1.2 0.5 ± 0.3 1.0 ± 0.5 0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8 | 0.9 ± 0.9 21.6 ± 4.2 3.6 ± 1.0 0.4 ± 0.2 3.0 ± 0.8 0.4 ± 0.2 0.9 ± 0.3 0.1 ± 0.1 16.2 ± 3.9 | 1
21
6
1
2
0
0
0 | | P_1 | ī | | R3: $\operatorname{all} n_j, n_b$ R4: $6 \le n_j \le 8, n_b = 1$ R4: $n_j \ge 9, n_b = 1$ R4: $n_j \ge 9, n_b = 2$ R4: $6 \le n_j \le 8, n_b = 2$ R4: $6 \le n_j \le 8, n_b \ge 3$ R4: $n_j \ge 9, n_b \ge 3$ R1: $\operatorname{all} n_j, n_b$ R2: $6 \le n_j \le 8, n_b \ge 1$ R2: $n_j \ge 9, n_b \ge 1$ R2: $n_j \ge 9, n_b \ge 2$ R3: $\operatorname{all} n_j, n_b$ R4: $n_j \ge 9, n_b \ge 2$ R3: $\operatorname{all} n_j, n_b$ R4: $n_j \ge 9, n_b \ge 2$ R3: $\operatorname{all} n_j, n_b$ R4: $n_j \ge 9, n_b \ge 2$ R3: $\operatorname{all} n_j, n_b$ R4: $n_j \ge 9, n_b \ge 1$ R4: $n_j \ge 9, n_b \ge 1$ R5: $n_j \ge 9, n_b \ge 1$ | $.91 \pm 0.05 \pm 0.82$
$.12 \pm 0.05 \pm 0.42$
$.04 \pm 0.10 \pm 0.94$
$.25 \pm 0.11 \pm 0.75$
$.04 \pm 0.09 \pm 0.96$
MET | 0.2
0.2
0.1
0.3
0.3
0.3
0.3
0.3
0.1
0.1
0.1
0.4 | 3,5
0.2
0.3
0.3
0.6
0.3
0.7
EV | 21.0 ± 4.6 3.4 ± 1.4 0.3 ± 0.3 3.0 ± 1.2 0.5 ± 0.3 1.0 ± 0.5 0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8 | 21.6 ± 4.2 3.6 ± 1.0 0.4 ± 0.2 3.0 ± 0.8 0.4 ± 0.2 0.9 ± 0.3 0.1 ± 0.1 16.2 ± 3.9 | 21
6
1
2
0
0
0
0 | | P_1 | ī | | R4: $6 \le n_j \le 8, n_b = 1$ 1.3
R4: $n_j \ge 9, n_b = 1$ 0.5
R4: $6 \le n_j \le 8, n_b = 2$ 1.4
R4: $n_j \ge 9, n_b = 2$ 1.5
R4: $n_j \ge 9, n_b \ge 3$ 1.6
R1: all n_j, n_b R2: $6 \le n_j \le 8, n_b \ge 3$ 1.6
R1: all n_j, n_b R2: $6 \le n_j \le 8, n_b = 1$ R2: $n_j \ge 9, n_b = 1$ R2: $n_j \ge 9, n_b \ge 2$ R3: all n_j, n_b R4: $6 \le n_j \le 8, n_b \ge 2$ R3: all n_j, n_b R4: $6 \le n_j \le 8, n_b = 1$ 1.5 | $.91 \pm 0.05 \pm 0.82$
$.12 \pm 0.05 \pm 0.42$
$.04 \pm 0.10 \pm 0.94$
$.25 \pm 0.11 \pm 0.75$
$.04 \pm 0.09 \pm 0.96$
MET | 0.2
0.1
0.3
0.3
0.3
0.3
0.3
0.3
0.1
0.1
0.1
0.4 | 0.2
0.3
0.3
0.6
0.3
0.7
eV
0.4
0.1
0.2 | 3.4 ± 1.4 0.3 ± 0.3 3.0 ± 1.2 0.5 ± 0.3 1.0 ± 0.5 0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8 | 3.6 ± 1.0 0.4 ± 0.2 3.0 ± 0.8 0.4 ± 0.2 0.9 ± 0.3 0.1 ± 0.1 16.2 ± 3.9 | 6
1
2
0
0
0 | | $P_{\rm i}$ | ī | | R4: $n_j \ge 9$, $n_b = 1$ 0.9
R4:
$6 \le n_i \le 8$, $n_b = 2$ 1.7
R4: $n_j \ge 9$, $n_b = 2$ 1.0
R4: $n_j \ge 9$, $n_b \ge 3$ 1.2
R4: $n_j \ge 9$, $n_b \ge 3$ 1.0
R1: all n_j , n_b
R2: $6 \le n_j \le 8$, $n_b = 1$
R2: $n_j \ge 9$, $n_b = 1$
R2: $6 \le n_j \le 8$, $n_b \ge 2$
R3: all n_j , n_b
R4: $6 \le n_j \le 8$, $n_b \ge 2$
R3: all n_j , n_b
R4: $6 \le n_j \le 8$, $n_b \ge 1$ | $.91 \pm 0.05 \pm 0.82$
$.12 \pm 0.05 \pm 0.42$
$.04 \pm 0.10 \pm 0.94$
$.25 \pm 0.11 \pm 0.75$
$.04 \pm 0.09 \pm 0.96$
MET | 0.1
0.3
0.3
0.3
0.3
0.3
7 > 400 Ge
0.1
0.1
0.1 | 0.3
0.6
0.3
0.7
eV
0.4
0.1
0.2 | 0.3 ± 0.3 3.0 ± 1.2 0.5 ± 0.3 1.0 ± 0.5 0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8 | $0.4 \pm 0.2 \\ 3.0 \pm 0.8 \\ 0.4 \pm 0.2 \\ 0.9 \pm 0.3 \\ 0.1 \pm 0.1$ 16.2 ± 3.9 | 1
2
0
0
0
0 | | P_1 | ī | | R4: $6 \le n_j \le 8$, $n_b = 2$ 1.7
R4: $n_j \ge 9$, $n_b = 2$ 1.0
R4: $6 \le n_j \le 8$, $n_b \ge 3$ 1.3
R4: $n_j \ge 9$, $n_b \ge 3$ 1.0
R1: all n_j , n_b
R2: $6 \le n_j \le 8$, $n_b = 1$
R2: $n_j \ge 9$, $n_b = 1$
R2: $n_j \ge 9$, $n_b \ge 2$
R2: $n_j \ge 9$, $n_b \ge 2$
R3: all n_j , n_b
R4: $6 \le n_j \le 8$, $n_b \ge 1$ | $.12 \pm 0.05 \pm 0.42$ $.04 \pm 0.10 \pm 0.94$ $.25 \pm 0.11 \pm 0.75$ $.04 \pm 0.09 \pm 0.96$ MET | 0.3
0.3
0.3
0.3
0.3
7 > 400 Ge
0.1
0.1
0.1 | 0.3
0.6
0.3
0.7
eV
0.4
0.1
0.2 | 3.0 ± 1.2 0.5 ± 0.3 1.0 ± 0.5 0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8 | 3.0 ± 0.8
0.4 ± 0.2
0.9 ± 0.3
0.1 ± 0.1
16.2 ± 3.9 | 2
0
0
0
0 | | P_1 | ī | | R4: $n_j \ge 9$, $n_b = 2$ R4: $6 \le n_j \le 8$, $n_b \ge 3$ R4: $n_j \ge 9$, $n_b \ge 3$ R1: all n_j , n_b R2: $6 \le n_j \le 8$, $n_b = 1$ R2: $n_j \ge 9$, $n_b = 1$ R2: $n_j \ge 9$, $n_b = 1$ R2: $n_j \ge 9$, $n_b \ge 2$ R3: all n_j , n_b R4: $6 \le n_j \le 8$, $n_b \ge 1$ R4: $6 \le n_j \le 8$, $n_b \ge 1$ | $.04 \pm 0.10 \pm 0.94$
$.25 \pm 0.11 \pm 0.75$
$.04 \pm 0.09 \pm 0.96$
MET | 0.3
0.3
0.3
7 > 400 Ge
0.1
0.1
0.1
0.4 | 0.6
0.3
0.7
eV
0.4
0.1
0.2 | 0.5 ± 0.3 1.0 ± 0.5 0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8 | 0.4 ± 0.2
0.9 ± 0.3
0.1 ± 0.1
16.2 ± 3.9 | 0 0 0 | | /// | ī | | R4: $6 \le n_j \le 8, n_b \ge 3$ 1.3
R4: $n_j \ge 9, n_b \ge 3$ 1.4
R1: all n_j, n_b
R2: $6 \le n_j \le 8, n_b = 1$
R2: $n_j \ge 9, n_b = 1$
R2: $n_j \le 8, n_b \ge 2$
R2: $n_j \ge 9, n_b \ge 2$
R3: all n_j, n_b
R4: $6 \le n_j \le 8, n_b \ge 1$ 1.3 | .25 ± 0.11 ± 0.75
.04 ± 0.09 ± 0.96
MET | 0.3
0.3
7 > 400 Ge
0.1
0.1
0.1
0.4 | 0.3
0.7
eV
0.4
0.1
0.2 | 1.0 ± 0.5
0.1 ± 0.1
15.0 ± 3.9
8.0 ± 2.8 | 0.9 ± 0.3
0.1 ± 0.1
16.2 ± 3.9 | 0 0 | | | ī. | | R4: $6 \le n_j \le 8, n_b \ge 3$ 1.3
R4: $n_j \ge 9, n_b \ge 3$ 1.4
R1: all n_j, n_b
R2: $6 \le n_j \le 8, n_b = 1$
R2: $n_j \ge 9, n_b = 1$
R2: $n_j \le 8, n_b \ge 2$
R2: $n_j \ge 9, n_b \ge 2$
R3: all n_j, n_b
R4: $6 \le n_j \le 8, n_b \ge 1$ 1.3 | .04 ± 0.09 ± 0.96
MET | 0.3
C > 400 Ge
0.1
0.1
0.1
0.4 | 0.7
eV
0.4
0.1
0.2 | 0.1 ± 0.1 15.0 ± 3.9 8.0 ± 2.8 | 0.1 ± 0.1 16.2 ± 3.9 | 15 | | | 0.1 fb ⁻¹ /10 Ta | | R4: $n_j \ge 9$, $n_b \ge 3$ 1.0
R1: all n_j , n_b
R2: $6 \le n_j \le 8$, $n_b = 1$
R2: $n_j \ge 9$, $n_b = 1$
R2: $n_j \le 9$, $n_b \ge 2$
R2: $n_j \ge 9$, $n_b \ge 2$
R3: all n_j , n_b
R4: $6 \le n_j \le 8$, $n_b = 1$ 1.3 | .04 ± 0.09 ± 0.96
MET | 0.1
0.1
0.1
0.1
0.4 | 0.7
eV
0.4
0.1
0.2 | 15.0 ± 3.9
8.0 ± 2.8 | 0.1 ± 0.1 16.2 ± 3.9 | 15 | | | 0.4 fb-1/40 Ta | | R1: all n_j, n_b
R2: $6 \le n_j \le 8, n_b = 1$
R2: $n_j \ge 9, n_b = 1$
R2: $n_j \le 9, n_b \ge 2$
R2: $n_j \ge 9, n_b \ge 2$
R3: all n_j, n_b
R4: $6 \le n_j \le 8, n_b = 1$ | | 0.1
0.1
0.1
0.1
0.4 | 0.4
0.1
0.2 | 15.0 ± 3.9
8.0 ± 2.8 | 16.2 ± 3.9 | 15 | | | 0.1 fb-1/10 T | | R2: $6 \le n_j \le 8, n_b = 1$
R2: $n_j \ge 9, n_b = 1$
R2: $6 \le n_j \le 8, n_b \ge 2$
R2: $n_j \ge 9, n_b \ge 2$
R3: all n_j, n_b
R4: $6 \le n_j \le 8, n_b = 1$ | | 0.1
0.1
0.1
0.4 | 0.4
0.1
0.2 | 8.0 ± 2.8 | | | | | 0 1 fb-1/10 T | | R2: $6 \le n_j \le 8, n_b = 1$
R2: $n_j \ge 9, n_b = 1$
R2: $6 \le n_j \le 8, n_b \ge 2$
R2: $n_j \ge 9, n_b \ge 2$
R3: all n_j, n_b
R4: $6 \le n_j \le 8, n_b = 1$ | 111111 | 0.1
0.1
0.4 | 0.1 | 8.0 ± 2.8 | | | 1 | CMS Preliminary | / / | | R2: $n_j \ge 9$, $n_b = 1$
R2: $6 \le n_j \le 8$, $n_b \ge 2$
R2: $n_j \ge 9$, $n_b \ge 2$
R3: all n_j , n_b
R4: $6 \le n_j \le 8$, $n_b = 1$ | 8 | 0.1
0.4 | 0.2 | | U.F C.J | | 1800 | Civio Fremmary | 2.110 (10.16 | | R2: $6 \le n_j \le 8$, $n_b \ge 2$
R2: $n_j \ge 9$, $n_b \ge 2$
R3: all n_j , n_b
R4: $6 \le n_j \le 8$, $n_b = 1$ | 9 | 0.4 | | | 1.7 ± 1.2 | 1 | | ~~ ~ | المعارف المالية | | R2: $n_j \ge 9$, $n_b \ge 2$
R3: all n_j , n_b
R4: $6 \le n_j \le 8$, $n_b = 1$ 1.1 | - 5 | | 0.7 | 3.0 ± 1.7 | 2.5 ± 1.4 | 3 | (1) | $pp \rightarrow g g, g \rightarrow t t \widetilde{\chi}^0$ | NLO+NLL exclusion | | R3: all n_j, n_b
R4: $6 \le n_j \le 8, n_b = 1$ 1.3 | | | 0.2 | | 0.9 ± 0.9 | 1 | Ö 1600 | | | | R4: $6 \le n_j \le 8$, $n_b = 1$ 1.3 | min The same | 0.4 | | 1.0 ± 1.0 | | 1 | 2 1600 | Observed ± 1 | σ., | | | 45 1 0 45 1 0 45 | 0.4 | 0.8 | 4.0 ± 2.0 | 2.8 ± 1.4 | 4 | 0 - | | tneory | | $R4: n_i \geq 9, n_b = 1$ 1.0 | | 0.6 | 0.2 | 2.4 ± 1.9 | 1.2 ± 0.7 | 0 | € 1400 | Expected ± 1 of | O _{experiment} | | *** | $.01 \pm 0.15 \pm 0.92$ | 0.4 | 0.3 | 0.3 ± 0.3 | 0.3 ± 0.3 | 1 | □ 1400 | The second second | evherment | | R4: $6 \le n_j \le 8$, $n_b \ge 2$ 1.2 | | 1.8 | 0.4 | 1.0 ± 0.9 | 0.5 ± 0.4 | 0 | | | | | R4: $n_j \ge 9, n_b \ge 2$ 0.5 | $.90 \pm 0.13 \pm 0.81$ | 1.5 | 0.9 | 0.2 ± 0.3 | 0.1 ± 0.1 | 0 | 1200 | And the second s | | | ata
j , $\widetilde{g} \rightarrow t\widetilde{t}\widetilde{\chi}_1^0$ (1500,100)
j , $\widetilde{g} \rightarrow t\widetilde{t}\widetilde{\chi}_1^0$ (1200,800)
1 true lepton
2 true leptons | | 17. O 00 47. | (vap 001)sinaya
10 ² | Data Data — \$\tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{g}\tilde{t}\tilde{g}\tilde{t}\tilde{g}\tild | 500,100) Sin
200,800) ton tons Oth | gle top | 1000
800
600 | | | | | | | Data / MC
1.5
1.5
2.0 | 414 | | | 200
200 | 800 1000 1200 | 0 1400 1600 1800
m _ã [Ge | ### ATLAS multi-b ATLAS-CONF-2015-067 University of Sussex #### Main idea: - gluino mediated stop and sbottom production yields high jet multiplicity and bjet multiplicity - Three sets of signal regions (with at least 3 bjets): - G→bbχ₁⁰: 4 jets, 3 b-jets, different E_T^{miss} and m_{eff} selections - G→ttχ₁⁰: 0- and 1-lepton regions, 3 or 4 bjets, different m_T(b,E_T^{miss}), m_T(I,E_T^{miss}), E_T^{miss}, m_{eff} selections - Boosted top candidate for large $\Delta m(g, \chi_1^0)$ ### ATLAS multi-b - Control region for top pair production: 1-lepton and upper m_T(I,E_T^{miss}) cut - A set of validation regions to validate all extrapolations from CR to SR - Main systematic uncertainties: top pair production modelling and mistag rate | | SR- Gbb - A | SR- Gbb - B | SR- Gbb - C | |--|-----------------|-----------------|-----------------| | Observed events | 0 | 1 | 5 | | Fitted background events | 1.4 ± 0.7 | 1.5 ± 0.5 | 7.5 ± 1.4 | | $t\bar{t}$ | 0.7 ± 0.5 | 0.83 ± 0.32 | 3.9 ± 1.0 | | Z+jets | 0.25 ± 0.26 | 0.25 ± 0.22 | 1.4 ± 0.6 | | W+jets | 0.19 ± 0.10 | 0.15 ± 0.06 | 0.95 ± 0.34 | | Single-top | 0.22 ± 0.10 | 0.16 ± 0.15 | 0.67 ± 0.33 | |
$t\bar{t}W,t\bar{t}Z,t\bar{t}H,t\bar{t}t\bar{t}$ | < 0.1 | < 0.1 | 0.18 ± 0.10 | | Diboson | _ | < 0.1 | 0.43 ± 0.25 | | MC-only prediction | 1.7 | 1.6 | 7.1 | | $\mu_{tar{t}}$ | 0.7 ± 0.3 | 0.9 ± 0.4 | 1.1 ± 0.4 | | | | | | | | SR-Gtt-0l-A | SR-Gtt-0L-B | SR-Gtt-0L-C | |--|-----------------|-----------------|-----------------| | Observed events | 1 | 1 | 1 | | Fitted background events | 2.0 ± 0.7 | 2.8 ± 1.7 | 3.2 ± 1.7 | | $t\bar{t}$ | 1.3 ± 0.6 | 2.2 ± 1.6 | 2.4 ± 1.7 | | Z+jets | 0.24 ± 0.17 | 0.13 ± 0.13 | 0.16 ± 0.09 | | W+jets | 0.21 ± 0.14 | 0.15 ± 0.16 | 0.20 ± 0.21 | | Single-top | 0.14 ± 0.16 | 0.15 ± 0.13 | 0.18 ± 0.16 | | $t\bar{t}W,t\bar{t}Z,t\bar{t}h,t\bar{t}t\bar{t}$ | < 0.1 | 0.10 ± 0.06 | 0.11 ± 0.06 | | Diboson | < 0.1 | < 0.1 | 0.18 ± 0.18 | | MC-only prediction | 1.8 | 1.9 | 2.6 | | $\mu_{tar{t}}$ | 1.2 ± 0.4 | 1.7 ± 0.7 | 1.4 ± 0.6 | | | SR-Gtt-1L-A | SR-Gtt-1L-B | |--|-----------------|-----------------| | Observed events | 2 | 0 | | Fitted background events | 1.3 ± 0.4 | 1.1 ± 0.6 | | $t\bar{t}$ | 0.91 ± 0.33 | 0.8 ± 0.5 | | Z+jets | - | - | | W+jets | < 0.1 | < 0.1 | | Single-top | 0.19 ± 0.15 | 0.15 ± 0.13 | | $t\bar{t}W,t\bar{t}Z,t\bar{t}h,t\bar{t}t\bar{t}$ | 0.18 ± 0.10 | 0.18 ± 0.10 | | Diboson | - | _ | | MC-only prediction | 1.3 | 1.2 | | $\mu_{tar{t}}$ | 1.0 ± 0.3 | 0.9 ± 0.3 | ### **Exclusion limits** University of Sussex #### ATLAS-CONF-2015-067 ## SS/3L analyses University of Sussex - Gluinos are majorana fermions → increased (w.r.t. background) probability of SS leptons - In general, very low SM background → sensitive to new processes ### **CMS** 64 signal regions divided by the p_T of leptons, H_T, E_T^{miss}, M_T^{min} One more interpretation on top of those done by ATLAS ## University of Sussex University of Sussex ### Fake lepton background estimate - General approach to fake lepton background estimation based on a loose/tight matrix method - Example with 1 lepton (easily extendable to multi-lepton signatures): - A fake lepton lepton can arise from: - Jet mis-identification - Off-axis HF semileptonic decays - Photon conversion - Strategy: define a "loose" (pre-selected) and a "tight" (signal) lepton selection. - Then, solve the following system of equations $$N^{loose} = N^{loose}_{real} + N^{loose}_{fake}$$ $N^{tight} = \varepsilon_{real}N^{loose}_{real} + \varepsilon_{fake}N^{loose}_{fake}$ Need to be measured independently from data Simply count how many of them ### SS/3L University of Sussex Charge flip background estimated from the Z → ee peak (with two electrons with SS) Obviously irrelevant for muons Dedicated validation regions for irreducible background #### SS/3L - SR example University of Sussex #### No significant excess found in any of the four signal regions ATLAS-CONF-2015-082 University of Sussex - Basic idea: Z boson + E_T^{miss} is a final state with very limited SM background (essentially WZ and ZZ production) - Selection: 2 jets, E_T^{miss} > 225 GeV, H_T > 600 GeV #### arXiv:1503.03290 #### Excess in run 1 non-resonant background dominated by flavour symmetric processes (mainly ttbar) #### ATLAS Z+ETmiss University of Sussex - Flavour symmetric background (top pair production, WW, etc.): ee:µµ:eµ events are in ratio 1:1:2 - Validated with a sideband fit to m_{II} $\frac{\epsilon(\mu)}{\epsilon(e)}$ - **Z+E**T^{miss} background tricky (it mainly comes from detector effects) - Estimated from γ+jets events - idea: γ+jets and Z +jets events are the same (beside Z mass and lepton/photon resolution - measure E_T^{miss} shape in γ+jets and use it to predict signal region yields #### ATLAS Z+ETmiss University of Sussex #### Excess still there in run 2! Expected events: **10.3 ±2.3**Observed: **21 (2.2σ)**10 in ee, 11 in μμ ### What does CMS say? - 47 signal regions, looking on- and off-Z (CMS had 2.6 σ below the Z peak) - Defined with different jet and b-jet multiplicity, E_Tmiss, H_T, m_{II} - Background estimation similar to the ATLAS case. #### CMS Vs ATLAS University of Sussex q q ## Summarising #### Conclusions - A nice **restart of the LHC** - SUSY searches sensitive to gluino production mostly - No discovery, but some interesting excess to be followed up - 2016 (30 fb⁻¹ foreseen) will overcome SUSY sensitivity for all production mechanisms # BACKUP | Region | $E_{\mathbf{T}}^{\mathbf{miss}}$ [GeV] | $H_{\mathbf{T}}$ $[\mathbf{GeV}]$ | $n_{ m jets}$ | $m_{\ell\ell} \ [{f GeV}]$ | SF/DF | $\Delta\phi(\mathbf{jet}_{12},m{p}_{\mathrm{T}}^{\mathrm{miss}})$ | $m_{\mathrm{T}}(\ell_3, E_{\mathrm{T}}^{\mathrm{miss}})$ [GeV] | $n_{ ext{b-jets}}$ | |-------------------|--|-----------------------------------|---------------|---------------------------------|---------------------|---|--|--------------------| | Signal regions | | | | | | | | | | SRZ | > 225 | > 600 | ≥ 2 | $81 < m_{\ell\ell} < 101$ | SF | > 0.4 | - | - | | Control regions | | | | | | | | | | Z normalisation | < 60 | > 600 | ≥ 2 | $81 < m_{\ell\ell} < 101$ | SF | > 0.4 | - | - | | CR- FS | > 225 | > 600 | ≥ 2 | $61 < m_{\ell\ell} < 121$ | DF | > 0.4 | - | - | | CRT | > 225 | > 600 | ≥ 2 | $m_{\ell\ell}\notin[81,101]$ | SF | > 0.4 | - | - | | Validation region | S | | | | | | | | | VRZ | < 225 | > 600 | ≥ 2 | $81 < m_{\ell\ell} < 101$ | SF | > 0.4 | - | _ | | VRT | 100 - 200 | > 600 | ≥ 2 | $m_{\ell\ell} \notin [81, 101]$ | SF | > 0.4 | - | - | | VRS | 100 - 200 | > 600 | ≥ 2 | $81 < m_{\ell\ell} < 101$ | SF | > 0.4 | - | - | | $VR ext{-}FS$ | 100 - 200 | > 600 | ≥ 2 | $61 < m_{\ell\ell} < 121$ | DF | > 0.4 | - | - | | VR-WZ | 100 - 200 | - | - | - | 3ℓ | - | < 100 | 0 | | VR-ZZ | < 100 | - | - | - | 4ℓ | - | - | 0 | | VR-3L | 60 – 100 | > 200 | ≥ 2 | $81 < m_{\ell\ell} < 101$ | 3ℓ | > 0.4 | - | - | | | VRS | VR-WZ | VR-ZZ | VR-3L | |--|----------------|---------------|-----------------|---------------| | Observed events | 56 | 89 | 20 | 7 | | Total expected background events | 52.6 ± 9.1 | 87 ± 10 | 15.5 ± 3.4 | 6.5 ± 1.6 | | Flavour symmetric $(t\bar{t}, Wt, WW \text{ and } Z \rightarrow \tau\tau)$ events | 18.9 ± 4.8 | 1.3 ± 0.4 | 0 | 0.3 ± 0.2 | | WZ/ZZ events | 7.5 ± 1.7 | 82 ± 10 | 15.5 ± 3.4 | 4.9 ± 1.6 | | Z/γ^* + jets events | 24.8 ± 7.6 | 2.7 ± 2.8 | 0 | 0.2 ± 0.2 | | Rare top events | 1.4 ± 0.2 | 0.9 ± 0.4 | 0.04 ± 0.02 | 1.0 ± 0.1 | | And the second s | | | | | | Region | Flavour-symmetry | Sideband fit | |--------|------------------|----------------| | SRZ | 5.1 ± 2.0 | 6.1 ± 1.7 | | VRS | 18.9 ± 4.8 | 20.5 ± 5.6 | | | SRZ | |--|------------------------------| | Observed events | 21 | | Total expected background events | 10.3 ± 2.3 | | Flavour symmetric ($t\bar{t}$, Wt , WW and $Z \rightarrow \tau\tau$) events | 5.1 ± 2.0 | | WZ/ZZ events | 2.9 ± 0.8 | | Z/γ^* + jets events | 1.9 ± 0.8 | | Rare top events | 0.4 ± 0.1 | | p-value | 0.013 | | Significance | 2.2 | | Observed (Expected) S ⁹⁵ | $20.0\ (10.2^{+4.4}_{-3.0})$ | | Source | Relative systematic uncertainty $[\%]$ | |--|--| | | SRZ | | Total systematic uncertainty | 22 | | Flavour symmetry (statistical) | 14 | | Flavour symmetry (systematic) | 12 | | $Z/\gamma^* + \text{jets (systematic)}$ | 7.8 | | WZ generator
uncertainty | 7.6 | | $Z/\gamma^* + \text{jets (statistical)}$ | 2.2 | ### Heavy use of kinematical end-points mT2: an extension of the transverse mass variable $$m_{\text{T2}}(\mathbf{p}_{\text{T}}^{\ell_1}, \mathbf{p}_{\text{T}}^{\ell_2}, \mathbf{p}_{\text{T}}^{\text{miss}}) = \min_{\mathbf{q}_{\text{T}} + \mathbf{r}_{\text{T}} = \mathbf{p}_{\text{T}}^{\text{miss}}} \left\{ \max[\ m_{\text{T}}(\mathbf{p}_{\text{T}}^{\ell_1}, \mathbf{q}_{\text{T}}), m_{\text{T}}(\mathbf{p}_{\text{T}}^{\ell_2}, \mathbf{r}_{\text{T}}) \] \right\}$$ amT2: a generalisation of the mT2 $$\psi^0 = (\widetilde{B}, \widetilde{W}^0, \widetilde{H}_d^0, \widetilde{H}_u^0)$$ Neutralinos $$\mathcal{L}_{\text{neutralino mass}} = -\frac{1}{2} (\psi^0)^T \mathbf{M}_{\widetilde{N}} \psi^0 + \text{c.c.}$$ $$\mathbf{M}_{\widetilde{N}} = \begin{pmatrix} M_1 & 0 & -c_{\beta} \, s_W \, m_Z & s_{\beta} \, s_W \, m_Z \\ 0 & M_2 & c_{\beta} \, c_W \, m_Z & -s_{\beta} \, c_W \, m_Z \\ -c_{\beta} \, s_W \, m_Z & c_{\beta} \, c_W \, m_Z & 0 & -\mu \\ s_{\beta} \, s_W \, m_Z & -s_{\beta} \, c_W \, m_Z & -\mu & 0 \end{pmatrix}$$ $$\mathbf{m}_{\widetilde{\mathbf{t}}}^2 = \begin{pmatrix} stops and stottoms \\ m_{Q_3}^2 + m_t^2 + \Delta_{\widetilde{u}_L} & v(a_t^*\sin\beta - \mu y_t\cos\beta) \\ v(a_t\sin\beta - \mu^* y_t\cos\beta) & m_{\overline{u}_3}^2 + m_t^2 + \Delta_{\widetilde{u}_R} \end{pmatrix}$$ $$\mathbf{m}_{\widetilde{\mathbf{b}}}^{\mathbf{2}} = \begin{pmatrix} m_{Q_3}^2 + \Delta_{\tilde{d}_L} & v(a_b^* \cos \beta - \mu y_b \sin \beta) \\ v(a_b \cos \beta - \mu^* y_b \sin \beta) & m_{\overline{d}_3}^2 + \Delta_{\tilde{d}_R} \end{pmatrix}$$ #### But...