\boldsymbol{u}^{b}

Automated, Resummed and Effective: Precision Computations for the LHC

Thomas Becher

University of Bern

Freiburg, February 7, 2019

Precision measurements at the LHC

Sub-percent accuracy over large range of energies and many orders of cross section!

A huge challenge for theory!

Standard Model Production Cross Section Measurements

Higgs interactions: the fifth force

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \\
& +i \bar{\psi} \phi \psi+h \cdot c . \\
& +\bar{\psi}_{i} y_{i j} \psi_{j} \phi+h \cdot c . \\
& +\left.\phi_{\phi} \phi\right|^{2}-V(\phi)
\end{aligned}
$$

A rich program of Higgs-boson physics, probing its interactions and searching for deviations from the SM.

e.g. Higgs coupling to b-quarks

Last year, ATLAS and CMS observed $H \rightarrow b \bar{b}$ for the first time. Extremely challenging due to the huge background from QCD processes.

List of LHC measurements observing direct signals of New Physics

... and there were a lot of searches!

In the absence of direct signals, the focus shifts more and more on indirect searches, looking for small deviations from SM predictions.

Motivates work on precision predictions.

Effective field theory provides a systematic framework to study deviations from the SM.

$$
\mathcal{L}_{\mathrm{S} M}=\mathcal{L}_{\mathrm{SM}}^{(4)}+\frac{1}{\Lambda} \sum_{k} C_{k}^{(5)} Q_{k}^{(5)}+\frac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)} Q_{k}^{(6)}+\mathcal{O}\left(\frac{1}{\Lambda^{3}}\right),
$$

standard, renormalizable textbook SM Lagrangian

Wilson coefficients
additional operators
induced by new heavy physics at scale \wedge

Effective theory for LHC processes

Many scale hierarchies!
$\sqrt{s} \gg p_{\mathrm{Jet}}^{T} \gg M_{\mathrm{Jet}} \gg E_{\text {out }} \gg m_{\text {proton }} \sim \Lambda_{\mathrm{QCD}}$
\rightarrow Soft-Collinear Effective Theory (SCET)
Bauer, Pirjol, Stewart et al. 2001, 2002; Beneke, Diehl et al. 2002; ...

pp scattering

The challenge are QCD (strong interaction) effects

What can be computed in perturbation theory in QCD?

What can be computed in perturbation theory in QCD?

Nothing.

PhD student (working on lattice QCD) at Bern University during his thesis defense

What can be computed in perturbation theory in QCD?

What can be computed in perturbation theory in QCD?

More educated answer: High-energy processes. QCD coupling becomes weak at high energy because of asymptotic freedom.

Blue: experimental measurements
Green and red lines theoretical predictions

sum over colors and flavors of quarks

$$
R_{\mathrm{pert}}=\frac{\sigma\left(e^{+} e^{-} \rightarrow Z / \gamma^{*} \rightarrow q \bar{q}\right)}{\sigma\left(e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow \mu^{+} \mu^{-}\right)}
$$

Dashed green: LO perturbation theory Solid red: N3LO perturbation theory

Remarkable agreement with data!

The Operator Product Expansion (OPE) ${ }^{*}$ explains why the computation using quarks and gluons works. Factorizes low and high energy contributions

$$
R(s)=C_{1}(s)\langle 0| 1|0\rangle+C_{q \bar{q}}(s)\langle 0| m_{q} \bar{q} q|0\rangle+C_{G G}(s)\langle 0| G^{2}|0\rangle+\ldots
$$

The Operator Product Expansion (OPE) ${ }^{\star}$ explains

 why the computation using quarks and gluons works. Factorizes low and high energy contributions$$
R(s)=C_{1}(s)\langle 0| 1|0\rangle+C_{q \bar{q}}(s)\langle 0| m_{q} \bar{q} q|0\rangle+C_{G G}(s)\langle 0| G^{2}|0\rangle+\ldots
$$

> Wilson coefficients: high-energy physics independent of states

The Operator Product Expansion (OPE) ${ }^{\star}$ explains

 why the computation using quarks and gluons works. Factorizes low and high energy contributions$$
R(s)=C_{1}(s)\langle 0| 1|0\rangle+C_{q \bar{q}}(s)\langle 0| m_{q} \bar{q} q|0\rangle+C_{G G}(s)\langle 0| G^{2}|0\rangle+\ldots
$$

Wilson coefficients: high-energy physics independent of states

Matrix elements: non-perturbative, hadronisation effects

The Operator Product Expansion (OPE) ${ }^{*}$ explains why the computation using quarks and gluons works. Factorizes low and high energy contributions

The Operator Product Expansion (OPE) ${ }^{*}$ explains why the computation using quarks and gluons works. Factorizes low and high energy contributions

$$
\begin{gathered}
R(s)=C_{=1}^{C_{1}(s)} \underbrace{\sim 0|1| 0\rangle}_{\sim}+\underbrace{C_{q \bar{q}(s)}^{\langle 0| m_{q} \bar{q} q|0\rangle}}_{\sim m_{q} \Lambda_{\mathrm{QCD}}^{3}}+C_{G G}(s) \underbrace{\langle 0| G^{2}|0\rangle}_{\sim \Lambda_{\mathrm{QCD}}^{4}}
\end{gathered}+\ldots
$$

Wilson coefficients: high-energy physics independent of states

Matrix elements:
non-perturbative, hadronisation effects

The computation of the R-ratio is based on an expansion in the scale ratio $\Lambda_{Q C D^{2} / Q^{2}}$.

A systematic method to separate physics at different scales and perform expansions in scale ratios is Effective Field Theory (EFT)

- Construct general effective Lagrangian describing low energy physics.
- High energy physics enters the Wilson coefficients ("couplings") of the effective Lagrangian.
Soft-Collinear Effective Theory (SCET) is the EFT for collider processes
- A family of EFTs for different kinematic situations

Soft-Collinear Effective Theory (SCET)

Bauer, Pirjol, Stewart et al. 2001, 2002; Beneke, Diehl et al. 2002; ...
Implements interplay between soft and energetic collinear particles into effective field theory

Hard
\} high-energy
Collinear fields
Soft fields
low-energy part

Allows one to analyze factorization of cross sections and perform resummations of large Sudakov logarithms.

Thomas Becher
Alessandro Broggio
Andrea Ferroglia

Introduction to
 Soft-Collinear Effective Theory

arXiv:1410.1892

arXiv:1803.04310

Sketch of a hadron collider process

Hard scattering at short distances: perturbation theory

Sketch of a hadron collider process

Hard scattering at short distances:
perturbation theory

Sketch of a hadron collider process

Hard scattering at short distances: perturbation theory

Sketch of a hadron collider process

Hard scattering at short distances: perturbation theory

Soft and collinear emissions:
parton shower, resummation, SCET

Sketch of a hadron collider process

Hard scattering at short distances: perturbation theory

Soft and collinear emissions:
parton shower, resummation, SCET

Sketch of a hadron collider process

Hard scattering at short distances: perturbation theory

Soft and collinear emissions:
parton shower, resummation, SCET

Hadronisation, hadron decays: modelled by MCs

Sketch of a hadron collider process

Hard scattering at short distances: perturbation theory

Soft and collinear emissions:
 parton shower, resummation, SCET

Hadronisation, hadron decays: modelled by MCs

This picture can be misleading: it depends on the observable to which aspect of QCD one is sensitive!

For inclusive observables, sensitive only to a single high-energy scale Q, we have*

$$
\sigma=\sum_{a, b} \int_{0}^{1} d x_{1} d x_{2} \hat{\sigma}_{a b}\left(Q, x_{1}, x_{2}, \mu_{f}\right) f_{a}\left(x_{1}, \mu_{f}\right) f_{b}\left(x_{2}, \mu_{f}\right)+\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / Q\right)
$$

This picture can be misleading: it depends on the observable to which aspect of QCD one is sensitive!

For inclusive observables, sensitive only to a single high-energy scale Q, we have*

$$
\sigma=\sum_{a, b} \int_{0}^{1} d x_{1} d x_{2} \hat{\sigma}_{a b}\left(Q, x_{1}, x_{2}, \mu_{f}\right) f_{a}\left(x_{1}, \mu_{f}\right) f_{b}\left(x_{2}, \mu_{f}\right)+\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / Q\right)
$$

partonic cross sections:
perturbation theory
parton distribution functions (PDFs): nonperturbative

The right way to look at this formula is (softcollinear) effective field theory

$$
\sigma=\sum_{a, b} \int_{0}^{1} d x_{1} d x_{2} C_{a b}\left(Q, x_{1}, x_{2}, \mu\right)\left\langle P\left(p_{1}\right)\right| O_{a}\left(x_{1}\right)\left|P\left(p_{1}\right)\right\rangle\left\langle P\left(p_{2}\right)\right| O_{b}\left(x_{2}\right)\left|P\left(p_{2}\right)\right\rangle+\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / Q\right)
$$

The right way to look at this formula is (softcollinear) effective field theory

$$
\sigma=\sum_{a, b} \int_{0}^{1} d x_{1} d x_{2} C_{a b}\left(Q, x_{1}, x_{2}, \mu\right)\left\langle P\left(p_{1}\right)\right| O_{a}\left(x_{1}\right)\left|P\left(p_{1}\right)\right\rangle\left\langle P\left(p_{2}\right)\right| O_{b}\left(x_{2}\right)\left|P\left(p_{2}\right)\right\rangle+\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / Q\right)
$$

Wilson coefficient:
matching at $\mu \approx Q$
perturbation theory

The right way to look at this formula is (softcollinear) effective field theory

$$
\sigma=\sum_{a, b} \int_{0}^{1} d x_{1} d x_{2} C_{a b}\left(Q, x_{1}, x_{2}, \mu\right)\left\langle P\left(p_{1}\right)\right| O_{a}\left(x_{1}\right)\left|P\left(p_{1}\right)\right\rangle\left\langle P\left(p_{2}\right)\right| O_{b}\left(x_{2}\right)\left|P\left(p_{2}\right)\right\rangle+\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / Q\right)
$$

Wilson coefficient: matching at $\mu \approx Q$ perturbation theory

$$
\Delta
$$

The right way to look at this formula is (softcollinear) effective field theory

$$
\sigma=\sum_{a, b} \int_{0}^{1} d x_{1} d x_{2} C_{a b}\left(Q, x_{1}, x_{2}, \mu\right)\left\langle P\left(p_{1}\right)\right| O_{a}\left(x_{1}\right)\left|P\left(p_{1}\right)\right\rangle\left\langle P\left(p_{2}\right)\right| O_{b}\left(x_{2}\right)\left|P\left(p_{2}\right)\right\rangle+\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / Q\right)
$$

Wilson coefficient: matching at $\mu \approx Q$ perturbation theory
low-energy proton matrix elements nonperturbative

The right way to look at this formula is (softcollinear) effective field theory

$$
\sigma=\sum_{a, b} \int_{0}^{1} d x_{1} d x_{2} C_{a b}\left(Q, x_{1}, x_{2}, \mu\right)\left\langle P\left(p_{1}\right)\right| O_{a}\left(x_{1}\right)\left|P\left(p_{1}\right)\right\rangle\left\langle P\left(p_{2}\right)\right| O_{b}\left(x_{2}\right)\left|P\left(p_{2}\right)\right\rangle+\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / Q\right)
$$

Wilson coefficient: matching at $\mu \approx Q$ perturbation theory

low-energy proton matrix elements nonperturbative
power suppressed operators

The two-loop explosion

During the past two years there has been a burst of activity in next-to-next-to-leading order calculations to ensure that theory keeps up with the increasing precision of LHC measurements.

Studying matter at the highest energies possible has transformed our understanding of the microscopic world. CERN's Large Hadron Collider (LHC), which generates proton collisions at the highest energy ever produced in a laboratory (13 TeV), provides a controlled environment in which to search for new phenomena and to address fundamental questions about the nature of the interactions between elementary particles. Specifically, the LHC's main detectors - ATLAS, CMS, LHCb and ALICE-allow us to measure the cross-sections of elementary processes with remarkable precision. A great challenge for theorists is to match the experimental precision with accurate theoretical predictions. This is necessary to establish the Higgs sector of the Standard Model of particle physics and to look for deviations that could signal the existence of new particles or forces. Pushing our current capabilities further is key to the success of the LHC physics programme. Underpinning the prediction of LHC observables at the highest levels of precision are perturbative computations of cross-sections. Perturbative calculations have been carried out since the early days of quantum electrodyna sions for physical quantities to be expanded in terms of the coupling constant-giving rise to a series of terms with decreasing magnitude. The first example of such a calculation was the one-loop QED correction to the magnetic moment of the electron, which was carried out by Schwinger in 1948. It demonstrated for the first time that OED was in agreement with the experimental discovery of the anomalous magnetic moment of the electron, $\mathrm{g}-2$ (the latter quantity was dubbed "anomalous" precisely because, prior to Schwinger's calculation, it did not agree with predictions from Dirac's theory). In 1957, Sommerfeld and Petermann computed the two-loop correction, and it

Next-to-next-to-leading order (NNLO) Feynman diagrams relevant to the LHC physics programme. (Image credit: Daniel Dominguez, CERN.)

The two-loop explosion

During the past two years there has been a burst of activity in next-to-next-to-leading order calculations to ensure that theory keeps up with the increasing precision of LHC measurements.

Studying matter at the highest energies possible has transformed our understanding of the microscopic world. CERN's Large Hadron Collider (LHC), which generates proton collisions at the highest energy ever produced in a laboratory (13 TeV), provides a controlled environment in which to search for new phenomena and to address fundamental questions about the nature of the interactions between elementary particles. Specifically, the LHC's main detectors - ATLAS, CMS, LHCb and ALICE-allow us to measure the cross-sections of elementary processes with remarkable precision. A great challenge for theorists is to match the experimental precision with accurate theoretical predictions. This is necessary to establish the Higgs sector of the Standard Model of particle physics and to look for deviations that could signal the existence of new particles or forces. Pushing our current capabilities further is key to the success of the LHC physics programme. Underpinning the prediction of LHC observables at the highest levels of precision are perturbative computations of cross-sections. nce the early days
Note: Many computations based on effective field theory (q т and N-jettiness subtractions):

NNLO (QCD) \approx NNLO (SCET) + NLO (QCD)

If disparate hard scales are present, one encounters large logarithms in the matching coefficient.

- Can spoil convergence of perturbation theory

Solution: use a tower of effective theories. Integrate out the contributions at the different scales, one after another.

- Resummation by RG evolution

Challenges

- Need the EFT relevant for the given kinematics. By now, we know how to handle many kinematic situations.
- Need to compute and match the results in different hierarchies, e.g. for $Q_{1} \rightarrow Q_{2}$

Example: Two-step factorization in SCET for EWboson production at small transverse momentum q_{T}

in SCET: TB, Neubert '10; diagrammatically: CSS '85
1.) $q_{T} \ll M$

Hard function

2.) $\Lambda_{Q C D}<q_{T}$

Resummation

Using RG evolution between the different scales resums large logarithms in the cross section of the form

$$
\alpha_{s}^{n} \ln ^{m}\left(\frac{q_{T}^{2}}{M^{2}}\right)
$$

$$
\begin{array}{ll}
\text { LL: } \quad & m=2 n \\
\text { NLL: } & m=2 n-1 \\
\text { NNLL: } & m=2 n-2
\end{array}
$$

which spoil the perturbative expansion.
N3LL resummation: four-loop cusp anomalous dimension Moch et al. '18, Henn et al. '19, Lee et al. '19 three-loop regular anomalous dimensions Li, Zhu '16; Vladimirov, '16 and two-loop results for beam functions Catani, Grazzini et al. '12; Gehrmann, Lübbert, Yang '12 '14.

Z production $q_{T} \ll M_{Z, H}$

CuTe 2.0 TB, Lübbert, Neubert, Wilhelm

Bizon et al. ‘18
Bizon, Monni, Re, Rottoli and Torrielli, '17

State of the art result from RadISH generator on the right includes

- resummation to N3LL accuracy,
- matching to $\mathrm{O}\left(\alpha_{s}{ }^{3}\right)$ fixed order result at higher q_{T},
- and takes into account all experimental cuts.

- few per-cent theoretical precision
- resummation is crucial
- and takes into account all experimental cuts.

Event-based q_{T} resummation

While fixed-order computations have been automated up to NLO, resummations are typically done analytically, observable by observable.

Have automated q_{T} resummation

- Generate hard function as event file using Madgraph tree-level event generator.
- Reweight to obtain a sample of resummed events with different q_{T} values.
- Analyze sample, putting cuts on vector bosons and their decay products.

- Include ATLAS cuts on the final state leptons
- Obtain also related observables such as ϕ^{*} (right plot)
- Same code also computes $W, Z W, W W, Z Z, \ldots$

Automation

There are several more examples for automated resummations, both based on SCET and other methods

- Hadronic event-shapes, CAESAR Banfi, Salam, Zanderighi '04; ARES Banfi, McAslan, Monni, Zanderighi '15; CAESAR+SCET Bauer, Monni '18
- Jet-veto cross sections, TB, Frederix, Neubert, Rothen '15
- Threshold resummations for top production Broggio, Ferroglia, Ossola, Pecjak, Signer, Yang, ... '16-'19
- Automated computation of soft functions SOFTSERVE Bell, Rahn, Talbert '18

Hadronically inclusive observables are insensitive to hadronisation effects. More exclusive observables with the same property?

Jet cross sections

scales: $Q, Q_{0}, Q R, Q_{0} R$
collision energy

Event shapes

e.g. thrust $T=\max _{\mathbf{n}} \frac{\sum_{i}\left|\mathbf{p}_{i} \cdot \mathbf{n}\right|}{\sum_{i}\left|\mathbf{p}_{i}\right|}$
scales: $Q, Q(1-T), \ldots$

Higher-logarithmic resummations up to N3LL for event shapes, but jet observables exhibit a much more complicated pattern of

non-global logarithms

discovered by Dasgupta and Salam '01. A lot of recent progress towards higher logarithmic resummation

- Color density matrix, Caron-Huot, JHEP 1803, 036 (2018) [1501.03754], ...
- Dressed gluon exponentiation, Larkoski, Moult and Neill, JHEP 1509, 143 (2015), ...
- Jet Effective Theory, TB, Neubert, Rothen and Shao, PRL 116,192001 (2016), ...

1.) 2.) cone jets, gaps between jets

5.) isolation cones
1.) narrow jets

3.) light-jet mass
4.) narrow broadening

3.) hemisphere soft function
1.) 2.) TB, Neubert, Rothen, Shao '15 '16
3.) TB, Pecjak, Shao '16
4.) TB, Rahn, Shao '17
5.) Balsiger, TB, Shao, ' 18

Effective field theory for (non-global) jet observables!

Soft radiation in jet processes has in general a very complicated structure.

Hard partons (quarks and gluons) inside jets act as sources: soft radiation pattern depends on color-charges and directions of all hard partons!

Factorization for interjet energy flow

 TB, Neubert, Rothen, Shao '15 '16, see also Caron-Huot '15Hard function
m hard partons along fixed directions $\left\{\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{m}}\right\}$
$\mathcal{H}_{m} \propto\left|\mathcal{M}_{m}\right\rangle\left\langle\mathcal{M}_{m}\right|$

Soft function
squared amplitude with with m Wilson lines
$\sigma\left(Q, Q_{0}\right)=\sum^{\infty}\left\langle\mathcal{H}_{m}(\{\underline{n}\}, Q, \mu) \otimes \boldsymbol{\mathcal { S }}_{m}\left(\{\underline{n}\}, Q_{0}, \mu\right)\right\rangle$

integration over directions

Achieves scale separation! Can resum logs by solving RG.

Resummation by RG evolution

Wilson coefficients fulfill renormalization group (RG) equations

$$
\frac{d}{d \ln \mu} \mathcal{H}_{m}(Q, \mu)=-\sum_{l=2}^{m} \mathcal{H}_{l}(Q, \mu) \boldsymbol{\Gamma}_{l m}^{H}(Q, \mu)
$$

1. Compute \mathcal{H}_{m} at a characteristic high scale $\mu_{h} \sim Q$
2. Evolve \mathscr{H}_{m} to the scale of low energy physics $\mu_{\mathrm{s}} \sim Q_{0}$
3. Evaluate S_{m} at low scale $\mu_{s} \sim Q_{o}$

Avoids large logarithms $a_{s^{n}} \ln ^{n}\left(Q / Q_{0}\right)$ of scale ratios which spoil convergence of perturbation theory.

RG = Parton Shower

- Ingredients for LL

$$
\begin{aligned}
& \mathcal{H}_{2}(\mu=Q)=\sigma_{0} \\
& \mathcal{H}_{m}(\mu=Q)=0 \text { for } m>2 \\
& \mathcal{S}_{m}\left(\mu=Q_{0}\right)=1
\end{aligned}
$$

- RG

$$
\boldsymbol{\Gamma}^{(1)}=\left(\begin{array}{ccccc}
\boldsymbol{V}_{2} & \boldsymbol{R}_{2} & 0 & 0 & \ldots \\
0 & \boldsymbol{V}_{3} & \boldsymbol{R}_{3} & 0 & \ldots \\
0 & 0 & \boldsymbol{V}_{4} & \boldsymbol{R}_{4} & \ldots \\
0 & 0 & 0 & \boldsymbol{V}_{5} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

$$
\frac{d}{d t} \mathcal{H}_{m}(t)=\mathcal{H}_{m}(t) \boldsymbol{V}_{m}+\mathcal{H}_{m-1}(t) \boldsymbol{R}_{m-1} . \quad t \equiv t\left(\mu_{h}, \mu_{s}\right)=\int_{\alpha_{s}\left(\mu_{s}\right)}^{\alpha_{s}\left(\mu_{h}\right)} \frac{d \alpha}{\beta(\alpha)} \frac{\alpha}{4 \pi}
$$

- equivalent to parton shower equation

$$
\mathcal{H}_{m}(t)=\mathcal{H}_{m}\left(t_{1}\right) e^{\left(t-t_{1}\right) V_{n}}+\int_{t_{1}}^{t} d t^{\prime} \mathcal{H}_{m-1}\left(t^{\prime}\right) \boldsymbol{R}_{m-1} e^{\left(t-t^{\prime}\right) \boldsymbol{V}_{n}}
$$

$$
\sigma_{\mathrm{LL}}\left(Q, Q_{0}\right)=\sum_{m=2}^{\infty}\left\langle\boldsymbol{\mathcal { H }}_{2}^{(0)} \otimes \boldsymbol{U}_{2 m} \hat{\otimes} \mathcal{S}_{m}^{(0)}\right\rangle
$$

$$
=\left\langle\mathcal{H}_{2}^{(0)}(t)+\int \frac{d \Omega_{3}}{4 \pi} \mathcal{H}_{3}^{\mathrm{LL}}+\int \frac{d \Omega_{3}}{4 \pi} \int \frac{d \Omega_{4}}{4 \pi} \mathcal{H}_{4}^{\mathrm{LL}}+\ldots\right\rangle
$$

LL shower equivalent to Dasgupta Salam '01. Have flexible implementation for general k-jet processes

- uses LHE event files from Madgraph for LO \mathcal{H}_{k}
- used different forms of collinear cutoff
- studied gap fractions and photon isolation cones, both in $e^{+} e^{-}$and $p p$ collisions

$\mathrm{O}\left(\alpha_{\mathrm{s}}\right)$ corrections at LL'

- Implemented these: a systematically improved parton shower!
- Need to add two-loop evolution for full NLL accuracy.

Gap fraction $R\left(Q_{0}\right)$ at $Q=M_{Z}$

- Bands from variation of hard and soft scales by factor 2 .
- By construction $R\left(Q_{0}\right)=1$ at end-point $Q_{0}=Q / 2$. we match to fixed order and use a profile function function to switch off resummation.
- Unfortunately there is no exp. data.

$$
R\left(Q_{0}\right)=\int_{0}^{Q_{0}} d E_{s} \frac{1}{\sigma_{\mathrm{tot}}} \frac{d \sigma}{d E_{s}}
$$

NLL' results for jet invariant mass

- Jet mass is double logarithmic variable. Double logs can be subtracted and resummed analytically.
- Exp. result from combining ALEPH light- and heavy-jet mass data.
- Peak at $\rho \approx 0.006$ corresponds to $\mu_{s} \approx 0.5 \mathrm{GeV}$. Non-perturbative effects are important and shift the peak, see PYTHIA.
- Partonic PYTHIA is close to NLL'.

Hadronisation, MPI, pile-up, ...

Additional soft radiation from different sources

- Pile-up. Additional soft scatterings during the same bunch crossing (~ 50 at run II, up to ~200 at HL-LHC).
- Multi-Parton Interaction (MPI). Parton showers generate additional radiation from the proton remnants.
- Power suppressed? Glauber gluons?

Due to these effects, there is a lot of additional energy dumped into iets, isolation cones, ...

Pile-up and MPI mitigation

- Methods to correct for pile-up
see review by Soyez 1801.09721
- Area-median technique, SoftKiller, Jet Cleansing, PUPPI, ...
- Observables which are insensitive to soft radiation
- Jet substructure techniques to remove soft radiation: Grooming, soft-drop, massdrop, ...
see introduction by Marzani, Soyez and Spannowsky 1901.10342 review by Larkoski, Moult and Nachman 1709.04464

Transverse energy $E_{T}=\sum_{i}\left|\vec{p}_{T, i}\right|$

- E_{T} is very sensitive to soft radiation.
- NLL' resummation using SCET agrees with PYTHIA w/o MPI

MPI effects in E_{T}

Kang, Makris, Mehen '18

- Dramatic change after MPI is switched on!
- Can reproduce Pythia with model function $f_{\text {MPI }}$

MPI = Glauber gluons?

Glauber

Proton collisions include forward component (proton remnants). EFT for pp collisions must describe forward scattering.

- Absence of factorization-violation due to Glauber gluons is important element of factorization proof for Drell-Yan process. ET will likely involve Glauber contributions.
- SCET with Glauber-gluons now available Rothstein and Stewart ‘16

Indirect Searches for New Physics across the Scale Benjamin R. Safdiuumichiaan Ann Arbor, Tracey Slatyer mit, Yotein Soreq CERN, Joachim Kopp, CERINHEI
June 17 - July 12, 2019
Factorization Violation and Glauber Gluons Jonathan Gaunt CERN, Tomas Kasemets, Maximilian Stahlhofen, Lisa Zeune Jgu August 12-23, 2019

Fundamental Composite Dynamics:
Opportunities for Future Collidow and Cosmology Giacomo Cacciapaglia IPN Lyon,
Thomas Flacke IBS CTPU Daejeon,
Benjamin Fuks u Sorbonne,
K. Sridhar Tata Institute Mumbai

August 26-September 6, 2019

January 28 - February
Mathematics of Linear Christian Bogner нu Berlin, Yang Zhang MPI Munich March 18-22, 2019

Quantum Vacuum: Ren Anomalies in Cosmolog Manuel Asorey u Zaragoza, Ilya L. Shapiro Fed. U Juiz d September 23-27, 20

MITP SUMMER

Non-perturbative Phen Harvey Meyer, Pedro Schı 22 July-9 August, 201 S

Mainz Ins PRISMA Cl Johannes

Summary

A lot of progress in first-principles computations of collider processes using effective theory methods

- High-precision computations for simple observables
- Automated resummations
- Factorization and resummation for more exclusive observables such as jet processes
- interesting connection to MC parton showers

At the same time open issues and challenges

- MPI, hadronisation, factorization violation, Glauber gluons ...

