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Jets everywhere at the LHC

Collimated sprays

of strongly interacting

particles

To describe quantitatively,

need precise definition:

jet algorithm

To compute from first principles,

algorithm must be “infrared safe” → insensitive to long distances
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The Key of Asymptotic Freedom

Gluon self-interactions make quarks almost free, and make QCD

calculable at short distances (high energies):  as → 0  asymptotically

Quantum fluctuations of massless virtual particles polarize vacuum

Gross, Wilczek, Politzer (1973)

QED:  electrons screen charge (e larger at short distances)

QCD:  gluons anti-screen charge (gs smaller at short distances)
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Short-distance calculability

Running of as is logarithmic, slow at short distances (large Q)

confining

calculable

Bethke
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F. Krauss

calculable

confining
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QCD factorization & parton model

• Asymptotic freedom guarantees that at short

distances (large transverse momenta), 

partons in the proton are almost free. 

• They are sampled “one at a time” in

hard collisions.

• Leads to QCD-improved parton model: 

“suitable” final state
Parton distribution function:

prob. of  finding parton a in proton 1,

carrying fraction x1 of its momentum

factorization scale

(“arbitrary”)

Partonic cross section,

computable in perturbative QCD partonic CM energy2 renormalization scale

(“arbitrary”)
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Parton evolution

• partons in the proton are not quite free

• distributions fa(x,mF) evolve as scale mF  

at which they are resolved varies

large mF, ~ mZ

small mF, ~ few GeV

Example:

Z production at LHC

pT(g) ~ 10 GeV, say
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Parton evolution (cont.)

• parton distributions are nonperturbative 

• must be measured experimentally

• experimental data at much lower mF
2 than scale of interest at LHC

(100-1000 GeV)2

• fortunately, evolution at mF > 1-2 GeV is perturbative

• DGLAP equation:

LO (1974) NLO (1980) NNLO (2004)
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• Problem: Leading-order (LO) predictions only qualitative

due to poor convergence of expansion in

• Can easily get ~ 50-100% uncertainties in LO predictions  

Short-Distance Cross Section 

in Perturbation Theory

LO NLO NNLO

• Uncertainties brought under much better control with 

NLO corrections:   ~ 50-100%  → ~ 15-20%

• NNLO becoming increasingly available

→ ~ 3-8% uncertainties
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Overall structure

of higher-order QCD corrections

Example of Z production at hadron colliders

LO
convolute with pdfs

apply cuts

tree

NLO

tree + 1 parton
1 loop

first, cancel infrared

divergences (       )

between virtual & real

dim. reg.

intricate (       ) IR cancellations

NNLO

2 loops
1 loop + 1 parton tree + 2 partons



Short-distance cross section perturbative 

→ expansion in Feynman diagrams
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• Feynman diagrams, while very general and powerful, are      
not optimized for such processes

• Much more efficient methods based on helicity formalism, 
generalized unitarity,…

+ 256,264 more

=
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Helicity Formalism Exposes 

Tree-Level Simplicity in QCD

Many tree-level helicity amplitudes either vanish or are very short

Parke-Taylor formula (1986)

Very opaque

from Feynman

diagrams
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Spinor helicity formalism

Scattering amplitudes for massless

plane waves of definite momentum: 

Lorentz 4-vectors ki
m         ki

2=0

Natural to use Lorentz-invariant products 

(invariant masses):

Take “square root” of 4-vectors ki
m     (spin 1)

use Dirac (Weyl) spinors ua(ki) (spin ½) 

But for elementary particles with spin (e.g. all observed ones!)

there is a better way:

q,g,g, all have 2 helicity states,
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Spinor products

Use spinor products: 

Instead of Lorentz products:

These are complex square roots of Lorentz products:

Identity 



Most iconic Feynman diagram turns 70
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electron-electron scattering in QED

Can repurpose to describe the most 

important processes in the Standard Model 

Carved in stone in Tuva,

Central Asia, next to Mongolia
[courtesy Glen Cowan, Ralph Leighton]

Phys. Rev. 76, 769 (1949)
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That diagram as a helicity amplitude

add helicity information, 

numeric labels

L

R R

L1

2 3

4

g

Fierz identity

helicity suppressed

as  1 || 3   or   2 || 4 
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Sometimes useful to rewrite answer

Crossing symmetry more manifest

if we switch to all-outgoing helicity labels 

(flip signs of incoming helicities)

1+

2- 3+

4-
useful identities

“holomorphic”

“antiholomorphic”
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Symmetries for all other helicity config’s 

1+

2- 3+

4-
1-

2+ 3+

4-

C

1-

2+ 3-

4+

P

1+

2- 3-

4+
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Unpolarized, helicity-summed cross sections

(the norm in QCD)
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Reweight helicity amplitudes →

electroweak/QCD processes

For example, Z exchange

g, Zg

L,R

L,R

L,R

L,R
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QCD real radiative corrections to this process

g

g
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Helicity formalism for massless vectors

obeys (required transversality)

(bonus)

under azimuthal rotation about ki axis, helicity +1/2

helicity -1/2

so as required for helicity +1

Berends, Kleiss, De Causmaecker, Gastmans, Wu (1981); De Causmaecker, Gastmans, Troost, Wu (1982); 

Xu, Zhang, Chang (1984); Kleiss, Stirling (1985); Gunion, Kunszt (1985)
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(cont.)

Choose 

to remove 2nd graph 
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Properties of

1.  Soft gluon behavior

Universal “eikonal” factors 

for emission of soft gluon s

between two hard partons a and b

Soft emission is from the classical chromoelectric current:

independent of parton type (q vs. g) and helicity

– only depends on momenta of a,b, and color charge
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Properties of

2.  Collinear behavior

(cont.)

Time-like kinematics

(fragmentation).

Space-like 

(parton evolution)

related by crossing

z

1-z

Universal collinear factors, or splitting amplitudes

depend on parton type and helicity     
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Spinor Magic

Spinor products precisely capture 

square-root + phase behavior in collinear limit.

Excellent variables for helicity amplitudes

scalars 0

gauge theory

angular momentum 

mismatch
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From splitting amplitudes to probabilities 

2

Note soft-gluon singularity as 
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Similarly for gluons 

Again a soft-gluon singularity.  Gluon number not conserved. 

But momentum is.  Momentum conservation mixes                      with 

Exercise: deduce, up to color factors, by taking 

in                                 

Exercise:  Extract from Parke-Taylor formula
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Gluon splitting (cont.) 

Applying momentum conservation,

gives

Amusing that first b-function coefficient enters, 

since no loops were done, except implicitly via unitarity: 
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Space-like splitting  

• The case relevant for parton evolution

• Related by crossing to time-like case

• Have to watch out for flux factor, however

absorb into flux factor:

When dust settles, get exactly the same splitting kernels (at LO)

P
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Infrared divergences in QCD 

LO

NLO

real virtual

• Virtual corrections cancel real singularities, but only for quantities

insensitive to soft/collinear radiation → infrared-safe observables O

soft singularities:

collinear singularities:   

virtual soft/collinear singularities:

Usually regulate 

dimensionally,

in all phase-space

and loop integrals
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Infrared safety 

Infrared-safe observables O:

- Behave smoothly in soft limit as any parton momentum → 0

- Behave smoothly in collinear limit as any pair of partons→ parallel (||)

• Cannot predict perturbatively any infrared-unsafe quantity, such as:

- the number of partons (hadrons) in an event

- observables requiring no radiation in some region (rapidity gaps 

or overly strong isolation cuts)

- pT(W, Z or Higgs) precisely at pT = 0



Incredibly versatile, powerful concept – but hard to compute analytically beyond LO 
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Infrared safety (cont.)

Examples of IR safe quantities at LHC:

• most kinematic distributions of “electroweak” objects, W, Z, Higgs

(photons tricky because of collinear issues)

• jets, defined by cluster or (suitable) cone algorithm

jet cluster algorithm            n = -2, 0, 2    → anti-kT ,  CA,  kT

• Construct list of objects, starting with particles i, plus “the beam” b

• Define “distance” between objects, vanishing in soft/collinear limits: 

• If a dij is smallest, cluster together i and j.

If a dib is smallest, declare i to be a jet and remove

it from the list of particles

• Repeat until all objects are jets



34

Loop difficulty increases rapidly with number of jets 

pp →W + n jets          (just cases with most gluons)

# of jets # 1-loop Feynman diagrams
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• Total number of 

diagrams not the 

biggest problem.

• Some of them have 

very complicated 

tensor structures and

can develop numerical

instabilities in various

kinematic regions.
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Real radiation prototype:

infrared cancellations in e+e-

Dalitz plot
Or can use as 

variables: 

• 1 invariant mass,

say s34

• CM polar angle 

for “decay” of (3,4) 

pair, cosq,

equivalent to z
5

4

3z

1-z

after doubling z < 1 term

to account for 4 || 5 region
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Real radiation in general case

Dalitz plotCannot perform the phase-space

integral analytically in D=4-2e,

especially not for generic 

experimental cuts

Also can’t do it numerically, 

because of 1/e2 poles

2 solutions: 

1. Slice out singular regions of phase-space, with (thin) width smin

Perform integral there approximately. Rest of integral done 

numerically.  Check cancellation of smin dependence.

2. Subtract a function that mimics the soft/collinear behavior of the 

radiative cross section, and which you can integrate (analytically). 

Integral of the difference can be done numerically.
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Dipole formalism
Catani, Seymour, hep-ph/9602277, hep-ph/9605323

Popular (stable) version of the subtraction method

Build dipole subtraction 

function Dij,k for each 

pair of partons i,j that can 

get singular, and for each 

“spectator” parton k

all final-state case

The Dij,k multiply the LO

cross section, at a boosted

phase-space point: All dipole integrals can be done analytically

Hundreds of dipoles for NLO pp → 3 jets



Jet Catchment Areas
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Cacciari, Salam, Soyez, 0802.1188
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Overall structure

of higher-order QCD corrections

Example of Z production at hadron colliders

LO
convolute with pdfs

apply cuts

tree

NLO

tree + 1 parton
1 loop

first, cancel infrared

divergences (       )

between virtual & real

dim. reg.

intricate (       ) IR cancellations

NNLO

2 loops
1 loop + 1 parton tree + 2 partons



Fixed order good for jet rates, not 

for jet substructure

• LO:   1 jet = 1 parton

• NLO: 1 jet = 1 or 2 partons

• NNLO: 1 jet = 1,2 or 3 partons

• Better to use Monte Carlo simulations or 

resummation methosd for jet substructure
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BlackHat automates one-loop

SHERPA automates real subtractions

• 4 jets [1112.3940, Z. Bern, G. Diana, LD, F. Febres Cordero,      

S. Höche, H. Ita, D. Kosower, D. Maitre, K. Ozeren]

• Z+4 jets [1108.2229, H. Ita, Z. Bern, LD,                                      

F. Febres Cordero, D. Kosower, D. Maitre]

• W+5 jets [1304.1253, Z. Bern, LD, F. Febres Cordero, S. Höche, 

H. Ita, D. Kosower, D. Maitre, K. Ozeren]

• Ntuple framework for varying pdfs, scales, cuts 

efficiently [1310.7439, Z. Bern, F. Febres Cordero, LD, S. 

Höche, H. Ita, D. Kosower, D. Maitre]
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0803.4180
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theory:

BlackHat+SHERPA
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NLO pp → Z + 1,2,3,4 jets vs. 2010 ATLAS data

s(n)/s(n-1)

n =    1           2           3           4

arXiv:1111.2690 [hep-ex]



pp → Z + 4 jets
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ATLAS

arXiv:1304.7098
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NLO pp →W + 1,2,3,4 jets vs. 2010 ATLAS data

arXiv:1201.1276 [hep-ex]

merge NLO

W + 1,2,... jet

samples “by hand”
difficult 

observable

for fixed order
Rubin, Sapeta,

Salam, 

1006.2144



pp → W + 3,4 jets
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CMS

arXiv:1406.7533



Jet size dependence
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J. Huston

NLO



Conclusions
• The soft and collinear structure of QCD is exposed by the simplest 4 and 5 

point amplitudes, computed in the spinor helicity formalism.

• Infrared safety allows for perturbative computation of short-distance 

quantities at colliders.

• Combined with experimentally determined parton distributions, evolved to 

the relevant scales using DGLAP evolution, one can make precise (NLO) 

predictions for processes at the LHC with many final state objects.

• NNLO results are even more precise, but currently limited to at most 2 

objects in the final state.

• An ongoing challenge, being tackled here in Freiburg and elsewhere, is to 

extend NNLO precision to LHC processes with 3 or more objects in the 

final state.

• Tomorrow we’ll discuss the energy-energy correlation (EEC) in electron-

positron annihilation. This process is so simple that it can be computed 

analytically at NLO.  In the small-angle limit, it can be resummed to NNLL, 

and it may lead to more computable jet substructure at the LHC.
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Extra Slides
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Soft-gluon/Sudakov resummation

• A prevalent theme in QCD whenever one is at an

edge of phase space.  

• Infrared-safe but sensitive to a second, smaller scale

• Same physics as in (high-energy) QED:

• What is prob. of no g with E > DE, q > D q ?

soft collinear
exponentiation because soft emissions

are independentleading double logarithms

-- in contrast to single logs 

of renormalization group, 

DGLAP equations.
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Monte Carlos

• Based on properties of soft and collinear radiation in QCD

• Partons surrounded by “cloud” of soft and collinear partons

• Leading double logs of Qhard/Qsoft  exponentiate, can be 

generated probabilistically

• Shower starts with basic 2 → 2 parton scattering

-- or basic production process for W, Z, tt, etc.

• Further radiation approximate, requires infrared cutoff

• Shower can be evolved down to very low Qsoft , where 

models for hadronization and spectator interactions can be 

applied

• Complete hadron-level event description attained

• Normalization of event rates unreliable

• Event “shapes” sometimes unreliable
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Monte Carlos in pictures
Splitting probability:

Sudakov factor (no splitting probability):
form strings or clusters

based on color flow

make hadrons


