Jets and Energy-Energy Correlation in QCD Part I: Jets

Lance Dixon (SLAC) Graduate College University of Freiburg 3 April, 2019

CMS Experiment at LHC, CERN Data recorded: Tue May 25 06:24:04 2010 CEST Run/Event: 136100 / 103078800 Lumi section: 348

Jets everywhere at the LHC

Collimated sprays of strongly interacting particles

To describe quantitatively, need precise definition: jet algorithm

To compute from first principles, algorithm must be "infrared safe" $\leftarrow \rightarrow$ insensitive to long distances

L. Dixon Jets in QCD

The Key of Asymptotic Freedom

Gross, Wilczek, Politzer (1973)

Quantum fluctuations of massless virtual particles polarize vacuum

QED: electrons screen charge (e larger at short distances)

$$\gamma \sim 0 \rightarrow e^2(r) = \frac{e^2(r_0)}{1 + \frac{2e^2(r_0)}{3\pi} ln\frac{r}{r_0}} \qquad \beta_0 \approx -r\frac{d}{dr}\left(\frac{\pi}{e^2}\right) = -\frac{2}{3}$$

QCD: gluons anti-screen charge (g_s smaller at short distances)

Gluon self-interactions make quarks almost free, and make QCD calculable at short distances (high energies): $\alpha_s \rightarrow 0$ asymptotically

ρ

Short-distance calculability

Running of α_s is *logarithmic*, *slow* at short distances (large Q)

QCD factorization & parton model

- Asymptotic freedom guarantees that at short distances (large transverse momenta), partons in the proton are almost free.
- They are sampled "one at a time" in hard collisions.
- Leads to QCD-improved parton model:

Jets in QCD .. Dixon

"suitable" final state

Parton evolution

- partons in the proton are not quite free
- distributions $f_a(x, \mu_F)$ evolve as scale μ_F at which they are resolved varies

Parton evolution (cont.)

- parton distributions are nonperturbative
- must be measured experimentally
- experimental data at much lower μ²_F than scale of interest at LHC (100-1000 GeV)²
- fortunately, evolution at $\mu_F > 1-2$ GeV is perturbative
- DGLAP equation:

L. Dixon Jets in QCD

Short-Distance Cross Section in Perturbation Theory

$$\hat{\sigma}(\alpha_s, \mu_F, \mu_R) = [\alpha_s(\mu_R)]^{n_\alpha} \begin{bmatrix} \hat{\sigma}^{(0)} + \frac{\alpha_s}{2\pi} \hat{\sigma}^{(1)}(\mu_F, \mu_R) + \left(\frac{\alpha_s}{2\pi}\right)^2 \hat{\sigma}^{(2)}(\mu_F, \mu_R) + \cdots \end{bmatrix}$$

$$LO \qquad \text{NLO} \qquad \text{NNLO}$$

- **Problem:** Leading-order (LO) predictions only qualitative due to **poor convergence** of expansion in $\alpha_s(\mu) \sim 0.1$
- Can easily get ~ 50-100% uncertainties in LO predictions
- Uncertainties brought under much better control with NLO corrections: ~ 50-100% → ~ 15-20%
- NNLO becoming increasingly available
 ~ 3-8% uncertainties

L. Dixon Jets in QCD

Overall structure of higher-order QCD corrections

Example of **Z** production at hadron colliders

Short-distance cross section perturbative \rightarrow expansion in Feynman diagrams

 Feynman diagrams, while very general and powerful, are not optimized for such processes

• Much more efficient methods based on helicity formalism, generalized unitarity,...

Helicity Formalism Exposes Tree-Level Simplicity in QCD

Many tree-level helicity amplitudes either vanish or are very short

Spinor helicity formalism

Scattering amplitudes for massless plane waves of definite momentum: Lorentz 4-vectors k_i^{μ} $k_i^2=0$

Natural to use Lorentz-invariant products (invariant masses): $s_{ij} = 2k_i \cdot k_j = (k_i + k_j)^2$

But for elementary particles with **spin** (*e.g.* all observed ones!) **there is a better way:**

Take "square root" of 4-vectors k_i^{μ} (spin 1) use Dirac (Weyl) spinors $u_{\alpha}(k_i)$ (spin $\frac{1}{2}$)

right-handed: $(\lambda_i)_{\alpha} = u_+(k_i)$ left-handed: $(\tilde{\lambda}_i)_{\dot{\alpha}} = u_-(k_i)$

 q, g, γ , all have 2 helicity states, $h = \pm -$

L. Dixon Jets in QCD

Spinor products

L. Dixon Jets in QCD

Most iconic Feynman diagram turns 70

Phys. Rev. 76, 769 (1949)

772

FIG. 1. The fundamental interaction Eq. (4). Exchange of one quantum between two electrons.

Carved in stone in Tuva, Central Asia, next to Mongolia [courtesy Glen Cowan, Ralph Leighton]

 $R . \quad P . \quad F \in Y N M A N$

electron-electron scattering in QED

Can repurpose to describe the most important processes in the Standard Model

L. Dixon Jets in QCD

That diagram as a helicity amplitude

Sometimes useful to rewrite answer

Crossing symmetry more manifest if we switch to all-outgoing helicity labels (flip signs of incoming helicities)

Symmetries for all other helicity config's

L. Dixon Jets in QCD

Unpolarized, helicity-summed cross sections (the norm in QCD)

$$\frac{d\sigma(e^+e^- \to q\bar{q})}{d\cos\theta} \propto \sum_{\text{hel.}} |A_4|^2 = 2\left\{ \left| \frac{\langle 24 \rangle^2}{\langle 12 \rangle \langle 34 \rangle} \right|^2 + \left| \frac{\langle 14 \rangle^2}{\langle 12 \rangle \langle 34 \rangle} \right|^2 \right\}$$
$$= 2\frac{s_{24}^2 + s_{14}^2}{s_{12}^2}$$
$$= \frac{1}{2} [(1 - \cos\theta)^2 + (1 + \cos\theta)^2]$$
$$= 1 + \cos^2\theta$$

Reweight helicity amplitudes → electroweak/QCD processes

For example, Z exchange

$$Q_e Q_q \qquad \Rightarrow \qquad Q_e Q_q + \frac{v_{L,R}^e v_{L,R}^q s}{s - M_Z^2 + i \Gamma_Z M_Z}$$

$$v_L^f = \frac{2I_3^f - 2Q_f \sin^2 \theta_W}{\sin 2\theta_W} \qquad v_R^f = -\frac{2Q_f \sin^2 \theta_W}{\sin 2\theta_W}$$

U. Freiburg 3 April 2019 20

QCD real radiative corrections to this process

L. Dixon Jets in QCD

Helicity formalism for massless vectors

Berends, Kleiss, De Causmaecker, Gastmans, Wu (1981); De Causmaecker, Gastmans, Troost, Wu (1982); Xu, Zhang, Chang (1984); Kleiss, Stirling (1985); Gunion, Kunszt (1985) $(\varepsilon_{i}^{+})_{\mu} = \varepsilon_{\mu}^{+}(k_{i},q) = \frac{\langle i^{+}|\gamma_{\mu}|q^{+}\rangle}{\sqrt{2}\langle iq\rangle}$ $(\not{z}_{i}^{+})_{\alpha\dot{\alpha}} = \not{z}_{\alpha\dot{\alpha}}^{+}(k_{i},q) = \frac{\sqrt{2}\tilde{\lambda}_{i}^{\dot{\alpha}}\lambda_{q}^{\alpha}}{\langle iq\rangle}$ reference vector q^{μ} is null, $q^2 = 0$ $\langle q | q^{\pm} \rangle = 0$ $\varepsilon_i^+ \cdot k_i = 0$ (required transversality) obeys $\varepsilon_i^+ \cdot q = 0$ (bonus) $ilde{\lambda}_i^{\dotlpha} o e^{i\phi/2} ilde{\lambda}_i^{\dotlpha}$ under azimuthal rotation about k_i axis, helicity +1/2 helicity -1/2 $\lambda_i^{lpha}
ightarrow e^{-i\phi/2} \lambda_i^{lpha}$ so $\not{\epsilon}_{i}^{+} \propto \frac{\tilde{\lambda}_{i}^{\alpha}}{\lambda_{i}^{\alpha}} \rightarrow e^{i\phi} \not{\epsilon}_{i}^{+}$

as required for helicity +1

$$e^+e^- \rightarrow qg\bar{q}$$
 (cont.)

$$A_{5} = \frac{\langle 25 \rangle}{s_{12}} \frac{\langle 1^{+} | (k_{3} + k_{4}) \not \xi_{4}^{+} | 3^{-} \rangle}{\sqrt{2} s_{34}} \\ + \frac{[13]}{s_{12}} \frac{\langle 2^{-} | (k_{4} + k_{5}) \not \xi_{4}^{+} | 5^{+} \rangle}{\sqrt{2} s_{45}} \\ = \frac{\langle 25 \rangle}{s_{12}} \frac{\langle 1^{+} | (k_{3} + k_{4}) | q^{+} \rangle [43]}{s_{12}} \\ + \frac{[13]}{s_{12}} \frac{\langle 2^{-} | (k_{4} + k_{5}) | 4^{-} \rangle \langle q 5 \rangle}{s_{45} \langle 4 5 \rangle} \\ = \frac{\langle 25 \rangle}{s_{12}} \frac{\langle 1^{+} | (k_{3} + k_{4}) | 5^{+} \rangle [43]}{s_{12}} \\ = \frac{\langle 25 \rangle [12] \langle 25 \rangle [43]}{s_{12}} \\ = -\frac{\langle 25 \rangle [12] \langle 25 \rangle [43]}{\langle 12 \rangle [21] \langle 34 \rangle [43] \langle 45 \rangle} \\ A_{5} = \frac{\langle 25 \rangle^{2}}{\langle 12 \rangle \langle 34 \rangle \langle 45 \rangle} \end{bmatrix}$$

Properties of $\mathcal{A}_5(e^+e^- \rightarrow qg\bar{q})$

1. Soft gluon behavior $k_4
ightarrow 0$

 $A_{5} = \frac{\langle 25\rangle^{2}}{\langle 12\rangle\langle 34\rangle\langle 45\rangle} = \frac{\langle 35\rangle}{\langle 34\rangle\langle 45\rangle} \times \frac{\langle 25\rangle^{2}}{\langle 12\rangle\langle 35\rangle}$ $\rightarrow S(3,4^{+},5) \times A_{4}(1^{+},2^{-},3^{+},5^{-})$

Universal "eikonal" factors for emission of soft gluon *s* between two hard partons *a* and *b* $S(a, s^+, b) = \frac{\langle a b \rangle}{\langle a s \rangle \langle s b \rangle}$ $S(a, s^-, b) = -\frac{[a b]}{[a s][s b]}$

Soft emission is from the classical chromoelectric current: independent of parton type (*q vs. g*) and helicity – only depends on momenta of *a,b*, and color charge

Properties of $\mathcal{A}_5(e^+e^- \rightarrow qg\bar{q})$ (cont.)

2. Collinear behavior

$$egin{aligned} &k_3 \mid\mid k_4 \colon \quad k_3 = z \, k_P, \ &k_4 = (1-z) \, k_P \ &k_P \equiv k_3 + k_4, \ &k_P^2
ightarrow 0 \ &\lambda_3 pprox \sqrt{z} \lambda_P, \ &\lambda_4 pprox \sqrt{1-z} \lambda_P, \ & ext{etc.} \end{aligned}$$

Universal collinear factors, or splitting amplitudes Split_ $h_P(a^{h_a}, b^{h_b})$ depend on parton type and helicity h

L. Dixon Jets in QCD

Spinor Magic

Spinor products precisely capture **square-root + phase** behavior in **collinear limit**. Excellent variables for **helicity amplitudes**

L. Dixon Jets in QCD

From splitting amplitudes to probabilities

$$\begin{array}{l} q \rightarrow qg: \\ P_{qq}(z) \propto C_F \left\{ \left| \frac{1}{\sqrt{1-z}} \right|^2 + \left| \frac{z}{\sqrt{1-z}} \right|^2 \right\} \\ &= C_F \frac{1+z^2}{1-z} \quad z < 1 \end{array}$$
Note soft-gluon singularity as $z_g = 1-z \rightarrow 0$

L. Dixon Jets in QCD

Similarly for gluons

Exercise: Extract from Parke-Taylor formula

$$g \to gg:$$

$$P_{gg}(z) \propto C_A \left\{ \left| \frac{1}{\sqrt{z(1-z)}} \right|^2 + \left| \frac{z^2}{\sqrt{z(1-z)}} \right|^2 + \left| \frac{(1-z)^2}{\sqrt{z(1-z)}} \right|^2 \right\}$$

$$= C_A \frac{1+z^4+(1-z)^4}{z(1-z)} \qquad C_A = N_c$$

$$= 2C_A \left[\frac{z}{1-z} + \frac{1-z}{z} + z(1-z) \right] \qquad z < 1$$

Again a soft-gluon singularity. Gluon number not conserved. But momentum is. Momentum conservation mixes $g \rightarrow gg$ with

$$\rightarrow q \bar{q}$$
: $P_{qg}(z) = T_R [z^2 + (1-z)^2]$ $T_R = \frac{1}{2}$

Exercise: deduce, up to color factors, by taking $e^+ || e^-$ in $\mathcal{A}_5(e^+e^- \rightarrow qg\bar{q})$

L. Dixon Jets in QCD

 \boldsymbol{g}

U. Freiburg 3 April 2019 28

Gluon splitting (cont.)

 $g \rightarrow gg$: Applying momentum conservation,

gives

$$\int_{0}^{1} dz \, z \, \left[P_{gg}(z) + 2n_{f} P_{qg}(z) \right] = 0$$

$$P_{gg}(z) = 2C_{A} \left[\frac{z}{(1-z)_{+}} + \frac{1-z}{z} + z(1-z) \right] + b_{0} \, \delta(1-z)$$

$$b_{0} = \frac{11C_{A} - 4n_{f} T_{R}}{6}$$

Amusing that first β -function coefficient enters, since no loops were done, except implicitly via unitarity:

L. Dixon Jets in QCD

Space-like splitting

- The case relevant for parton evolution
- Related by crossing to time-like case
- Have to watch out for flux factor, however

$$q \rightarrow qg: \quad k_P = x \, k_5, \quad k_4 = (1 - x) \, k_5$$

$$A_5 = \frac{\langle 25 \rangle^2}{\langle 12 \rangle \langle 34 \rangle \langle 45 \rangle} \approx \frac{\frac{1}{x}}{\sqrt{\frac{1 - x}{x}} \langle 45 \rangle} \times \frac{\langle 2P \rangle^2}{\langle 12 \rangle \langle 3P \rangle} \qquad 5^{-q}$$

$$= \frac{1}{\sqrt{x}} \frac{1}{\sqrt{1 - x} \langle 45 \rangle} \times \frac{\langle 2P \rangle^2}{\langle 12 \rangle \langle 3P \rangle} \qquad d\sigma_5 \propto \frac{1}{s_{15}} \\ d\sigma_4 \propto \frac{1}{s_{1P}} = \frac{1}{x \, s_{15}}$$

absorb into flux factor:

When dust settles, get exactly the same splitting kernels (at LO)

Infrared divergences in QCD

 Virtual corrections cancel real singularities, but only for quantities insensitive to soft/collinear radiation → infrared-safe observables O

L. Dixon Jets in QCD

Infrared safety

Infrared-safe observables O:

- Behave smoothly in soft limit as any parton momentum $\rightarrow 0$
- Behave smoothly in collinear limit as any pair of partons \rightarrow parallel (||)

$$O_n(\ldots, k_s, \ldots) \rightarrow O_{n-1}(\ldots, X_s, \ldots) \qquad k_s \rightarrow 0$$

$$O_n(\ldots, k_a, k_b, \ldots) \rightarrow O_{n-1}(\ldots, k_P, \ldots) \qquad k_a || k_b$$

• Cannot predict perturbatively any infrared-unsafe quantity, such as:

- the number of partons (hadrons) in an event
- observables requiring no radiation in some region (rapidity gaps or overly strong isolation cuts)
- $p_{\rm T}(W, Z \text{ or Higgs})$ precisely at $p_{\rm T} = 0$

Infrared safety (cont.)

Examples of IR safe quantities at LHC:

- most kinematic distributions of "electroweak" objects, W, Z, Higgs (photons tricky because of collinear issues)
- jets, defined by cluster or (suitable) cone algorithm

jet cluster algorithm $n = -2, 0, 2 \leftarrow \rightarrow$ anti- k_T , CA, k_T

- Construct list of objects, starting with particles *i*, plus "the beam" *b*
- Define "distance" between objects, vanishing in soft/collinear limits:

 $d_{ij} = \min\{k_T^{(i)}, k_T^{(j)}\}^n \left[(\eta^{(i)} - \eta^{(j)})^2 + (\phi^{(i)} - \phi^{(j)})^2\right]/R^2$

• If a d_{ij} is smallest, cluster together *i* and *j*. If a d_{ib} is smallest, declare *i* to be a jet and remove it from the list of particles

Repeat until all objects are jets

Incredibly versatile, powerful concept - but hard to compute analytically beyond LO

L. Dixon Jets in QCD

 $d_{ib} = [k_{\mathrm{T}}^{(i)}]^n$

Loop difficulty increases rapidly with number of jets

Real radiation prototype: infrared cancellations in e⁺e⁻

L. Dixon Jets in QCD

Real radiation in general case

Cannot perform the phase-space integral analytically in $D=4-2\varepsilon$, especially not for generic experimental cuts

Also can't do it numerically, because of $1/\epsilon^2$ poles

2 solutions:

- 1. Slice out singular regions of phase-space, with (thin) width s_{min} Perform integral there approximately. Rest of integral done numerically. Check cancellation of s_{min} dependence.
- Subtract a function that mimics the soft/collinear behavior of the radiative cross section, and which you can integrate (analytically). Integral of the difference can be done numerically.

Dipole formalism

Catani, Seymour, hep-ph/9602277, hep-ph/9605323

Popular (stable) version of the subtraction method

Build dipole subtraction function D_{ij,k} for each pair of partons i,j that can get singular, and for each "spectator" parton k

$$\begin{aligned} \mathcal{D}_{ij,k}\left(p_{1},...,p_{m+1}\right) &= -\frac{1}{2p_{i} \cdot p_{j}} \\ & \cdot_{m} < 1,..,\widetilde{ij},..,\widetilde{k},..,m+1 |\frac{T_{k} \cdot T_{ij}}{T_{ij}^{2}} \mathbf{V}_{ij,k} | 1,..,\widetilde{ij},..,\widetilde{k},..,m+1 >_{m} \end{aligned}$$

The D_{ij,k} multiply the LO cross section, at a boosted phase-space point:

$$\tilde{p}^{\mu}_{k} = \frac{1}{1 - y_{ij,k}} \, p^{\mu}_{k} \ , \quad \tilde{p}^{\mu}_{ij} = p^{\mu}_{i} + p^{\mu}_{j} - \frac{y_{ij,k}}{1 - y_{ij,k}} \, p^{\mu}_{k}$$

L. Dixon Jets in QCD

Figure 3: Effective diagrams for the different dipole formulae introduced in Sect. 5. The blobs denote the m-parton matrix element. Incoming and outgoing lines respectively stand for initial-state and final-state partons.

All dipole integrals can be done analytically

Hundreds of dipoles for NLO pp \rightarrow 3 jets

Jet Catchment Areas

Cacciari, Salam, Soyez, 0802.1188

Overall structure of higher-order QCD corrections

Example of **Z** production at hadron colliders

Fixed order good for jet rates, not for jet substructure

• LO: 1 jet = 1 parton

• NLO: 1 jet = 1 or 2 partons

- NNLO: 1 jet = 1,2 or 3 partons
- Better to use Monte Carlo simulations or resummation methosd for jet substructure

L. Dixon Jets in QCD

BlackHat automates one-loop ^{0803.4180} SHERPA automates real subtractions

- 4 jets [1112.3940, Z. Bern, G. Diana, LD, F. Febres Cordero.
 S. Höche, H. Ita, D. Kosower, D. Maitre, K. Ozeren]
- Z+4 jets [1108.2229, H. Ita, Z. Bern, LD,
 F. Febres Cordero, D. Kosower, D. Maitre]
- W+5 jets [1304.1253, Z. Bern, LD, F. Febres Cordero, S. Höche, H. Ita, D. Kosower, D. Maitre, K. Ozeren]
- Ntuple framework for varying pdfs, scales, cuts efficiently [1310.7439, Z. Bern, F. Febres Cordero, LD, S. Höche, H. Ita, D. Kosower, D. Maitre]

L. Dixon Jets in QCD

22

42

NLO pp \rightarrow Z + 1,2,3,4 jets vs. 2010 ATLAS data

arXiv:1111.2690 [hep-ex]

$pp \rightarrow Z + 4$ jets

ATLAS arXiv:1304.7098

• NLO Z+ \geq 4 jets and ME+PS consistent with data

L. Dixon Jets in QCD

NLO pp \rightarrow W + 1,2,3,4 jets vs. 2010 ATLAS data

$pp \rightarrow W + 3,4 jets$

Jet size dependence

- Let's look at predictions for W + 3 jets for two different jet algorithms as a function of jet size at the LHC (7 TeV)
- At LO, both antikT and SISCone show a marked decrease in cross section as the jet size increases
 - because of the log(1/∆R) effect
- But at NLO, the two cross sections show little dependence on the jet size, and are similar to each other
- You'll see the same thing in ATLAS Monte Carlo

note NLO~LO because a scale of $\rm H_{T}$ has been used

Conclusions

- The soft and collinear structure of QCD is exposed by the simplest 4 and 5 point amplitudes, computed in the spinor helicity formalism.
- Infrared safety allows for perturbative computation of short-distance quantities at colliders.
- Combined with experimentally determined parton distributions, evolved to the relevant scales using DGLAP evolution, one can make precise (NLO) predictions for processes at the LHC with many final state objects.
- NNLO results are even more precise, but currently limited to at most 2 objects in the final state.
- An ongoing challenge, being tackled here in Freiburg and elsewhere, is to extend NNLO precision to LHC processes with 3 or more objects in the final state.
- Tomorrow we'll discuss the energy-energy correlation (EEC) in electronpositron annihilation. This process is so simple that it can be computed analytically at NLO. In the small-angle limit, it can be resummed to NNLL, and it may lead to more computable jet substructure at the LHC.

L. Dixon Jets in QCD

Extra Slides

Soft-gluon/Sudakov resummation

- A prevalent theme in QCD whenever one is at an edge of phase space.
- Infrared-safe but sensitive to a second, smaller scale
- Same physics as in (high-energy) QED: $e^+e^- = e^+e^-(\gamma)$
- What is prob. of no γ with $E > \Delta E$, $\theta > \Delta \theta$?

$$P = 1 - \frac{\alpha}{\pi} \int_{\Delta E} \frac{dE}{E} \int_{\Delta \theta} \frac{d\theta}{\theta} + \dots = 1 - \frac{\alpha}{\pi} \ln \Delta E \ln \Delta \theta + \dots$$
$$= \exp\left(-\frac{\alpha}{\pi} \ln \Delta E \ln \Delta \theta\right) + \cos(\theta)$$

leading double logarithms -- in contrast to single logs of renormalization group, DGLAP equations. exponentiation because soft emissions are independent

. . .

Monte Carlos

- Based on properties of soft and collinear radiation in QCD
- Partons surrounded by "cloud" of soft and collinear partons
- Leading double logs of Q_{hard}/Q_{soft} exponentiate, can be generated probabilistically
- Shower starts with basic 2 \rightarrow 2 parton scattering
 - -- or basic production process for W, Z, tt, etc.
- Further radiation approximate, requires infrared cutoff
- \bullet Shower can be evolved down to very low $\mathsf{Q}_{\mathsf{soft}}$, where models for hadronization and spectator interactions can be applied
- Complete hadron-level event description attained
- Normalization of event rates unreliable
- Event "shapes" sometimes unreliable

Monte Carlos in pictures

