



# PARTON DISTRIBUTIONS FOR THE XXI CENTURY

# STEFANO FORTE UNIVERSITÀ DI MILANO & INFN





Universität Freiburg

# **PROLOGUE**

#### PAST (NOT SO LONG AGO) HIGGS PRODUCTION uncertainty σ (8 TeV) **NNLL QCD** 14.7% 19.5 pb gg→H +NLO EW 1.56 pb **VBF** 2.9% scale NNLO QCD $0.70 \, \mathrm{pb}$ WH 3.9% PDF+αs +NLO EW ZH 0.39 pb 5.1% NLO QCD $0.13 \, \mathrm{pb}$ ttH 14.4%

(J. Campbell, 2012)

PDF uncertainty either dominant, or very large, or both typical PDF uncertainty  $\sim 5-10\%$ 

#### PRESENT: THE PDF4LHC SET

#### LUMINOSITY UNCERTAINTIES VS RAPIDTY & MASS



G.P. Salam, 2016

TYPICAL PDF UNCERTAINTY DOWN TO  $\sim 2-5\%$  TOWARDS 1% PDF UNCERTAINTIES?

#### FUTURE: NNPDF3.1





TYPICAL PDF UNCERTAINTY IN DATA REGION OF ORDER 1%!! CAN WE BELIEVE IN 1% PDF UNCERTAINTIES? WHAT ARE THE CONSEQUENCES?

#### SUMMARY THE IMPACT OF DATA

- WIDENING OF THE DATASET AND THE IMPACT OF LHC
- PDF UNCERTAINTIES
- FLAVOR SEPARATION & THE GLUON

#### METHODOLOGICAL ISSUES

- MONTE CARLO VS. HESSIAN
- PARAMETRIZATION ISSUES
- MINIMIZATION EFFICIENCY AND STATISTICAL TESTS
- CONTROLLING THE COVARIANCE MATRIX

#### THEORY ISSUES

- THE NNLO FRONTIER
- ullet SMALL AND LARGE x RESUMMATION
- THE PHOTON PDF
- THE TREATMENT OF HEAVY QUARKS

# THE IMPACT OF LHC DATA

#### CONTEMPORARY PDF TIMELINE (ONLY PUBLISHED GLOBAL)

|                  | 2008      |           | 2009      |          | 2010      |               | 2011 2012            |            | 2013      |                   | 2014       |           | 2015   20 |           | 17       |           |
|------------------|-----------|-----------|-----------|----------|-----------|---------------|----------------------|------------|-----------|-------------------|------------|-----------|-----------|-----------|----------|-----------|
| SET MONTH        | CTEQ6.6 Q | NNPDF1.0© | MSTW (01) | ABKM09 © | NNPDF2.0© | CT10<br>(NLO) | NNPDF2.1<br>(NNLO) © | ABM11 (02) | NNPDF2.3© | CT10<br>(NNLO) 02 | ABM12 (10) | NNPDF3.0C | MMHT (12) | CT14 (06) | ABMP16 © | NNPDF3.1© |
| F. T. DIS        | <u>/</u>  | ✓ ✓       | ✓ ✓       | <u>✓</u> | <u>√</u>  | ✓ ✓           | <u>✓</u>             | <u>/</u>   | ✓ ✓       | ✓ <b>/</b>        | <u>/</u>   | <u>/</u>  | <u>/</u>  | ✓ ×       | <u>√</u> | <i>y</i>  |
| ZEUS+H1-HI       |           | V         | _         |          |           |               |                      |            | V         |                   |            |           | _         |           |          |           |
| сомв. НІ         | V         | Х         | X         | X        |           | X             |                      | X          |           | ×                 |            |           | Х         | Х         |          |           |
| ZEUS+H1-HII      |           |           | ľ         | ·        |           |               | $_{ m some}$         | •          |           | some              | <b>'</b>   | <b>V</b>  |           | ĺ         |          |           |
| HERA JETS        | X         | X         | X         | X        | X         | X             | .,                   | X          | X         | .                 | X          | <i>•</i>  | X         | X         |          |           |
| F. T. DY         | X         | X         | <b>✓</b>  | X        | X         | Х             | Х                    | X          | X         | X                 | Х          | X         | <b>✓</b>  | X         | X        | Х         |
| TEV W+Z          | <b>~</b>  | X         | <b>/</b>  | <b>✓</b> | <b>✓</b>  | <b>✓</b>      | <b>~</b>             | <b>~</b>   | <b>✓</b>  | <b>'</b>          | <b>~</b>   | <b>~</b>  | <b>/</b>  | <b>/</b>  | <b>✓</b> | ~         |
| LHC W+Z          | ~         | X         | <b>~</b>  | X        | <b>✓</b>  | <b>~</b>      | <b>✓</b>             | X          | <b>✓</b>  | <b>'</b>          | X          | <b>~</b>  | <b>~</b>  | <b>~</b>  | X        | <b>✓</b>  |
|                  | X         | X         | X         | X        | X         | X             | Х                    | X          | <b>✓</b>  | X                 | some       | ✓         | <b>✓</b>  | <b>✓</b>  | some     | <b>✓</b>  |
| TEV JETS         | <b>V</b>  | X         | <b>✓</b>  | X        | <b>✓</b>  | <b>✓</b>      | X                    | <b>✓</b>   | <b>✓</b>  | <b>'</b>          | X          | <b>✓</b>  | <b>✓</b>  | <b>✓</b>  | X        | <b>✓</b>  |
| LHC JETS         | X         | X         | X         | X        | X         | X             | X                    | X          | <b>✓</b>  | X                 | X          | <b>✓</b>  | <b>✓</b>  | <b>✓</b>  | X        | <b>✓</b>  |
| TOP TOTAL        | Х         | X         | X         | X        | X         | X             | X                    | X          | X         | Х                 | ~          | <b>✓</b>  | X         | X         | <b>/</b> | <b>✓</b>  |
| SINGLE TOP TOTAL | X         | X         | X         | X        | X         | X             | X                    | X          | X         | X                 | X          | X         | X         | X         | <b>✓</b> | X         |
| TOP DIFFERENTIAL | X         | X         | X         | X        | X         | X             | X                    | X          | X         | X                 | X          | X         | X         | X         | X        | V         |
| $W p_T$          | Х         | Х         | Х         | Х        | Х         | Х             | Х                    | Х          | Х         | Х                 | Х          | ~         | Х         | Х         | Х        | Х         |
| W+c              | X         | X         | X         | X        | X         | X             | X                    | X          | ×         | ×                 | X          | /         | X         | X         | X        | X         |
| $Z p_T$          | ,<br>X    | ×         | X         | ,<br>X   | X         | ×             | X                    | X          | X         | ×                 | X          | ×         | X         | ×         | ,<br>X   |           |

#### THEORY PROGRESS:

- MSTW, ABKM: all NNLO; NNPDF NNLO since 07/11 (2.1), CT since 02/13 (CT10); NNPDF THRESHOLD RESUMMATION (3.0RESUM, 07/15), SMALL x RESUMMATION (3.1SX, 10/17)
- MSTW, CT, NNPDF all GM-VFN; NNPDF since 01/11 (2.1); ABM FFN+ZM-VFN since 01/17 (ABMP16)
- NNPDF FITTED CHARM since 05/16 (NNPDF3IC)
- PHOTON PDF: (mrst2004qed), NNPDF2.3QED (08/13), NNPDF3.0QED (06/16), NNPDF3.1LUXQED (12/17)

#### DATASET WIDENING

#### NNPDF3.0 vs NNPDF3.1

Kinematic coverage



#### NEW DATA: (BLACK EDGE)

- HERA COMBINED  $F_2^b$
- D0 W LEPTON ASYMMETRY
- ATLAS W, Z 2011, HIGH & LOW MASS DY 2011; CMS  $W^{\pm}$  RAPIDITY 8TEV LHCB W, Z 7TEV & 8TEV
- ATLAS 7TeV JETS 2011, CMS 2.76TeV JETS
- ATLAS & CMS TOP

  DIFFERENTIAL RAPIDITY
- ATLAS Z  $p_T$  DIFFERENTIAL RAPIDITY & INVARIANT MASS 8TEV,

  CMS Z  $p_T$  DIFFERENTIAL RAPIDITY 8TEV

# THE IMPACT OF LHC DATA PDF UNCERTAINTIES IN DETAIL: NNPDF3.0 (NNLO)



- GLUON BETTER KNOWN AT SMALL x, VALENCE QUARKS AT LARGE x, SEA QUARKS IN BETWEEN
- TYPICAL UNCERTAINTIES IN DATA REGION  $\sim 3-5\%$
- SWEET SPOT: VALENCE Q G; DOWN TO 1%
- UP BETTER KNOWN THAN DOWN; FLAVOR SINGLET BETTER THAN INDIVIDUAL FLAVORS

# THE IMPACT OF LHC DATA PDF UNCERTAINTIES IN DETAIL: NNPDF3.1 (NNLO)



- GLUON BETTER KNOWN AT SMALL x, VALENCE QUARKS AT LARGE x, SEA QUARKS IN BETWEEN
- TYPICAL UNCERTAINTIES IN DATA REGION  $\sim 1-3\%$
- SWEET SPOT: VALENCE Q G; 1% OR BELOW
- UP BETTER KNOWN THAN DOWN; FLAVOR SINGLET BETTER THAN INDIVIDUAL FLAVORS
- NEW LHC DATA  $\Rightarrow$  SIZABLE REDUCTION IN UNCERTAINTIES

#### THE IMPACT OF LHC DATA

#### BEFORE LHC: PDFs mostly determined by DIS data

#### NNPDF2.1 vs NNPDF2.1 DIS only

DISTANCES (difference in units of st. dev.)







- ALL DIFFERENCES BELOW ONE SIGMA
- ONLY UP-DOWN SEPARATION SIGNIFICANTLY AFFECTED

#### THE IMPACT OF LHC DATA

#### NOW: PDFs LARGELY DETERMINED BY LHC DATA

#### NNPDF3.1 vs NNPDF3.1 no LHC

DISTANCES (difference in units of st. dev.)

NNPDF3.1 NNLO, Impact of LHC data





 $10^{-1}$ 



- MANY PDFS CHANGE BY MORE THAN ONE SIGMA
- BOTH FLAVOR SEPARATION & GLUON SIGNIFICANTLY AFFECTED

# THE IMPACT OF LHC DATA THE GLUON

- BEFORE LHC  $\Rightarrow$  DIS SCALING VIOLATIONS, TEV JETS AT LARGE X
- AFTER LHC  $\Rightarrow$  JETS; Z  $p_t$  , TOP

DISTANCES (difference in units of st. dev.)



(Nocera, Ubiali, 2017)

#### PDF COMPARISON: GLUON **CENTRAL VALUE** UNCERTAINTY g at 100.0 GeV g at 100.0 GeV Baseline 1.04 Baseline+ZpT Baseline+Jets 일 1.02 to Baseli 1.00 g 0.05 0.04 8e.0 Bgio æ 0.03 0.96 Baseline+Top (68% c.l.+1g) Baseline+ZpT (68% c.l.+1σ) Baseline+Jets (68% c.l.+1σ) 0.01 $10^{-4}$ $10^{-2}$ $10^{-1}$ 10<sup>0</sup> $10^{-5}$ $10^{-4}$ $10^{-3}$ $10^{-2}$ $10^{-1}$

- TOP HAS LARGEST IMPACT, FOLLOWED BY JETS
- ALL LHC DATA PULL CENTRAL VALUE IN SAME DIRECTION!

## THE IMPACT OF LHC DATA FLAVOR SEPARATION

- BEFORE LHC  $\Rightarrow$  CC DIS, TeV FIXED-TARGET DY, W ASYM.
- AFTER LHC  $\Rightarrow$  WIDE RANGE OF W, Z PRODUCTION DATA

#### IMPACT OF LHCB

DISTANCES (difference in units of st. dev.)

NNPDF3.1 NNLO, Impact of LHCb data





# NNPDF3.1 NNLO, Q = 100 GeV 1.15 NNPDF3.1 NNPDF3.1, no LHCb 0.9 10-4 10-3 10-3 10-1

CENTRAL VALUE



- SIZABLE SHIFT OF CENTRAL VALUE BY ALMOST ONE SIGMA
- LARGE x UNCERTAINTY DOWN BY LARGE FACTOR!

#### NEW DATA: SUMMARY

- LHC DATA NOW HAVE THE DOMINANT IMPACT ON PDFS
- METHODOLOGY AND THEORY MUST ACCORDINGLY ADAPT

# THE LIMITS OF METHODOLOGY

#### PDF PARAMETRIZATION & DELIVERY

- TRADITIONALLY, TWO DELIVERY METHODS FOR PDFS
- HESSIAN A CENTRAL PDF SET, & ERROR SETS CORRESPONDING TO EIGENVECTORS OF THE COVARIANCE MATRIX IN PARAMETER SPACE ADVANTAGE: EFFICIENT REPRESENTATION OF UNCERTAITY DISADVANTAGES: ASSUMES GAUSSIANITY
- MONTECARLO A SET OF PDF REPLICAS WHICH REPRESENTS THE PROBABILITY IN PDF SPACE (SO THE MEAN UNBIASEDLY ESTIMATES THE CENTRAL VALUE &C)
  ADVANTAGE: FAITHFUL REPRESENTATION OF PROBABILITY
  DISADVANTAGES: MAY NEED LARGE NUMBER OF REPLICAS
- TRADITIONALLY, DELIVERY ⇔ PARAMETRIZATION/MINIMIZATION
   HESSIAN USED WITH RELATIVELY SIMPLE FUNCTIONAL FORMS (SMALL NUMBERS OF PARAMETERS) ⇔ HESSIAN MINIMIZATION

# $MC \Leftrightarrow HESSIAN$

- TO CONVERT HESSIAN INTO MONTECARLO GENERATE MULTIGAUSSIAN REPLICAS IN PARAMETER SPACE
- ACCURATE WHEN NUMBER OF REPLICAS SIMILAR TO THAT WHICH REPRODUCES DATA





(Carrazza, SF, Kassabov, Rojo, 2015)

- TO CONVERT MONTE CARLO INTO HESSIAN, SAMPLE THE REPLICAS  $f_i(x)$  AT A DISCRETE SET OF POINTS & CONSTRUCT THE ENSUING COVARIANCE MATRIX
- EIGENVECTORS OF THE COVARIANCE MATRIX AS A BASIS IN THE VECTOR SPACE SPANNED BY THE REPLICAS BY SINGULAR-VALUE DECOMPOSITION
- NUMBER OF DOMINANT EIGENVECTORS SIMILAR TO NUMBER OF REPLICAS ⇒ ACCURATE REPRESENTATION

# PROGRESS II MONTECARLO COMPRESSION



(Carrazza, Latorre, Kassabov, Rojo, 2015)

- CONSTRUCT A VERY LARGE REPLICA SAMPLE
- SELECT (BY GENETIC ALGORITHM) A SUBSET OF REPLICAS WHOSE STATISTICAL FEATURES ARE AS CLOSE AS POSSIBLE TO THOSE OF THE PRIOR
- $\Rightarrow$  FOR ALL PDFs on a grid of points// minimize difference of: first four moments, correlations; output of Kolmogorov-Smirnov test (number of replicas between mean and  $\sigma$ ,  $2\sigma$ , infinity)
- 50 compressed replica reproduce 1000 replica set to precent accuracy

#### NONGAUSSIAN BEHAVIOUR

## MONTE CARLO COMPARED TO HESSIAN CMS W + c production



- DEVIATION FROM GAUSSIANITY E.G. AT LARGE x DUE TO LARGE UNCERTAINTY + POSITIVITY BOUNDS
   ⇒ RELEVANT FOR SEARCHES
- CANNOT BE REPRODUCED IN HESSIAN FRAMEWORK
- WELL REPRODUCED BY COMPRESSED MC

- DEFINE KULLBACK-LEIBLER DIVERGENCE  $D_{\mathrm{KL}} = \int_{-\infty}^{\infty} P(x) \frac{\ln P(x)}{\ln Q(x)} \, dx$  BETWEEN A PRIOR P AND ITS REPRESENTATION Q
- $D_{\mathrm{KL}}$  BETWEEN PRIOR AND HESSIAN DEPENDS ON DEGREE OF GAUSSIANITY
- $D_{\mathrm{KL}}$  between prior and compressed MC does not



CAN (A) GAUGE WHEN MC IS MORE ADVANTAGEOUS THAN HESSIAN; (B) ASSESS THE ACCURACY OF COMPRESSION

#### PDF PARAMETRIZATION ISSUES

- Q: WHY ARE PDF UNCERTAINTIES ON GLOBAL FITS OF SIMLAR SIZE?
  - SIMILAR DATASETS
  - BUT DIFFERENT PROCEDURES
- A: UNCERTAINTY TUNING

#### **TOLERANCE (MMHT-CT)**

GLOBAL MSTW TOLERANCE

#### MSTW TOLERANCE PLOT FOR 13TH EIGENVEC.



4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

MSTW 2008 NLO PDF fit

Eigenvector number

- (MSTW/MMHT) FOR EACH EIGENVECTOR IN PARAMETER SPACE DETERMINE CONFIDENCE LIMIT FOR THE DISTRIBUTION OF BEST-FITS OF EACH EXPERIMENT
- RESCALE  $\Delta\chi^2=T$  INTERVAL SUCH THAT CORRECT CONFIDENCE INTERVALS ARE REPRODUCED
- WHY DO WE NEED TOLERANCE?
- DO WE UNDERSTAND PDF UNCERTAINTIES?

#### PDF UNCERTAINTIES: HOW MUCH DO THEY VARY?

- COMPUTE PERCENTAGE PDF UNCERTAINTY ON ALL DATA INCLUDED IN GLOBAL FIT
- COMPARE GLOBAL FITS

#### PERCENTAGE PDF UNCERTAINTY ON PREDICTIONS



- MEDIAN SIMILAR
- DISTRIBUTION VERY DIFFERENT!
- NNPDF: SMALLER MODE, BUT FAT TAIL ⇔ GREATER FLEXIBILITY

# CLOSURE TESTING BASIC IDEA

- ASSUME PDFS KNOWN: GENERATE FAKE EXPERIMENTAL DATA
- CAN DECIDE DATA UNCERTAINTY (ZERO, OR AS IN REAL DATA, OR ...)
- FIT PDFS TO FAKE DATA:
  - LEVEL 0: ZERO UNCERTAINTY
    - \* CHECK WHETHER MINIMZATION EFFICIENT
    - \* CHECK FOR INTERPOLATION UNCERTAINTY
  - LEVEL 1: DATA UNCERTAINTY, BUT NO REPLICAS
    - \* CHECK FOR UNIQUENESS OF BEST FIT  $\Rightarrow$  "FUNCTIONAL" UNCERTAINTY (Pumplin, 2010)
  - LEVEL 2: AS IN STANDARD PROCEDURE
    - \* CHECK WHETHER TRUE VALUE GAUSSIANLY DISTRIBUTED ABOUT FIT
    - \* CHECK WHETHER UNCERTAINTIES FAITHFUL

#### CLOSURE-TESTING: THE PARAMETRIZATION DEPENDENCE

#### GLUON PDF UNCERTAINTY NORMALIZED TO MSTW08



(C. Mascaretti, 2016)

- CLOSURE TEST PERFORMED WITH DATA GENERATED BASED ON MST08 FUNCTIONAL FORM
- REFITTED EITHER WITH NNPDF OR MSTW-CT FUNCTIONAL FORM
- LEVEL 0: VANISHING DATA UNCERTAINTY
  - MSTW-CT: FIT HAS ZERO UN-CERTAINTY
  - NNPDF: ABOUT HALF OF TOTAL UNCERTAINTY
- LEVEL 1: NOMINAL DATA UNCERTAINTY, BUT REPLICAS FITTED W/O PSEUDODATA
  - MSTW-CT: FIT HAS SMALL UN-CERTAINTY
  - NNPDF: ABOUT 2/3 OF FINAL UNCERTAINTY
- LEVEL 2
  - NNPDF UNCERTAINTY LARGER
     THAN MSTW-CT
  - NNPDF UNCERTAINTY SIMILAR TO MSTW WITH TOLERANCE

"STANDARD" PARAMETRIZATION MISSES INTERPOLATION & FUNCTIONAL UNCERTAINTY?

#### THE $\Delta \chi^2$ PROBLEM

- TOLERANCE MIGHT COMPENSATE FOR MISSING FUNCTIONAL UNCERTAINTY
- BUT WHAT IS  $\Delta\chi^2$  FOR AN NNPDF FIT?
- CAN ANSWER USING HESSIAN CONVERSION!  $\Delta\chi^2=16\pm15$ 
  - NON-PARABOLIC BEHAVIOUR NEAR MINIMUM ON SCALE OF UNCERTAINTIES?
  - INEFFICIENCY OF THE MINIMIZATION PROCEDURE?

# CLOSURE-TESTING THE PDF UNCERTAINTIES RESULTS

UNCERTAINTIES: DISTRIBUTION OF DEVIATIONS BETWEEN FITTED AND "TRUE" PDFs, SAMPLED AT 20 POINTS BETWEEN  $10^{-5}$  and 1





FIND 0.699% FOR ONE-SIGMA, 0.948% FOR TWO-SIGMA C.L.

- PDF UNCERTAINTIES ARE FAITHFUL
- BUT ARE THEY THE SMALLEST FROM GIVEN DATA?

#### MORE EFFICIENT MINIMIZATION?

- ullet LOOK AT  $lpha_s$  DEPENDENCE (CORRELATED REPLICAS)
- SIGNIFICANT FLUCTUATIONS ABOUT PARABOLIC SHAPE NOT DUE TO FINITE-SIZE MONTE CARLO SAMPLE



- MINIMIZE EACH REPLICA MORE THEN ONCE & KEEP BEST RESULTS
- SIGNIFICANT STABILIZATION

# CORRELATIONS & THE COVARIANCE MATRIX THE CMS DOUBLE-DIFFERENTIAL DRELL-YAN 2011



- FROM 2011 TO 2012, UNCORRELATED UNCERTAINTIES DOWN TO SUB-PERMILLE
- 2011:  $\chi^2/dof \sim 1$ ; 2012: IMPOSSIBLE TO FIT BETTER THAN  $\chi^2/dof \sim 3$
- PATHOLOGICAL BEHAVIOUR OF COVARIANCE MATRIX > WHAT IS THE UNCERTAINTY ON IT?

# CORRELATIONS & THE COVARIANCE MATRIX THE ATLAS 7TEV JETS

- ullet EACH RAPIDITY BIN CAN BE FITTED WITH  $\chi^2/dof\sim 1$
- EACH LEADS TO INDISTIGUISHABLE BEST-FIT PDFS
- IF ALL BINS FITTED SIMULTANEOUSLY,  $\chi^2/dof \sim 3$



(Harland-Lang, Martin, Thorne, 1016)

- MISESTIMATED CORRELATIONS?
- CAN SINGLE OUT WHICH CORRELATION OUGHT TO BE REMOVED

# A POWERFUL TOOL

- OLD ASPIRATION: PDFs OPTIMIZED TO PROCESSES (Pumplin 2009)
- SELECT SUBSET OF THE COVARIANCE MATRIX CORRELATED TO A GIVEN SET OF PROCESSES
- PERFORM SVD ON THE REDUCED COVARIANCE MATRIX, SELECT DOMINANT EIGENVECTOR, PROJECT OUT ORTHOGONAL SUBSPACE
- ITERATE UNTIL DESIRED ACCURACY REACHED
- CAN ADD PROCESSES TO GIVEN SET; CAN COMBINE DIFFERENT OPTIMIZED SETS
- WEB INTERFACE AVAILABLE



(Carrazza, SF, Kassabov, Rojo, 2016)

- EG ggH,  $Hb\bar{b}$ , W  $E_T^{\rm miss} \Rightarrow 11$  EIGENVECTORS
- STUDY CORRELATIONS OF PDFs TO DATA AND AMONG THEMSELVES!

# AN OLD PROBLEM THE D'AGOSTINI BIAS $R = \frac{e^+e^- \rightarrow \text{hadrons}}{e^+e^- \rightarrow \mu^+\mu^-}$

$$R = \frac{e^+e^- \to \text{hadrons}}{e^+e^- \to \mu^+\mu^-}$$



(CELLO collab., 1987)

- MULTIPLICATIVE UNCERTAINTIES IN COVARIANCE MATRIX

  ⇒ FIT BIASED DOWNWARDS IF DATA INCONSISTENT (d'Agostini, 1994) EQUIVALENT TO RESCALING DATA BUT NOT UNCERTAINTIES
- MUST USE ITERATIVE PROCEDURE COVARIANCE MATRIX COMPUTED FROM PREVIOUS FIT (NNPDF, 2010)

### THE D'AGOSTINI BIAS



- $\chi^2$  COMPUTED FROM COVARIANCE MATRIX  $\Rightarrow$  BIASED LOW FIT FAVORED
- LESS EVOLUTION  $\Leftrightarrow$  LOW  $\alpha_s$
- ONLY WHEN MULTIPLICATIVE UNCERTAINTIES DOMINATE COLLIDER ONLY, NOT FIXED TARGET

#### **METHODOLOGY: SUMMARY**

- STATISTICAL ANALYSIS TOOLS NECESSARY TO COPE WITH DATA ACCURACY
- PDF UNCERTAINTIES ARE FAITHFUL, BUT NOT OPTIMAL