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Figure 1: Exclusive jet multiplicity. Data from ref. [28], compared to Herwig++ (left

panel) and Pythia8 (right panel) predictions. The FxFx uncertainty envelope (“Var”)

and the fully-inclusive central result (“inc”) are shown as green bands and red histograms

respectively. See the end of sect. 2 for more details on the layout of the plots.

Figure 2: As in fig. 1, for the transverse momentum of the 1st jet.

Figure 3: As in fig. 1, for the transverse momentum of the 3rd jet.

is entirely dominated by MC e↵ects, and formally of LL accuracy. The impact of multi-

parton matrix elements, measured by the distance between the FxFx and the inclusive

– 11 –

Figure 1: Exclusive jet multiplicity. Data from ref. [28], compared to Herwig++ (left

panel) and Pythia8 (right panel) predictions. The FxFx uncertainty envelope (“Var”)

and the fully-inclusive central result (“inc”) are shown as green bands and red histograms

respectively. See the end of sect. 2 for more details on the layout of the plots.

Figure 2: As in fig. 1, for the transverse momentum of the 1st jet.

Figure 3: As in fig. 1, for the transverse momentum of the 3rd jet.

is entirely dominated by MC e↵ects, and formally of LL accuracy. The impact of multi-

parton matrix elements, measured by the distance between the FxFx and the inclusive

– 11 –

Figure 1: Exclusive jet multiplicity. Data from ref. [28], compared to Herwig++ (left

panel) and Pythia8 (right panel) predictions. The FxFx uncertainty envelope (“Var”)

and the fully-inclusive central result (“inc”) are shown as green bands and red histograms

respectively. See the end of sect. 2 for more details on the layout of the plots.

Figure 2: As in fig. 1, for the transverse momentum of the 1st jet.

Figure 3: As in fig. 1, for the transverse momentum of the 3rd jet.

is entirely dominated by MC e↵ects, and formally of LL accuracy. The impact of multi-

parton matrix elements, measured by the distance between the FxFx and the inclusive

– 11 –



Rikkert Frederix

Rapidity difference between Z-boson and 
hardest jet.
Sensitive to higher multiplicity matrix 
elements
LO predictions off (in particular 
MadGraph)
No discrepancies at NLO

34

6

|Y(Z)|
0.0 0.5 1.0 1.5 2.0

/d
y

σ
 d

σ
1/

0.00

0.05

0.10

0.15

Z + 1 jet
CMS Data
SHERPA (NLO PDF)
MADGRAPH (NLO PDF)
MCFM (NLO)

-1 = 7 TeV, L = 5 fbsCMS,  
(a)

|
Z

|y
0.0 0.5 1.0 1.5 2.0

R
at

io
 to

 M
C

FM

0.8

0.9

1.0

1.1

1.2

SHERPA with stat. uncert.
MADGRAPH with stat. uncert.
MADGRAPH (LO PDF)

 uncert.
F
µ and 

R
µMCFM 

MCFM PDF uncert.
|Y(jet)|

0.0 0.5 1.0 1.5 2.0

/d
y

σ
 d

σ
1/

0.00

0.05

0.10

Z + 1 jet
CMS Data
SHERPA (NLO PDF)
MADGRAPH (NLO PDF)
MCFM (NLO)

-1 = 7 TeV, L = 5 fbsCMS,  
(b)

|
jet

|y
0.0 0.5 1.0 1.5 2.0

R
at

io
 to

 M
C

FM

0.8

0.9

1.0

1.1

1.2

SHERPA with stat. uncert.
MADGRAPH with stat. uncert.
MADGRAPH (LO PDF)

 uncert.
F
µ and 

R
µMCFM 

MCFM PDF uncert.

|jet+Y
Z

0.5|Y0.0 0.5 1.0 1.5 2.0

/d
y

σ
 d

σ
1/

0.00

0.05

0.10

0.15

Z + 1 jet
CMS Data
SHERPA (NLO PDF)
MADGRAPH (NLO PDF)
MCFM (NLO)

-1 = 7 TeV, L = 5 fbsCMS,  
(c)

sumy
0.0 0.5 1.0 1.5 2.0

R
at

io
 to

 M
C

FM

0.6

0.8

1.0

1.2

1.4

SHERPA with stat. uncert.
MADGRAPH with stat. uncert.
MADGRAPH (LO PDF)

 uncert.
F
µ and 

R
µMCFM 

MCFM PDF uncert.

|jet-Y
Z

0.5|Y0.0 0.5 1.0 1.5

/d
y

σ
 d

σ
1/

0.0

0.1

0.2

0.3

Z + 1 jet
CMS Data
SHERPA (NLO PDF)
MADGRAPH (NLO PDF)
MCFM (NLO)

-1 = 7 TeV, L = 5 fbsCMS,  
(d)

dif
y

0.0 0.5 1.0 1.5

R
at

io
 to

 M
C

FM

0.5

1.0

1.5

SHERPA with stat. uncert.
MADGRAPH with stat. uncert.
MADGRAPH (LO PDF)

 uncert.
F
µ and 

R
µMCFM 

MCFM PDF uncert.

Figure 1: Distributions in absolute values of rapidities for (a) the Z boson, (b) the jet, (c) their
sums, and (d) their differences, normalized to unity. The data are shown after correcting for
efficiency and resolution, and displayed with statistical and systematic uncertainties combined
in quadrature. The lower panel of each figure gives ratios of the data and simulations to the
NLO calculation of MCFM. The ratio error bars include MCFM statistical uncertainties folded
with data statistical and systematic uncertainties. Theoretical uncertainties in the MCFM cal-
culations are shown as shaded areas representing variations of µR, µF, and PDF. Statistical
uncertainties for the MADGRAPH and SHERPA predictions are displayed as bands around the
central values. The central value for MADGRAPH simulations using LO PDF is depicted by a
line. All other calculations use NLO versions of PDF.

Figure 13: Sum of the rapidities of the Z and the 1st jet. Data from ref. [29], compared

to Herwig++ (left panel) and Pythia8 (right panel) predictions. The FxFx uncertainty

envelope (“Var”) and the fully-inclusive central result (“inc”) are shown as green bands

and red histograms respectively. See the end of sect. 2 for more details on the layout of

the plots.

Figure 14: As in fig. 13, for the di↵erence of the rapidities of the Z and the 1st jet.

for a detailed discussion on this point, see refs. [21,52]. We point out that we have found a

level of agreement identical to that of figs. 13 and 14 also in the case of the single-inclusive

rapidities (of the Z and the jet) measured in ref. [29].
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Figure 26: As in fig. 19, for the azimuthal distance between the two hardest jets.

Figure 27: As in fig. 19, for the rapidity distance between the two hardest jets.

Figure 28: As in fig. 19, for the �R between the two hardest jets.

multiplicity. This implies that, for our predictions, the analogues of the scale factors
reported in table 7 of ref. [31] would all be quite consistent with each other.

As far as the single-jet transverse momenta are concerned, we have considered that
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Figure 29: As in fig. 19, for the invariant mass of the two hardest jets.

Figure 30: As in fig. 19, for HT .

Figure 31: As in fig. 19, for HT in events with at least three jets.

measurements (as was marginally the case for the Z+jets analysis of ref. [28]); the clearest

evidence of that, the Njet � 1 case as predicted by Herwig++, is much weaker than its

analogue in the Z+jets case (see fig. 2). On the other hand, there is possibly an indication

of the theory being lower than data at the smallest pT ’s, especially for Njet � 2, 3, but

this is not statistically very significant; we note that a similar trend has been observed in
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Minlo-Revisited V+1j

Much simpler as Geneva
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form factors to make distribution 
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Minlo accuracy for 
(inclusive) 0-jet observables

An explicit comparison between the diff.-jet-rate-resummation formula (which 
integrates to the correct NLO 0-jet diff. cross section) and Minlo shows that 
they differ by terms of order

After integration over the logarithm L (taking R21=0, which is okay for the 
processes considered here) this results into terms of 

Hence, diff. NLO-0jet cross section not correct with NLO-1jet Minlo
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in Bj-production it is that for NLO Bjj. We write these cross sections as a sum of a part which is
finite as v ! 0, d�F , plus a singular part obtained by expanding the NNLL

�

resummation formula
(eq. 2.1) d�S , and a further singular-remainder piece, d�SR, which is defined as all singular terms
which were not already contained in d�S :

d� = d�S + d�SR + d�F . (2.19)

Expanding the resummed differential cross section up to and including O
�
↵̄2

S

�
terms, we obtain

d�S

d�dL
=

d�
0

d�

2X

n=1

2n�1X

m=0

H
nm

↵̄n

S

�
µ2

R

�
Lm , (2.20)

where the explicit H
nm

coefficients are documented in the appendix A.2. Since the resummation
formula we used to derive this fixed order expansion was NNLL

�

accurate, it only predicts part of
the full N3

LL

�

coefficient, ⇠ ↵̄2

S, thus we have a singular remainder term,

d�SR

d�dL
=

d�
0

d�
↵̄2

S

�
µ2

R

� h
L eR

21

+

eR
20

i
, (2.21)

where eR
21

= 0 and we proceed under the assumption that the coefficient eR
20

is generally unknown
to us. We introduce the strange eR

21

= 0 term here in order to make the transition to the discussion
on merging by three units of multiplicity, in sect. 3, a little bit cleaner; there our formulae are
applied in regions where they lose NNLL

�

accuracy. The d�SR term can be considered as a valid
parametrization of our ignorance of the v ! 0 singular part of the NLO cross section. Importantly,
since d�S alone is invariant under µR/µF shifts, up to NNLO terms, eR

21

and eR
20

have no µR or µF

dependence.

In practice, the Minlo prescription consists of a series of clearly defined, straightforward, oper-
ations on the fully differential input NLO calculations. These can be summarized as renormalization
and factorization scale setting, together with matching to the Sudakov form factor (exp [�R (v) ],
eq. (2.4)). To ease readibility, we have deferred the precise details of these steps to the appendix
(A.3). We suffice to say that if one carefully traces the effects of the latter operations on the NLO
cross section, in particular on the singular parts, d�S and d�SR, neglecting O

�
N

4

LL

�

�
terms, one

finds the resulting Minlo cross section can be written as

d�M = d�R + d�MR + d�F , (2.22)

where d�R is the resummation cross section, eq. 2.1, a total derivative, and d�MR holds all remaining
large logs:
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. (2.23)

In eq. 2.23 the KR/F 2
⇥
1

2

, 2
⇤

denote rescaling factors applied to the renormalization and factoriza-
tion scales, µR/F , defined at the start of the Minlo procedure (see A.3 for details), for the purposes
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of assessing scale uncertainties. The last term in eq. 2.22, d�F , is more precisely d�MF , the replace-
ment d�MF ! d�F being made on the grounds that the Minlo operations preserve the fixed order
expansion up to and including NLO terms, as well as the fact that d�F (and d�MF) is finite for
v ! 0.

Since eR
21

= 0, the Minlo jet resolution spectra in eqs. 2.22 are equal to the NNLL

�

jet
resolution spectrum in sect. 2.2 (d�R) up to N

3

LL

�

differences.

2.5 Integrated Minlo jet resolution spectra

Making use of the fact that d�R is a total derivative with respect to L (eq. 2.22), and the definitions
of �̄ in terms of H

1

and C
1

, it is fairly straightforward to show7 that on integrating over all v

d�M

d�
=

d�NLO

d�
+

Z
dL0 d�MR

d�dL0 +O
�
↵̄2

S

�
. (2.24)

The contaminating
R
d�MR term consists of a N

2

LL

�

piece, / eR
21

, and N

3

LL piece / eR
20

� ¯�
0

H
1

.
For the regions in which the Caesar formalism holds eR

21

= 0, as discussed under eq. 2.21.

If we assume that we were ignorant of the value of eR
21

, dropping terms over which we have no
control, i.e. beyond NNLL

�

order, we can neglect the L dependence of ↵̄S and PDFs in d�MR, and
all but the leading term in the Sudakov form factor exponent / G

12

. With these approximations
the d�MR integral becomes:

Z
dL0 d�MR

d�dL0 = �d�
0

d�
eR
21

1

|2G
12
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�
1 +O

�p
↵̄S

��
. (2.25)

The O(↵̄
3/2

S ) ambiguity in eq. 2.25 attributes to neglect of N3

LL

�

terms. So, if our knowledge of
eR
21

be wrong, for whatever reason, the Minlo inclusive cross section would deviate from the exact
NLO one by terms of order O (↵̄S) relative to the LO contribution (d�

0

).

Sticking to the regions for which the Caesar formalism holds, our starting resummation for-
mula and the Minlo cross section formulated with it is NNLL

�

accurate, i.e. eR
21

= 0 and our
ignorance is located downstream in the N

3

LL

�

terms / eR
20

� ¯�
0

H
1

. Dropping terms now only of
N

4

LL

�

accuracy we can again neglect the L dependence of the coupling constant and PDF terms,
and all but the leading double log term in the Sudakov form factor, giving

Z
dL0 d�MR

d�dL0 = �d�
0

d�

h
eR
20

� ¯�
0

H
1

�
µ2

R

�i r
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2

1

|2G
12

|1/2
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3/2

S

�
1 +O

�p
↵̄S

��
. (2.26)

Now the Minlo inclusive cross section and that of the exact NLO calculation differ by terms of
order O(↵̄

3/2

S ) relative to the LO contribution; for the Minlo cumulant cross section to be certified
NLO accurate it needs to agree with conventional NLO up to relative O(↵̄2

S) (NNLO) ambiguities.

7For more details see appendix A.4.
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Now the Minlo inclusive cross section and that of the exact NLO calculation differ by terms of
order O(↵̄

3/2

S ) relative to the LO contribution; for the Minlo cumulant cross section to be certified
NLO accurate it needs to agree with conventional NLO up to relative O(↵̄2

S) (NNLO) ambiguities.

7For more details see appendix A.4.
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finite as v ! 0, d�F , plus a singular part obtained by expanding the NNLL

�

resummation formula
(eq. 2.1) d�S , and a further singular-remainder piece, d�SR, which is defined as all singular terms
which were not already contained in d�S :

d� = d�S + d�SR + d�F . (2.19)

Expanding the resummed differential cross section up to and including O
�
↵̄2

S

�
terms, we obtain

d�S

d�dL
=

d�
0

d�

2X

n=1

2n�1X

m=0

H
nm

↵̄n

S

�
µ2

R

�
Lm , (2.20)

where the explicit H
nm

coefficients are documented in the appendix A.2. Since the resummation
formula we used to derive this fixed order expansion was NNLL

�

accurate, it only predicts part of
the full N3

LL

�

coefficient, ⇠ ↵̄2

S, thus we have a singular remainder term,

d�SR

d�dL
=

d�
0

d�
↵̄2

S

�
µ2

R

� h
L eR

21

+

eR
20

i
, (2.21)

where eR
21

= 0 and we proceed under the assumption that the coefficient eR
20

is generally unknown
to us. We introduce the strange eR

21

= 0 term here in order to make the transition to the discussion
on merging by three units of multiplicity, in sect. 3, a little bit cleaner; there our formulae are
applied in regions where they lose NNLL

�

accuracy. The d�SR term can be considered as a valid
parametrization of our ignorance of the v ! 0 singular part of the NLO cross section. Importantly,
since d�S alone is invariant under µR/µF shifts, up to NNLO terms, eR

21

and eR
20

have no µR or µF

dependence.

In practice, the Minlo prescription consists of a series of clearly defined, straightforward, oper-
ations on the fully differential input NLO calculations. These can be summarized as renormalization
and factorization scale setting, together with matching to the Sudakov form factor (exp [�R (v) ],
eq. (2.4)). To ease readibility, we have deferred the precise details of these steps to the appendix
(A.3). We suffice to say that if one carefully traces the effects of the latter operations on the NLO
cross section, in particular on the singular parts, d�S and d�SR, neglecting O

�
N

4

LL

�

�
terms, one

finds the resulting Minlo cross section can be written as

d�M = d�R + d�MR + d�F , (2.22)

where d�R is the resummation cross section, eq. 2.1, a total derivative, and d�MR holds all remaining
large logs:

d�MR

d�dL
=

d�
0

d�
exp [�R (v) ]

niY

`=1

q(`)
�
x
`

, µ2

Fv
�

q(`) (x
`

, µ2

F )

h
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S

�
K2

R y
� h

eR
21

L+

eR
20

i
+ ↵̄3

s

�
K2

R y
�
L2 eR

32

i
,

eR
32

= 2G
12

¯�
0

H
1

�
µ2

R

�
. (2.23)

In eq. 2.23 the KR/F 2
⇥
1

2

, 2
⇤

denote rescaling factors applied to the renormalization and factoriza-
tion scales, µR/F , defined at the start of the Minlo procedure (see A.3 for details), for the purposes
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of assessing scale uncertainties. The last term in eq. 2.22, d�F , is more precisely d�MF , the replace-
ment d�MF ! d�F being made on the grounds that the Minlo operations preserve the fixed order
expansion up to and including NLO terms, as well as the fact that d�F (and d�MF) is finite for
v ! 0.

Since eR
21

= 0, the Minlo jet resolution spectra in eqs. 2.22 are equal to the NNLL

�

jet
resolution spectrum in sect. 2.2 (d�R) up to N

3

LL

�

differences.

2.5 Integrated Minlo jet resolution spectra

Making use of the fact that d�R is a total derivative with respect to L (eq. 2.22), and the definitions
of �̄ in terms of H

1

and C
1

, it is fairly straightforward to show7 that on integrating over all v

d�M

d�
=

d�NLO

d�
+

Z
dL0 d�MR

d�dL0 +O
�
↵̄2

S

�
. (2.24)

The contaminating
R
d�MR term consists of a N

2

LL

�

piece, / eR
21

, and N

3

LL piece / eR
20

� ¯�
0

H
1

.
For the regions in which the Caesar formalism holds eR

21

= 0, as discussed under eq. 2.21.

If we assume that we were ignorant of the value of eR
21

, dropping terms over which we have no
control, i.e. beyond NNLL

�

order, we can neglect the L dependence of ↵̄S and PDFs in d�MR, and
all but the leading term in the Sudakov form factor exponent / G

12

. With these approximations
the d�MR integral becomes:

Z
dL0 d�MR

d�dL0 = �d�
0

d�
eR
21

1

|2G
12

| ↵̄S

�
1 +O

�p
↵̄S

��
. (2.25)

The O(↵̄
3/2

S ) ambiguity in eq. 2.25 attributes to neglect of N3

LL

�

terms. So, if our knowledge of
eR
21

be wrong, for whatever reason, the Minlo inclusive cross section would deviate from the exact
NLO one by terms of order O (↵̄S) relative to the LO contribution (d�

0

).

Sticking to the regions for which the Caesar formalism holds, our starting resummation for-
mula and the Minlo cross section formulated with it is NNLL

�

accurate, i.e. eR
21

= 0 and our
ignorance is located downstream in the N

3

LL

�

terms / eR
20

� ¯�
0

H
1

. Dropping terms now only of
N

4

LL

�

accuracy we can again neglect the L dependence of the coupling constant and PDF terms,
and all but the leading double log term in the Sudakov form factor, giving

Z
dL0 d�MR

d�dL0 = �d�
0

d�

h
eR
20

� ¯�
0

H
1

�
µ2

R

�i r
⇡

2

1

|2G
12

|1/2
↵̄
3/2

S

�
1 +O

�p
↵̄S

��
. (2.26)

Now the Minlo inclusive cross section and that of the exact NLO calculation differ by terms of
order O(↵̄

3/2

S ) relative to the LO contribution; for the Minlo cumulant cross section to be certified
NLO accurate it needs to agree with conventional NLO up to relative O(↵̄2

S) (NNLO) ambiguities.

7For more details see appendix A.4.
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[Banfi, Salam, Zanderighi (2005); 
Dokshitzer, Diakonov, Troian (1980)]

[Hamilton, Nason, Oleari, Zanderighi (2012); 
RF, Hamilton (2015)]

Explicitly compute and remove that term in the Minlo 
calculation such that the integral                    is zero up to NLO  

It’s process dependent and not a constant in phase-space

R
dL

d�MR
d�dL
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Minlo accuracy for 
(inclusive) 0-jet observables

An explicit comparison between the diff.-jet-rate-resummation formula (which 
integrates to the correct NLO 0-jet diff. cross section) and Minlo shows that 
they differ by terms of order

After integration over the logarithm L (taking R21=0, which is okay for the 
processes considered here) this results into terms of 

Hence, diff. NLO-0jet cross section not correct with NLO-1jet Minlo
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in Bj-production it is that for NLO Bjj. We write these cross sections as a sum of a part which is
finite as v ! 0, d�F , plus a singular part obtained by expanding the NNLL

�

resummation formula
(eq. 2.1) d�S , and a further singular-remainder piece, d�SR, which is defined as all singular terms
which were not already contained in d�S :

d� = d�S + d�SR + d�F . (2.19)

Expanding the resummed differential cross section up to and including O
�
↵̄2

S

�
terms, we obtain

d�S

d�dL
=

d�
0

d�

2X

n=1

2n�1X

m=0

H
nm

↵̄n

S

�
µ2

R

�
Lm , (2.20)

where the explicit H
nm

coefficients are documented in the appendix A.2. Since the resummation
formula we used to derive this fixed order expansion was NNLL

�

accurate, it only predicts part of
the full N3

LL

�

coefficient, ⇠ ↵̄2

S, thus we have a singular remainder term,

d�SR

d�dL
=

d�
0

d�
↵̄2

S

�
µ2

R

� h
L eR

21

+

eR
20

i
, (2.21)

where eR
21

= 0 and we proceed under the assumption that the coefficient eR
20

is generally unknown
to us. We introduce the strange eR

21

= 0 term here in order to make the transition to the discussion
on merging by three units of multiplicity, in sect. 3, a little bit cleaner; there our formulae are
applied in regions where they lose NNLL

�

accuracy. The d�SR term can be considered as a valid
parametrization of our ignorance of the v ! 0 singular part of the NLO cross section. Importantly,
since d�S alone is invariant under µR/µF shifts, up to NNLO terms, eR

21

and eR
20

have no µR or µF

dependence.

In practice, the Minlo prescription consists of a series of clearly defined, straightforward, oper-
ations on the fully differential input NLO calculations. These can be summarized as renormalization
and factorization scale setting, together with matching to the Sudakov form factor (exp [�R (v) ],
eq. (2.4)). To ease readibility, we have deferred the precise details of these steps to the appendix
(A.3). We suffice to say that if one carefully traces the effects of the latter operations on the NLO
cross section, in particular on the singular parts, d�S and d�SR, neglecting O

�
N

4

LL

�

�
terms, one

finds the resulting Minlo cross section can be written as

d�M = d�R + d�MR + d�F , (2.22)

where d�R is the resummation cross section, eq. 2.1, a total derivative, and d�MR holds all remaining
large logs:

d�MR

d�dL
=
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exp [�R (v) ]

niY

`=1

q(`)
�
x
`

, µ2

Fv
�

q(`) (x
`

, µ2

F )

h
↵̄2

S

�
K2

R y
� h

eR
21

L+

eR
20

i
+ ↵̄3

s

�
K2

R y
�
L2 eR

32

i
,

eR
32

= 2G
12

¯�
0

H
1

�
µ2

R

�
. (2.23)

In eq. 2.23 the KR/F 2
⇥
1

2

, 2
⇤

denote rescaling factors applied to the renormalization and factoriza-
tion scales, µR/F , defined at the start of the Minlo procedure (see A.3 for details), for the purposes
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of assessing scale uncertainties. The last term in eq. 2.22, d�F , is more precisely d�MF , the replace-
ment d�MF ! d�F being made on the grounds that the Minlo operations preserve the fixed order
expansion up to and including NLO terms, as well as the fact that d�F (and d�MF) is finite for
v ! 0.

Since eR
21

= 0, the Minlo jet resolution spectra in eqs. 2.22 are equal to the NNLL

�

jet
resolution spectrum in sect. 2.2 (d�R) up to N

3

LL

�

differences.

2.5 Integrated Minlo jet resolution spectra

Making use of the fact that d�R is a total derivative with respect to L (eq. 2.22), and the definitions
of �̄ in terms of H

1

and C
1

, it is fairly straightforward to show7 that on integrating over all v

d�M

d�
=

d�NLO

d�
+

Z
dL0 d�MR

d�dL0 +O
�
↵̄2

S

�
. (2.24)

The contaminating
R
d�MR term consists of a N

2

LL

�

piece, / eR
21

, and N

3

LL piece / eR
20

� ¯�
0

H
1

.
For the regions in which the Caesar formalism holds eR

21

= 0, as discussed under eq. 2.21.

If we assume that we were ignorant of the value of eR
21

, dropping terms over which we have no
control, i.e. beyond NNLL

�

order, we can neglect the L dependence of ↵̄S and PDFs in d�MR, and
all but the leading term in the Sudakov form factor exponent / G

12

. With these approximations
the d�MR integral becomes:

Z
dL0 d�MR

d�dL0 = �d�
0

d�
eR
21

1

|2G
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| ↵̄S

�
1 +O

�p
↵̄S

��
. (2.25)

The O(↵̄
3/2

S ) ambiguity in eq. 2.25 attributes to neglect of N3

LL

�

terms. So, if our knowledge of
eR
21

be wrong, for whatever reason, the Minlo inclusive cross section would deviate from the exact
NLO one by terms of order O (↵̄S) relative to the LO contribution (d�

0

).

Sticking to the regions for which the Caesar formalism holds, our starting resummation for-
mula and the Minlo cross section formulated with it is NNLL

�

accurate, i.e. eR
21

= 0 and our
ignorance is located downstream in the N

3

LL

�

terms / eR
20

� ¯�
0

H
1

. Dropping terms now only of
N

4

LL

�

accuracy we can again neglect the L dependence of the coupling constant and PDF terms,
and all but the leading double log term in the Sudakov form factor, giving

Z
dL0 d�MR

d�dL0 = �d�
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eR
20

� ¯�
0
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. (2.26)

Now the Minlo inclusive cross section and that of the exact NLO calculation differ by terms of
order O(↵̄

3/2

S ) relative to the LO contribution; for the Minlo cumulant cross section to be certified
NLO accurate it needs to agree with conventional NLO up to relative O(↵̄2

S) (NNLO) ambiguities.

7For more details see appendix A.4.
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Explicitly compute and remove that term in the Minlo 
calculation such that the integral                    is zero up to NLO  

It’s process dependent and not a constant in phase-space

R
dL

d�MR
d�dL

Can either be done analytically 
or numerically by enforcing 

unitarity
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Proof-of-concept

Apply the method to Higgs production by gluon fusion in the infinite 
top quark limit (which is not a good approximation at high scales, but not a 
problem for a proof of concept)

Start from H+J Minlo’, corrected to include NNLO for H. Already 
available in the POWHEG BOX [Hamilton, Nason, Re, Zanderighi (2013)]

Apply the extended Minlo’ method to HJJ at NLO to get

NLO+PS predictions for inclusive HJJ observables

NLO+PS predictions for inclusive HJ observables

NNLO+PS predictions for inclusive H observables

Study renormalisation/factorisation scale dependence and dependence 
on freezing parameter ρ (which we vary ρ={1, 3, 9, 18, 27})

39

[RF, Hamilton (2015)]
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Rapidity of the Higgs boson

Only observable truly NNLO correct

Extended Minlo’ method (HJJ⭑) agrees with NNLOPS by construction

Normal HJJ Minlo shows larger uncertainty bands and different central 
value: it’s only LO accurate for this observable

40

We do not claim that variation of ⇢, together with the renormalization and factorization scales,
gives a realistic estimate of theoretical uncertainties in regions where large Sudakov logarithms
occur. We content ourselves to say that ⇢ is an unphysical technical parameter introduced in our
procedure, with systematics associated to it. We believe our variation of ⇢, as described above, is
a conservative estimate of these systematics, and we find them to be very much negligible.

Finally, statistical uncertainties are shown as vertical lines, however, for the most part these
are negligible to the point of being invisible.

Inclusive quantities

In figure 1 we plot the rapidity of the Higgs boson; no cuts have been applied to the final state. The
Hjj? and Nnlops central predictions agree with one another to within 2%, with their uncertainty
bands exhibiting a similar level of agreement. This indicates that the method and its implementation
are performing as expected (eqs. 2.40-3.1). The uncorrected Hjj-Minlo prediction in blue is 10%
away from the central Nnlops results, but this is fortuitous given that the scale uncertainty on
the former is ⇠ 30%. Moreover, given our theoretical analysis in the preceding sections of this
paper, neglecting the sub-leading NLL

�

�S
1

terms, we expect the Hjj-Minlo prediction here is
only LO accurate, so the ⇠ 30% uncertainty assigned to it is arguably too small. The uncertainty
band associated to varying the ⇢ parameter as described at the beginning of this subsection 4.2 is
so small that it is concealed within thickness of the black reference line in the upper right plot;
indeed since this quantity is fully inclusive in L

12

, by construction of the procedure (sect. 2.6), the
only way any such uncertainty could manifest here is as a result of technical problems and/or some
statistical issues.
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Figure 1. Rapidity of the Higgs boson as predicted by the Hjj-Minlo (Hjj, blue), Nnlops (dark green)
and improved Hjj-Minlo (Hjj?, red) generators.

In figure 2 we plot the Higgs boson transverse momentum spectrum. As with the Higgs boson
rapidity distribution no cuts have been applied to the final state. Exceptionally, in this figure we
compare Hjj? and Hjj to the NNLL+NNLO predictions of the Hqt program [66–70], instead
of Nnlops. Comparing Nnlops (not shown) and Hjj? we find the two generators agree with
one another to within 3% throughout the spectrum, except for the region pT . 5GeV, where the
difference rises up to 15% in the pT < 2GeV region. The latter differences owe to the finite size of the
bins in our interpolation grids, coupled with the fact that the distribution is changing very rapidly for
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Transverse momentum of the 
leading jet

Extended Minlo’ method (HJJ⭑) agrees with NNLOPS by construction.

apart from pT<5 GeV region: grid-granularity to compute δ not fine enough

Also region 60<pT<80 GeV shows 3-5% deviations: pT derivative of the 
numerator of δ changes very rapidly

Normal HJJ Minlo shows unphysical uncertainty band. Formally only LO for 
this observable

41
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Figure 5. Leading jet transverse momentum spectrum, for anti-kt-jets with radius parameter R = 0.4.

predictions agree very well throughout the spectrum, with the procedure correcting well for sub-
stantial (±15%) shape differences between the unimproved Hjj-Minlo result and the more accurate
Nnlops prediction. Regarding differences between the Nnlops and Hjj? results in the pT . 5GeV

region, the explanation here is the same as for the case of the Higgs boson pT spectrum, namely, that
the granularity in our discretized implementation of the �BJ phase space is not sufficiently fine to
cope with the rapidly changing distribution for pT . 5GeV. We reiterate that this region is under
limited theoretical control anyway. Indeed, rather than seek improved agreement of Nnlops and
Hjj? in the latter murky region, we might prefer to lessen the 3-5% deviation in the neighbourhood
60  pT  80 GeV. This region, where the Hjj-Minlo and Nnlops lines intersect, appears to
be where the pT derivative of the difference between the two predictions is changing most rapidly,
i.e. the numerator of � (�BJ) in eq. 2.35/3.11. It should therefore be possible to improve agreement
between the Nnlops and Hjj? results in this region by, for example, making use of (irregular)
optimized grids and interpolation methods which can work on them. Overall, notwithstanding our
unsophisticated implementation, agreement between the Nnlops and Hjj? predictions is very sat-
isfactory, providing significant improvement across the whole pT spectrum relative to the original
Hjj-Minlo generator.

In fig. 6 we plot Hjj, Hjj? and NNLL+NNLO JetVHeto [37, 47] predictions for the jet
veto efficiency, "(pT,veto), defined as the cross section for Higgs boson production events containing
no jets with transverse momentum greater than pT,veto, divided by the respective total inclusive
cross section. In the left-hand column, in the red shaded area, we show the scale uncertainty
band predicted by the Hjj? simulation, with the central NNLL+NNLO resummed prediction of
JetVHeto superimposed in green (matching scheme-(a), µR = µF = µQ = mH, µQ being the
resummation scale). The lower panel shows the ratio with respect to the Hjj? prediction obtained
with its central scale choice. On the right we have made the same plots as on the left but with
the JetVHeto predictions replacing those of the Hjj? and vice-versa. The uncertainty band in
the JetVHeto results is the envelope of a seven point variation of µR and µF by a factor of two.
This is in contrast to the band associated with it in ref. [37], where additionally resummation scale
and matching scheme variations were included in the envelope. Thus the JetVHeto error band
here is considerably smaller than that shown in ref. [37]. We restricted the JetVHeto uncertainty
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Transverse momentum of the 
second jet

Extended Minlo’ method HJJ⭑ agrees with Minlo HJJ, as expected

apart close to the Sudakov peak: the difference between HJJ⭑ and 
HJJ is beyond LL/NNLLσ accuracy, which is important close to 
the Sudakov peak

NNLOPS only LO accurate for this observable: uncertainty band is 
too small (this is due to the POWHEG method)

42

Additionally, for the case of jet rapidity distributions, in figures 12 and 13, the jets are required to
pass a transverse momentum threshold of 25 GeV.
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Figure 10. Transverse momentum spectrum of the second jet.

The transverse momentum spectrum of the second hardest jet is plotted in fig. 10. In all
simulations, before (not shown) and after showering, the distribution peaks in the bin at 3GeV 
pJ2

T  6GeV. Moving upwards from the first bin at pJ2
T = 0 GeV the Hjj? (red) and Hjj-Minlo

(blue) predictions start off with a 20% difference, which smoothly and monotonically diminishes,
with the two distributions coalescing at pJ2

T ⇡ 20 GeV. For higher transverse momenta, the Hjj?

and Hjj-Minlo histograms become indistinguishable from one another. Meanwhile, in the same
region, the Nnlops result starts off with a 15% discrepancy between it and the latter simulations,
which rises with the transverse momentum. Nevertheless, the Nnlops prediction is within the
margins set by all renormalization and factorization scale uncertainty bands.

The behaviour of the Hjj? and Hjj-Minlo predictions relative to one another is as intended.
In general, the Hjj-Minlo prediction is NLO accurate in the description of pJ2

T , and so it is of
course desirable that the Hjj? tends to that result in regions where Sudakov logarithms at higher
orders are not large, i.e. away from the Sudakov peak.18 In the vicinity of the peak, large logarithms
enter at every order in perturbation theory. In this feasibility study we claim to control these large
logarithms nominally at just LL/NLL

�

accuracy. The improved Hjj? prediction works so as to
implement unitarity for the 0- and 1-jet inclusive cross sections by ascribing the mismatch there to
missing NNLL

�

Sudakov logarithms beyond NLO. The increasing difference of Hjj? with respect
to Hjj-Minlo in the region pJ2

T  20 GeV, up onto the Sudakov peak, roughly reflects this NNLL

�

‘profiling’ of the ⇠10-12% excess in the Nnlops total inclusive cross section over that of Hjj-Minlo
(see e.g. figs. 1-3).

In figure 11 we plot the transverse momentum of the third jet. In this case there is, coinci-
dentally, good agreement of all predictions in the moderate to high pT domain. This is somewhat
fortuitous in the context of the Nnlops simulation, since the third jet in that simulation is gen-
erated exclusively in the parton shower approximation, whereas in Hjj? and Hjj-Minlo it has a
matched matrix element-parton shower description. With a view to validating our ideas, what is
more relevant is the observation of the relative behaviour of Hjj? and Hjj-Minlo. Here we see,

18In such regions where it is meaningful to quantify accuracy in the context of just fixed order perturbation theory,
we remind that the Nnlops prediction for p

J2
T is, by contrast, only LO accurate.
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y12 resolution parameter

Similar picture as for pT(j2), but low pT region easier to see due to 
logarithmic x-axis

First observable where we see some non-zero dependence on the 
freezing parameter ρ (red solid). Well below the Sudakov peak 
where higher-logarithmic corrections are large as well as non-
perturbative corrections
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Figure 14. In the upper plots we display the log10
p
y01 differential jet rate on the left, while on the right

we show the various predictions relative to the central improved Hjj-Minlo (Hjj?), Nnlops and original
Hjj-Minlo (Hjj) ones, respectively, in the top, middle and bottom panels. In the lower plots we display
the corresponding set of distributions for the log10

p
y12 differential jet rate. In the making of these plots

jets have been clustered according to the kt-jet algorithm, with radius parameter R = 1.

Lastly, this log

10

p
y
12

distribution shows the first real evidence, so far, of some sensitivity in
the Hjj? results to the technical ⇢ parameter. The conservatively estimated systematic uncertainty
owing to ⇢ is depicted by the dark-red band, seen superimposed on the light-red band, in the
uppermost ratio plot. This sensitivity to ⇢ is, however, rather contained at the level of ±10� 15%,
moreover, it is basically negligible above p

y
12

= 3GeV.
Moving on, in the upper half of fig. 15 we have the log

10

p
y
23

distribution. The correspondence
of py

12

with pJ2
T , which helped to quickly understand the log

10

p
y
12

results above, has an analogon
here, namely, that neglecting final-state clusterings by the jet algorithm, p

y
23

becomes equal to
pJ3

T . This analogy continues to appear to hold remarkably well, for describing the features of
log

10

p
y
23

in terms of those found in the pJ3
T distribution of fig. 11. The arrangement of the

three predictions relative to one another, throughout the log

10

p
y
23

distribution, is very much
in direct correspondence with what one can see in the pJ3

T distribution. For example, all three
predictions even cross at the same point in the log

10

p
y
23

and pJ3
T distributions: p

y
23

⇡ 50GeV

in fig. 15 and, correspondingly, pJ3
T ⇡ 50GeV in fig. 11. As was noted in comparing the pJ2

T and
pJ3

T distributions beforehand (figs. 10-11), the effect of our corrective procedure in lifting the Hjj?

distribution above that of its ‘parent’ Hjj-Minlo simulation, in the region log

10

p
y
12

< 1.25,
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y12 resolution parameter 
with √y01 > 200 GeV

At very large y12, all scales are large and of the same order —> the 
Minlo method switches off: HJJ⭑ agrees with HJJ

When y12 ≪ y01, large logarithms build up, and the extended Minlo' 
method brings the HJJ⭑ to the NNLOPS
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Figure 16. The log10
p
y12 differential jet rates, defined according to the kT-jet algorithm with jet radius

parameter R = 1, and with cuts of 10, 50 and 200 GeV imposed on p
y01.

examine the key jet rate of interest to our studies, given its role in the proposed correction procedure,
log

10

p
y
12

, but now subject to additional cuts in the py
01

jet rate variable. These cuts are intended
to bring to the fore events for which there is a hierarchy y

12

⌧ y
01

and associated large logarithm
L
12

. This aspect is indeed manifested in both log

10

p
y
12

distributions in fig. 16 through the Sudakov
peak shifting to higher y

12

values. The Sudakov peak in the inclusive distribution of fig. 14 is
centred around log

10

p
y
12

= 1 (py
12

= 10 GeV), moving up to log

10

p
y
12

⇡ 1.5 (py
12

⇡ 30 GeV)
on imposing the p

y
01

> 50 GeV cut, as shown in the uppermost plot in fig. 16, and further to
log

10

p
y
12

⇡ 1.75 (py
12

⇡ 55 GeV) on imposing the p
y
01

> 200 GeV cut. The shifting of the peak
to higher y

12

values is a manifestation of the fact that the cuts imply a proportionate increase in
the available phase space for high pT emission of the second pseudoparton.

One of the easiest features to make sense of in fig. 16, is the excess of the Nnlops results
over Hjj? and Hjj-Minlo predictions in the high p

y
12

region, with the latter pair of results
being indistinguishable there. This attribute is consistent with the enhancement of the Nnlops
cross section over the corresponding Hjj-Minlo and Hjj? results, in both the inclusive 2-jet cross
section, with high jet pT thresholds (fig. 3), and the transverse momentum spectrum of the second
hardest jet (fig. 10). In the latter distribution the discrepancy increases with radiation hardness,
as it does in fig. 16. Technically, the agreement of Hjj? and Hjj-Minlo in this limit is also easy to
understand, since in these regions L

12

is not large and the Minlo correction procedure ‘switches
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Higgs boson pT in events with 
exactly 2 jets

At small pT, all scales are of the same order. The Minlo method does not do 
much: HJJ⭑ agrees with HJJ

At large pT, HJJ⭑ agrees with NNLOPS dominated by events with one hard 
jet (pT(j1) ~ pT(H)) and one soft jet: a 30 GeV jet comes basically for free

The pT(H) spectrum with Njets=2 becomes essentially Njets≥1 pT(H) 
distribution

45

Turning to the Higgs transverse momentum in the 1-jet events, we see the results we naively
expect in the region pH

T > 100 GeV, with Nnlops and Hjj? in very good agreement. In the
region surrounding the peak of the distribution at pH

T ⇠ 50 GeV, Hjj? continues to agree well with
Hjj-Minlo, but not quite as nicely as before. The slight excess of the Hjj? prediction over the
Nnlops around this peak follows the same explanation as for the similarly sized enhancement of
the exclusive 1-jet cross section of the former over the latter, in the discussion surrounding fig. 4.
There we explained that our correction procedure led to an enhanced 1-jet exclusive cross section,
by acting to recover the inclusive 1-jet cross section of the Nnlops, while maintaining the 2-jet
inclusive cross section of Hjj-Minlo; since the 2-jet inclusive cross section of Hjj-Minlo was low
with respect to that of the Nnlops, the Hjj? 1-jet exclusive cross section therefore had to be high.
Remarkably, on the other hand, we note that for the lowest bin in the N

jets

= 1 pH
T plot, it is

in fact natural and correct that the Hjj? distribution is found to be in complete agreement with
Hjj-Minlo, for in that region the recoil of the leading jet can no longer be balanced by the Higgs
boson, and instead extra radiation must be present to this end.
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Figure 22. In the upper plot we show the transverse momentum distribution of the Higgs boson in 2-jet
events. Jets are here constructed according to the anti-kt clustering algorithm, for a radius parameter
R = 0.4. Jets are required to have transverse momentum pT � 30 GeV and rapidity |y|  4.4. The
corresponding distribution in the case of � 3-jet events is shown underneath.

Lastly, we look to the Higgs boson transverse momentum distributions in the exclusive 2-jet
events and inclusive 3-jet events, in the upper and lower plots of fig. 22. For both the exclusive 2-jet
and inclusive 3-jet pH

T spectra, we see that Hjj? agrees perfectly with the Hjj-Minlo generator
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Conclusions

In the last couple of years the accuracy of event generation has greatly 
improved, and full automation has been achieved at NLO accuracy

FxFx Merging is one of the methods to combine NLO matrix elements of 
various multiplicities with the parton shower

NLO accuracy in multiple regions of phase-space, separated by a merging 
scale

A lot of freedom in tuning has been replaced by accurate theory descriptions:

More predictive power

Better control on uncertainties in predictions

Greater trust in the measurements

One of the latest developments, 'Minlo revisited', allows for similar accuracy 
as FxFx in multi-jets, but without the introduction of a merging scale and 
with the possibility to include NNLO. Only proof-of-concept so far.
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