

b UNIVERSITÄT BERN

AEC

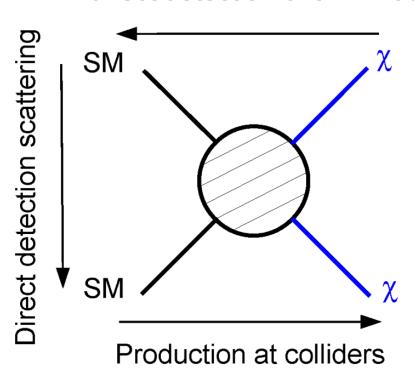
ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Heavy flavour (s) quarks: Supersymmetry and Dark Matter searches at LHC

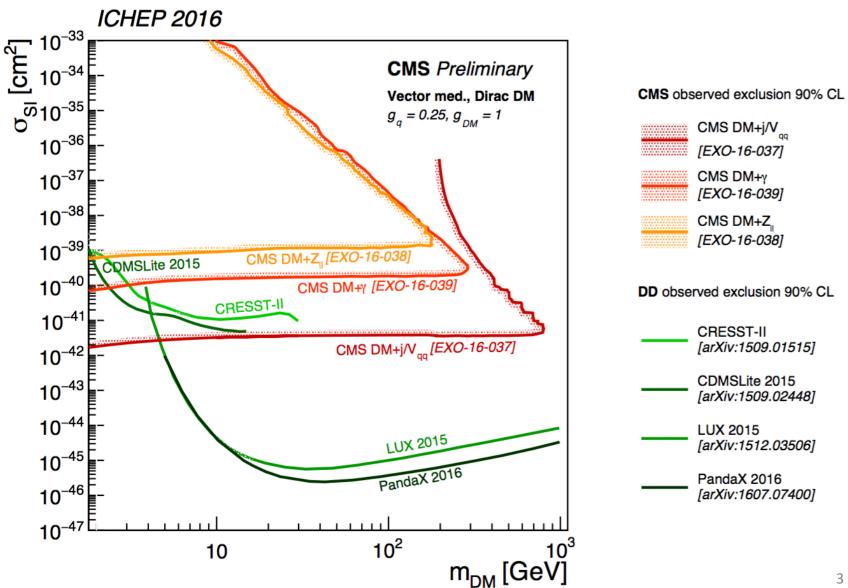
November 2nd 2016

Federico Meloni

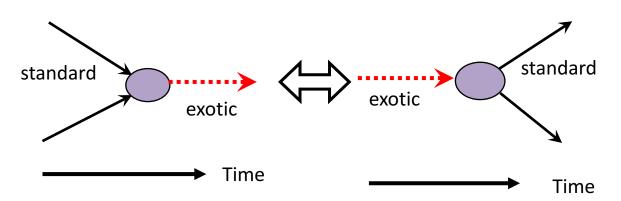
Universitaet Bern, AEC/LHEP



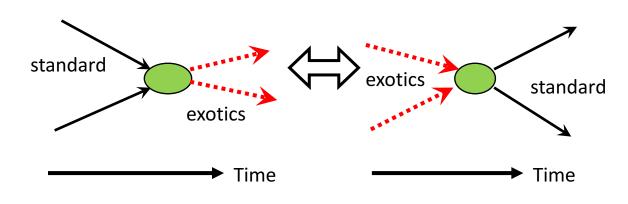
Dark Matter and colliders


Cosmological observations point to the existence of Dark Matter (DM)

- We don't know anything about it except it interacts gravitationally and is stable
- Particle physicists hunt for: Weakly Interacting, Stable,
 Massive Particles
- Colliders provide complementary sensitivity to direct searches


Indirect detection of annihilation

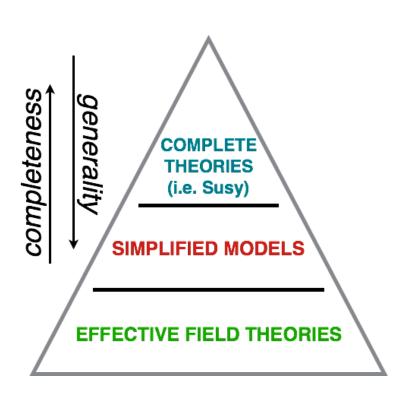
Dark Matter and colliders



Producing Dark Matter candidates

If exotics can be produced *singly* they can decay

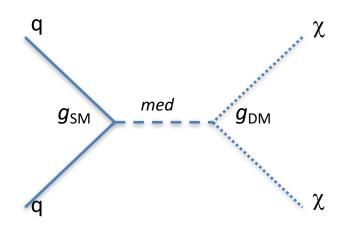
Not a good Dark Matter candidate



If they can only be *pair*-produced they are stable

Only disappear on collision (rare)

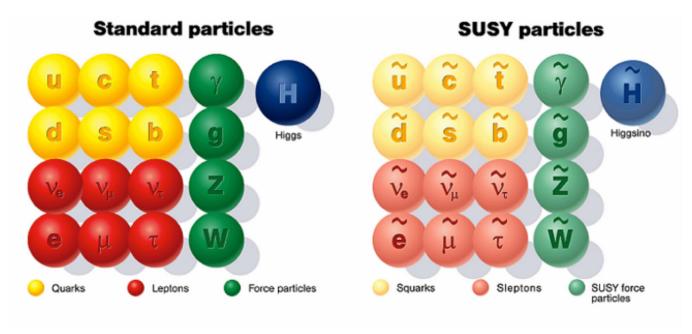
Modelling guidance



Various approaches available for DM (and in general Beyond Standard Model) searches.

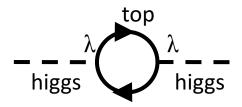
Need to balance between generality and completeness.

- Simplified models are always theoretically valid (hence a good proxy for phenomenology)
- Up to the theorists to re-connect them back to the complete models


Dark Matter simplified models

Simplified Models are used as guidance

- Reduce a complex model to a simple one with DM, a mediator between the SM and the Dark Sector, one interaction channel
- Few free parameters: m_{med} , m_{DM} , g_{SM} , g_{DM} , Γ_{med} + nature of mediator, DM and their interaction


Supersymmetry

SUSY can extend the SM with new physics at the TeV scale

- Relates each SM particle to another
- Known as superpartner, differs by half unit of spin
- Partners not yet observed, must be heavier!
- A broken symmetry!

Why SUSY?

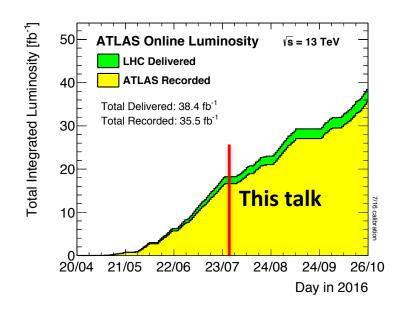
higgs
$$\lambda$$
 higgs

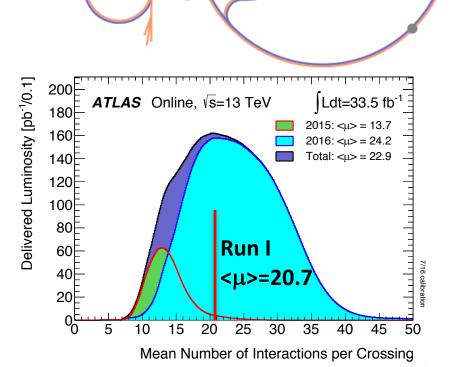
$$\Delta m^2(h) \propto \Lambda^2_{cutoff}$$

- Higgs mass²
 - Quadratic loop corrections
 - In SM natural scale
 - $\Lambda_{\text{cutoff}} \sim M_{\text{planck}}$
 - Need m(h) at 125 GeV
 - Fine tuning
 - Many orders of magnitude

- The SUSY solution
 - 2 x top squarks
 - Factor of -1 from Feynman rules
 - Same coupling, λ
 - Quadratic corrections cancel
- Predicts gauge unification!

The Large Hadron Collider

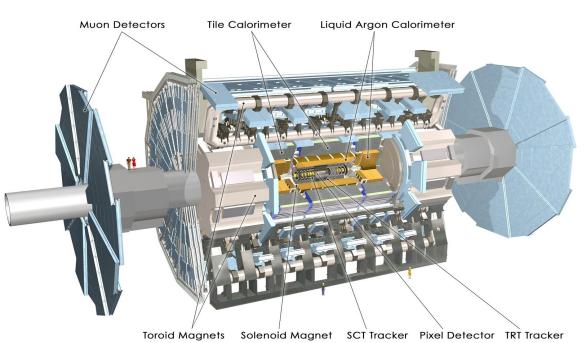

LINACS


PS

LHC at CERN is the largest collider in world

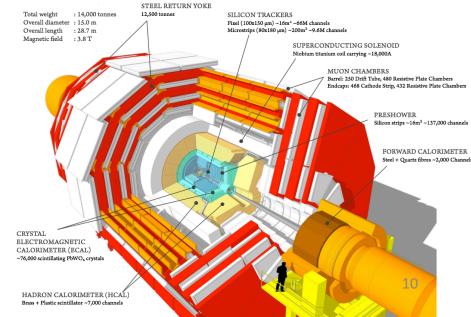
- pp collisions at \(\forall s = 7 \) TeV (2010-2011)
- pp collisions at \(\forall s = 8 \) TeV (2012)
- pp collisions at vs = 13 TeV (2015-2016)

Today: data collected until ICHEP 2016



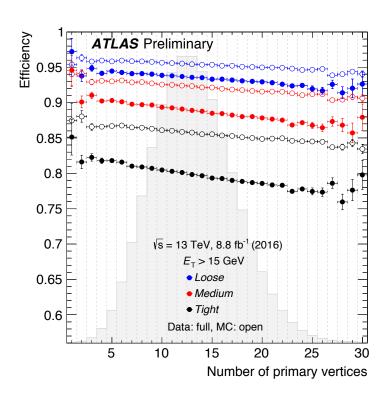
SPS

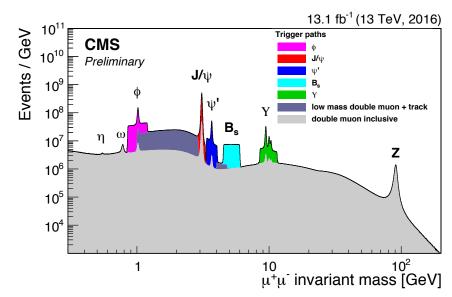
LHC

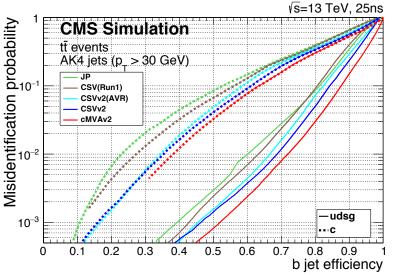

ATLAS and CMS

- Largest LHC collaborations
- General purpose experiments

Hermetic detectors with different implementations of the same concept:

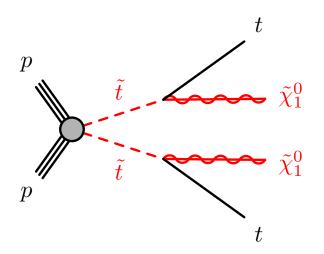

- A tracking detector
- EM and hadronic calorimeters
- Muon spectrometer

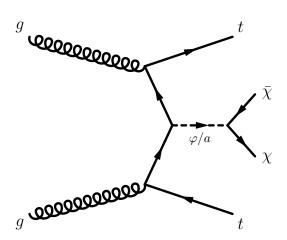



Detector performance

Impressive performances

 Precision attained in LHC run 1 surpassed, even in a harsher environment





Heavy flavour + E_Tmiss

At the LHC, extracting signals from the large QCD background can be challenging.

- Final states with rich phenomenology have multiple handles to reject backgrounds.
- Today, I will be focusing on models where DM is produced in the decay of coloured scalars (top squarks) or neutral scalars (higgs-like mediators), in events with:
 - Top pairs
 - Momentum imbalance (E_T^{miss}, in the transverse plane)

Useful links to dig deeper

CMS SUSY results

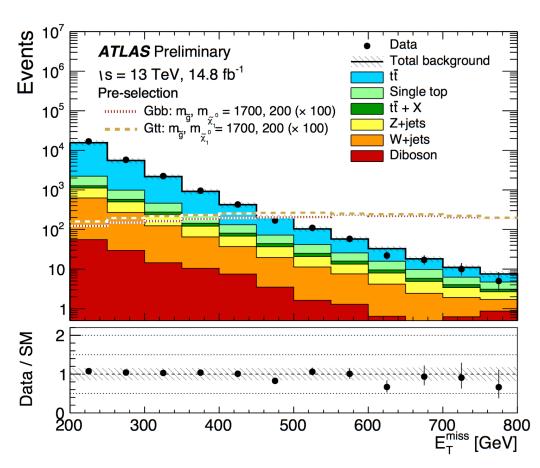
October 2016 Search for direct top squark pair production in the dilepton final state at $\sqrt{s} = 13 \text{ TeV}$ October 2016 CMS-PAS-SUS-16-027 CMS-PAS-SUS-15-009 Search for natural supersymmetry in events with top quark pairs and photons in pp collisions at $\sqrt{s} = 8$ TeV October 2016 Search for new physics in the compressed mass spectra scenario using events with two soft opposite-sign leptons and missing transverse momentum at 13 TeV CMS-PAS-SUS-16-025 August 2016 CMS-PAS-SUS-16-028 August 2016 Search for new physics in final states with two opposite-sign, same-flavor leptons, jets, and missing transverse momentum in pp collisions at ./x = 13 TeV CMS-PAS-SUS-16-021 August 2016 August 2016 CMS-PAS-SUS-16-026 Search for electroweak production of charginos and neutralinos in the WH final state at 13 TeV CMS-PAS-SUS-16-024 Search for electroweak SUSY production in multilepton final states in 12.9 fb⁻¹ of pp collision data at \sqrt{s} = 13 TeV August 2016 August 2016 CMS-PAS-SUS-16-016 CMS-PAS-SUS-16-015 CMS-PAS-SUS-16-019 August 2016 netry in the all-hadronic final state using top quark tagging in pp collisions at $\sqrt{s}=$ 13 TeV CMS-PAS-SUS-16-030 August 2016 Search for SUSY in same-sign dilepton events with 12.9 fb⁻¹ of pp collision data at 13 TeV CMS-PAS-SUS-16-023 etry in final states with at least one photon and E_{\pm}^{miss} in pp collisions at $\sqrt{s}=$ 13 TeV CMS-PAS-SUS-16-011 CMS-SUS-14-006 29 May 2016 CMS-PAS-SUS-15-012 Search for supersymmetry in events with photons and missing transverse energy April 2016 for direct production of top squark pairs decaying to all-hadronic final states in pp collisions at $\sqrt{s} = 13$ Te March 2016 CMS-PAS-SUS-16-001 March 2016

ATLAS SUSY results

papers

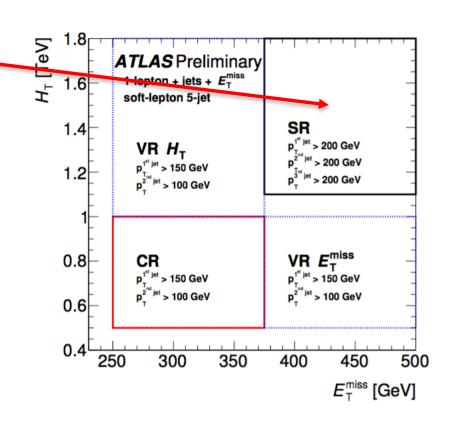
Short Title of Paper	Date	√s (1)	L (fb ⁻¹)	Document	Plots+Aux. Material	Journal
1-2 taus + Etmiss	07/2016	13	3.2	1607.05979g	Link (+data) ₽	Submitted to EPJC
di-photon + MET	6/2016	13	3.2	1606.09150g?	Link _©	Accepted by EPJC
2b + MET	6/2016	13	3.2	1606.08772	Link (+data) ₽	EPJC, (2016) 76:547 ₪
LLP (pixel+Tile)	6/2016	13	3.2	1606.05129@	Link (+data) ₽	Physics Letters B (2016), pp. 647-665 ₪
1L stop	6/2016	13	3.2	1606.03903₫	Link (+data) ₽	Phys. Rev. D 94 (2016) 052009 [™]
multi b-jets	5/2016	13	3.2	1605.09318₫	Link (+data) ₫	Phys. Rev. D 94 032003 ₽
1L 2-6 jets	5/2016	13	3.2	1605.04285₫	Link (+data) ☑	Eur. Phys. J. C 76 (2016) 565 2
0L 2-6 jets	5/2016	13	3.2	1605.03814 _E	Link (+data) ☑	Eur. Phys. J. C (2016) 76: 392@
monojet (compressed squarks) NEW	4/2016	13	3.2	1604.07773₫	Link®	Phys. Rev. D 94 (2016) 032005 [™]
LLP with pixel dE/dx	4/2016	13	3.2	1604.04520₺	Link (+data) ₽	Phys. Rev. D 93, 112015 (2016) 27
2 same sign or 3 leptons	2/2016	13	3.2	1602.09058 ₁₇	Link (+data) ₽	EPJ C, 76(5), 1-26@
0L 7-10 jets	2/2016	13	3.2	1602.06194@	Link (+data) ☑	Phys. Lett. B 757 (2016) 334 @

conference notes

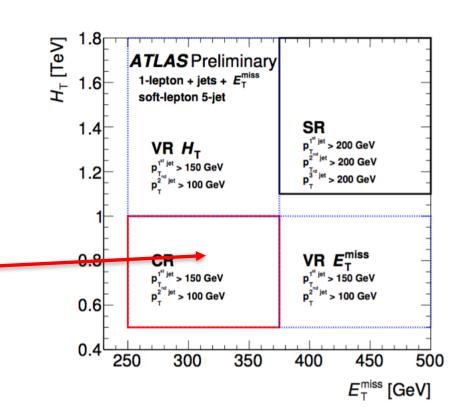

Short Title of preliminary conference note/paper	Date	√s (<u>*</u>) L (fb	Document	Plots
2L+jets+MET (Z/edge)	9/2016	13	14.7	ATLAS-CONF-2016-098 ₫	Link _©
EWK 2/3L	9/2016	13	14.8	ATLAS-CONF-2016-096 ₫	Link
EWK di-tau	9/2016	13	14.8	ATLAS-CONF-2016-093 ₫	Link
0L 8-10 jets (RPC gluinos)	9/2016	13	18.2	ATLAS-CONF-2016-095	Link _© ?
RPV 1L+multijets	9/2016	13	14.8	ATLAS-CONF-2016-094	Link _© ?
0L 2-6 jets (squark/gluinos)	8/2016	13	13.3	ATLAS-CONF-2016-078 ₺	Link _© 2
1L 2-6 jets (squark/gluinos)	8/2016	13	14.8	ATLAS-CONF-2016-054 ₽	Link _© 2
SS/3L + jets (squarks/gluinos)	8/2016	13	13.2	ATLAS-CONF-2016-037 ₪	Link _© 2
0/1L + 3b jets (squarks/gluinos)	8/2016	13	14.8	ATLAS-CONF-2016-052 ₫	Link _©
photon + jets	8/2016	13	13.3	ATLAS-CONF-2016-066 ₫	Link
stop 0L	8/2016	13	13.3	ATLAS-CONF-2016-077	Link
stop 1L	8/2016	13	13.3	ATLAS-CONF-2016-050 @	Link _© ?
stop 2L	8/2016	13	13.3	ATLAS-CONF-2016-076	Link
stop2 (3L)	8/2016	13	13.3	ATLAS-CONF-2016-038 @	Linker
stop stau	8/2016	13	13.3	ATLAS-CONF-2016-048 ₽	Link _© 2
4 lepton (RPV EWK)	8/2016	13	13.3	ATLAS-CONF-2016-075 ₽	Link _© 2
multijet (RPV)	8/2016	13	14.8	ATLAS-CONF-2016-057 ₫	Linke
Stop to qq (RPV)	8/2016	13	15.6	ATLAS-CONF-2016-084 ₫	Link
Stop to bs (RPV)	5/2016	13	3.2	ATLAS-CONF-2016-022 27	Linke
2L stop	3/2016	13	3.2	ATLAS-CONF-2016-009	Link

A precise determination of SM backgrounds: the problem

- SM backgrounds are not small
- There are uncertainties in
 - Cross sections
 - Kinematical distributions
 - Detector response

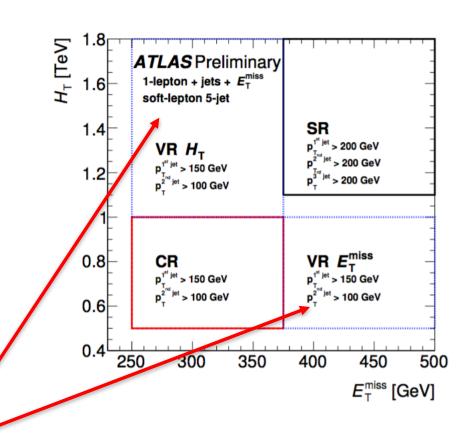

Best approach:

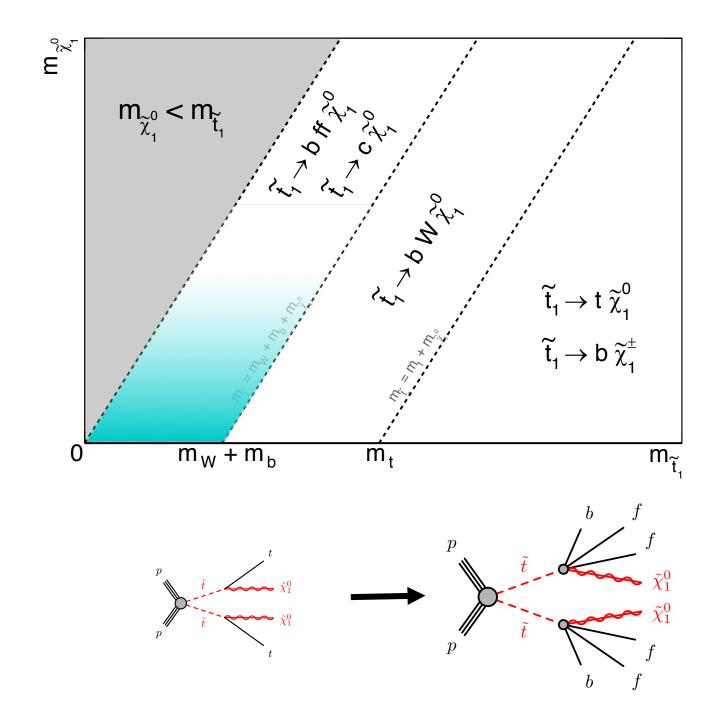
Keep it simple

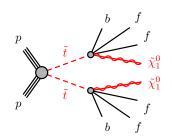

Common analysis strategies

- Define a signal region (SR) based on signal kinematic features
- 2. Estimate the Standard Model processes in the SR:
 - **1. Data-driven** reducible backgrounds ('fakes')
 - 2. Define a control region (CR) for each of the major irreducible backgrounds to normalise MC yields to data
 - 3. Minor backgrounds are taken from **MC simulation** only
- 3. Check background estimation against data in *validation* regions (VR)

Common analysis strategies


- Define a signal region (SR) based on signal kinematic features
- Estimate the Standard Model processes in the SR:
 - Data-driven reducible backgrounds ('fakes')
 - Define a control region (CR) for each of the major irreducible backgrounds to normalise MC yields to data
 - 3. Minor backgrounds are taken from **MC simulation** only
- 3. Check background estimation against data in *validation* regions (VR)



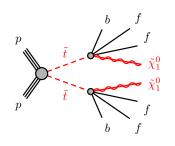

$$N(SR) = (N^{Data}(CR) - N_{others}(CR)) \frac{N^{MC}(SR)}{N^{MC}(CR)}$$

Common analysis strategies

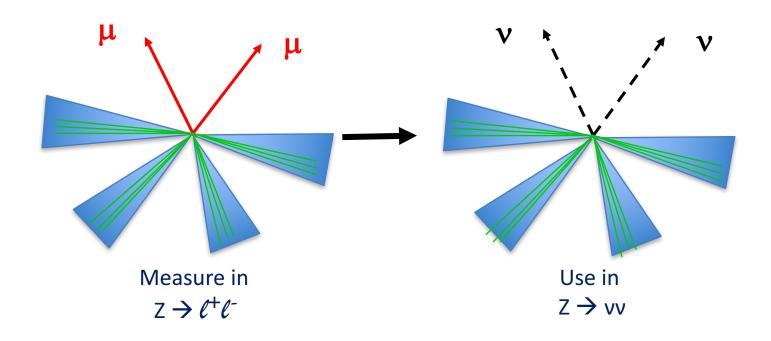

- Define a signal region (SR) based on signal kinematic features
- 2. Estimate the Standard Model processes in the SR:
 - Data-driven reducible backgrounds ('fakes')
 - 2. Define a control region (CR) for each of the major irreducible backgrounds to normalise MC yields to data
 - 3. Minor backgrounds are taken from **MC simulation** only
- 3. Check background estimation against data in *validation* regions (VR)

CMS: multi-jet

Compressed spectrum

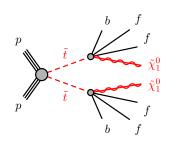

• Select t₁ pairs recoiling against initial-state radiation (ISR)

Selects events with **no** identified, isolated **lepton**


- E_Tmiss > 250 GeV
- p_TISR> 250 GeV

Statistically combine multiple independent selections to maximise sensitivity

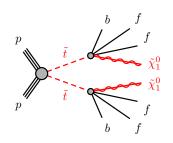
Consider: p_TISR, E_Tmiss, N_{jet}, N_{b-jet}



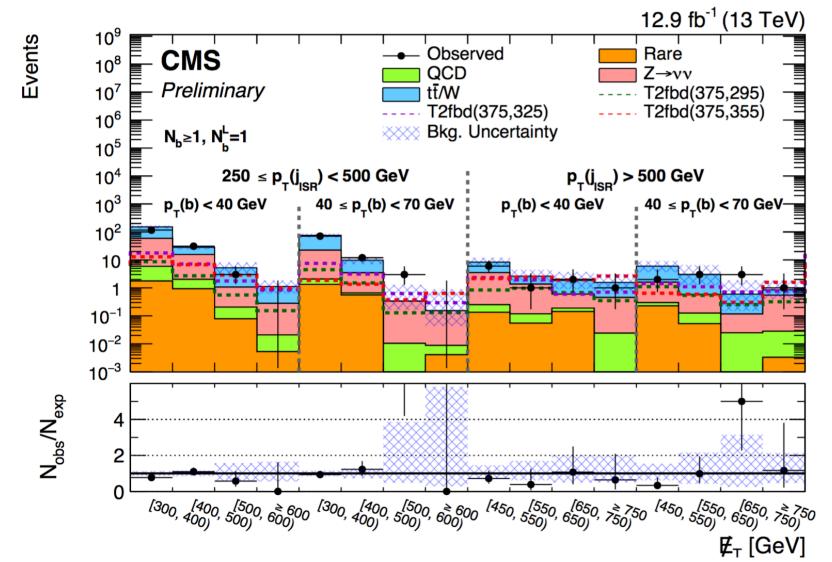
Predicting $Z \rightarrow vv + jets$

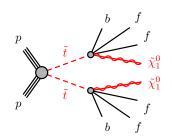
Measure the normalization

- Good match (same process)
- Statistics limited

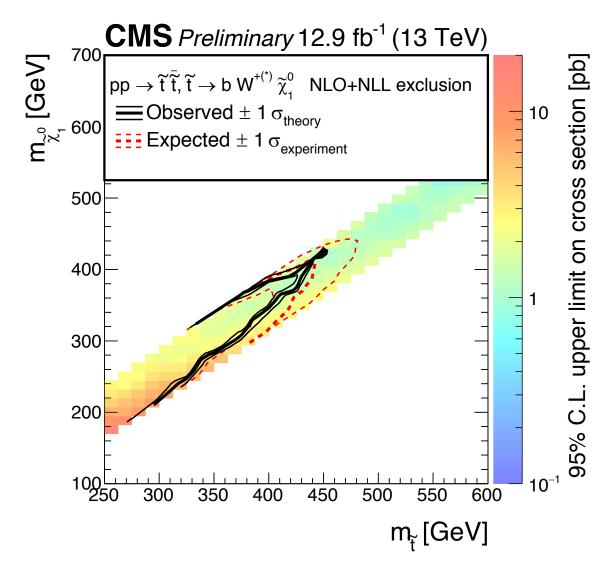


Predicting $Z \rightarrow vv + jets$

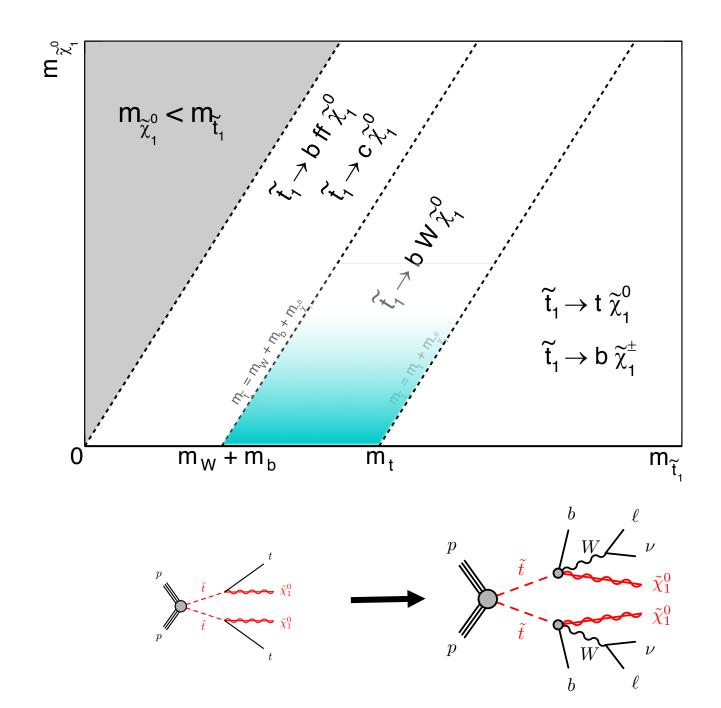


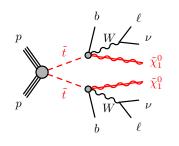

Measure the kinematic distributions

- Add γ to E_T^{miss}
- Plenty of statistics
- Valid for $p_T(\gamma) > 130 \text{ GeV}$



Observation

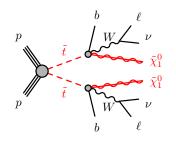


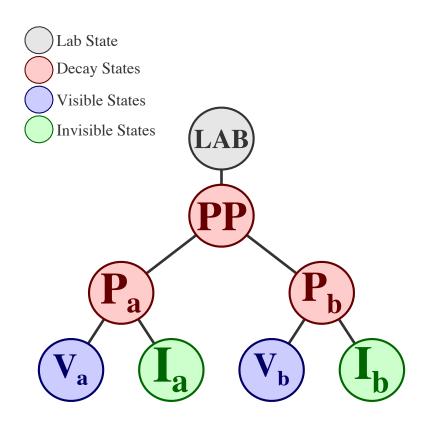

Interpretation

Data has been found in agreement with SM predictions.

- All SR bins are fit simultaneously in order to evaluate the cross section excluded at 95% CL.
- If the 95% upper limit on the production cross section is below the theoretical cross section, the signal models are considered to be excluded by the analysis.

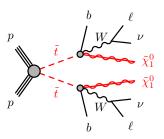
ATLAS: two leptons

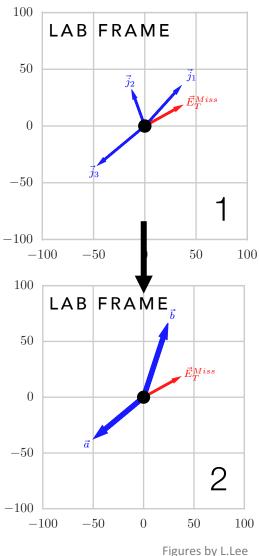

Search aimed at scenarios


$$m(W) < \Delta m(t_1, \chi^0_1) < m(t)$$

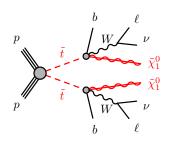
- Doesn't use ISR to boost objects
- b-jets often too soft to be reconstructed or identified
 - Consider only the two leptons and the E_T^{miss}

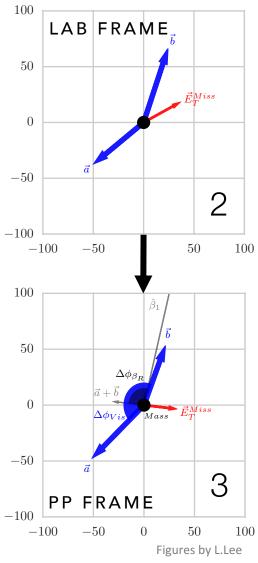
Selection based on "recursive jigsaw" (RJR) variables


- A special technique to reconstruct the decay chain of a system with multiple invisible particles
- First implementation in ATLAS for ICHEP

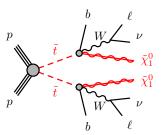


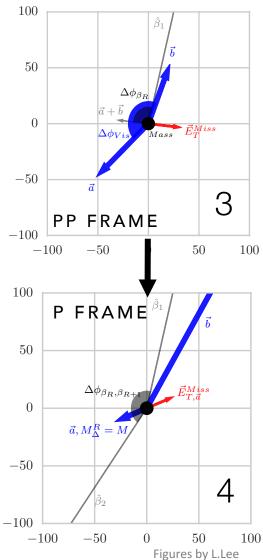
The Recursive Jigsaw Reconstruction provides an approximate way to solve kinematic ambiguities, assuming a known decay tree.


- unknown longitudinal momenta
- combinatorial ambiguities
- kinematic ambiguities (from multiple invisible objects)

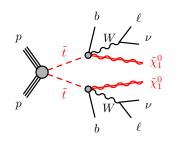


- Each decay step is solved by simultaneously minimizing the masses of two daughter systems
- Boost into the new reference frame
- Split the invisible momentum between the two


Kinematic variables are built to be invariant for longitudinal boosts



- Each decay step is solved by simultaneously minimizing the masses of two daughter systems
- Boost into the new reference frame
- Split the invisible momentum between the two


Kinematic variables are built to be invariant for longitudinal boosts

- Each decay step is solved by simultaneously minimizing the masses of two daughter systems
- Boost into the new reference frame
- Split the invisible momentum between the two

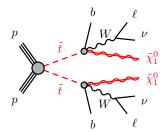
Kinematic variables are built to be invariant for longitudinal boosts

Discriminating Variables

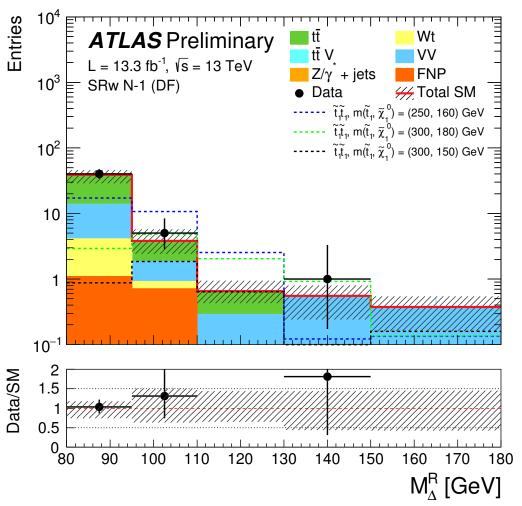
$$R_{p_T} = \frac{|\vec{J}_T|}{|\vec{J}_T| + \sqrt{\hat{s}_R/4}}$$

 $R_{\rm pT}$: **ratio of** J (vector sum of the momenta of all visible particles and $E_{\rm T}^{\rm miss}$) **and** $J + s_{\rm R}$ (approximate centre of mass energy in the PP frame)

• Since only the leptons are considered in the visible system the *J* will be over-estimated in events with additional activity, i.e. signal and top-quark production.


$$1/\gamma_{R+1}$$

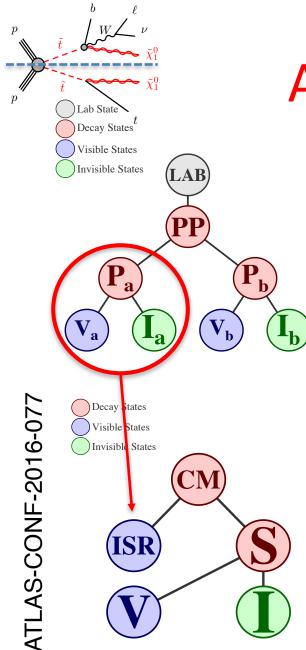
Inverse of the Lorentz factor associated with the boosts from the *PP* frame to the two decay frames of the parent particles.


Tending towards unity when visible particles are equal in momenta and collinear

$$M_{\Delta}^{R} = \frac{\sqrt{\hat{s}}_{R}}{\gamma_{R+1}}$$

This variable has a **kinematic end-point proportional to the mass-splitting** between the parent particle and the invisible particle.

Two leptons results


Two Signal Regions for:

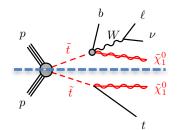
- $\Delta m(t_1, \chi^0_1) \sim m(W)$
- $\Delta m(t_1, \chi^0_1) \sim m(t)$

MC driven control regions for top and vector bosons pairs.

No discrepancy with respect to SM predictions found.

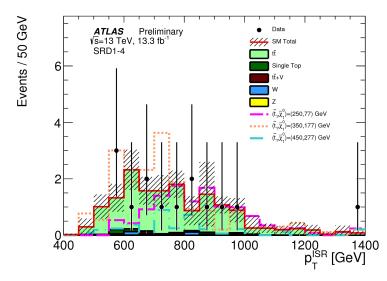
Region	SR_W^{3-body} -DF
Observed events	6
Total Standard Model	5.3 ± 2.2
Fitted <i>tt</i>	2.3 ± 1.4
Wt	0.21 ± 0.08
$t\bar{t}\ V$	0.10 ± 0.03
Fitted VVDF	2.1 ± 1.1
Fitted VVSF	_
Z/γ^* +jets	_
Fake and non-prompt	0.58 ± 0.12

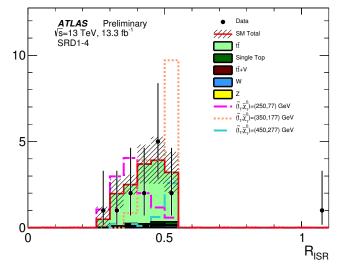
ATLAS: multi-jet


The same RJR technique can be applied to the very challenging scenario $\Delta m(t_1, \chi^0_1) \sim m(t)$.

- signal topology extremely similar to SM tf production
- ISR-jet based approach to improve discrimination.

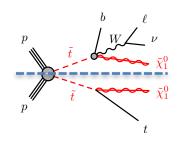
The RJR recovers efficiency in events with multiple ISR jets.


- N_S ≥5 jet
- $M_T^S > 300 \text{ GeV}$
- $\Delta \phi_{\rm ISR} > 3 \text{ radians}$


- $p_{\rm T}^{\rm ISR} > 400 {\rm GeV}$
- $p_T^{b-tag,S} > 40 \text{ GeV}$
- $p_{\text{T}}^{\text{jet4,S}} > 50 \text{ GeV}$

Events / 0.1

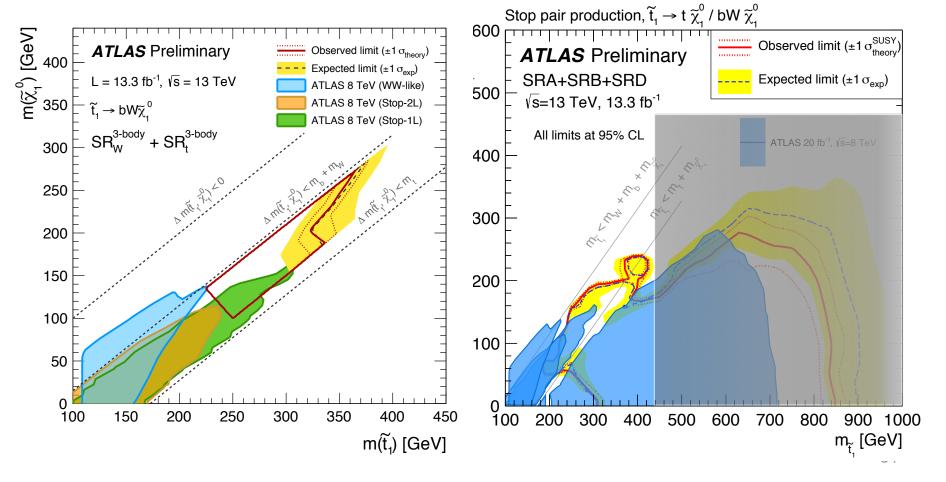
ATLAS: multi-jet

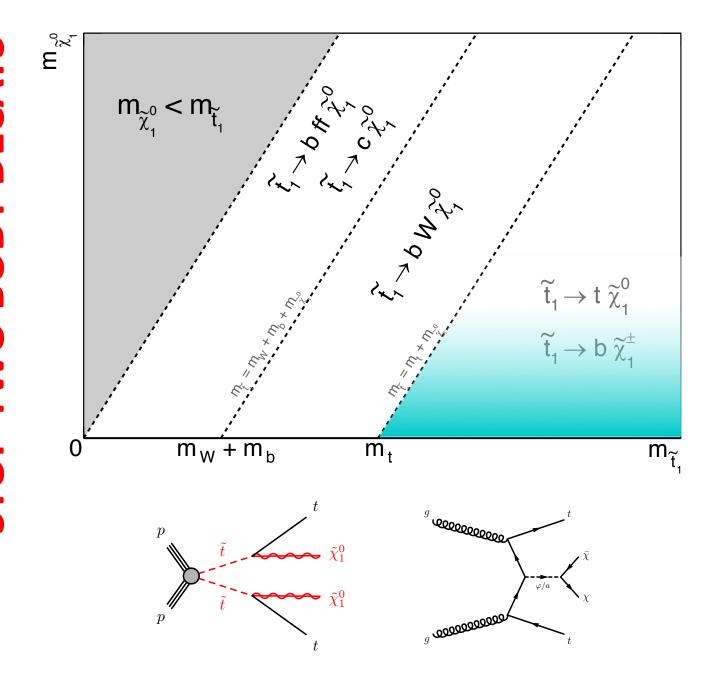


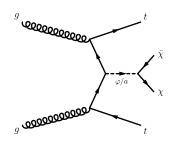
$$R_{\rm ISR} \equiv rac{E_{
m T}^{
m miss}}{p_{
m T}^{
m ISR}} \sim rac{m_{ ilde{\chi}_1^0}}{m_{ ilde{t}}}$$

The final discriminant, R_{ISR} is sensitive to the mass scale of the invisible particle.

Multiple signal regions to target different models

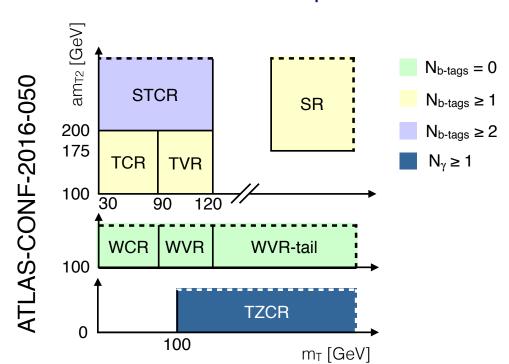

	SRD1	SRD2	SRD3	SRD4
Observed	4	5	9	9
Total SM	4.3 ± 1.9	7.1 ± 3.2	8.8 ± 3.4	9.4 ± 3.7
	CDD 5	GDD (GDD5	GD D O
	SRD5	SRD6	SRD7	SRD8
Observed	11	6	5	1
Total SM	11.6 ± 3.6	8.6 ± 3.5	5.2 ± 2.1	2.56 ± 0.86


Interpretation


Data has been found in agreement with SM predictions.

 Limits at 95% CL are derived using the best expected performing SR for each signal model

STOP TWO BODY DECAYS



ATLAS: single lepton

Search targeting DM, heavy stop (direct and 1-step decays)

 Baseline selection requires 1 lepton, 4 jets, bjets, high m_T

Dedicated CRs for:

- W+jets
- Ttbar
- single top