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The Higgs in the SM

• In the SM, the Higgs mechanism provides
masses to bosons and fermions

• Higgs discovery in 2012
⇒ exploration of a whole new sector in the

lagrangian !
• Obviously a major goal of the LHC programme
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Higgs Phenomenology at the LHC

In the SM, all predictions fixed once Higgs mass is known
• Mass known at 2 per-mille level ! mH = 125.09± 0.24 GeV
• Very rich phenomenology at 125GeV

Consequence
• Any deviation in couplings, spin/CP properties, differential distributions
• Would be a sign of new physics
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Hunting Hbb

H → bb
• Important search on its own (coupling to b
quark)

• Largest BR: ∼ 58%
• Drives the total width, thus measurements of
absolute couplings

• Limits the amount of BSM decays allowed

Observed decays: ∼ 31%

Dominant decay: ∼ 58%

Where to look
ggF Need to go to highly boosted regime (CMS
analysis)

VBF Analysis ”à la Hγγ”. Also exploits VBF+γ
topology

VH Most sensitive channel
ttH Also important because of ttH production (di-
rect coupling to top quark)
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Why so long to observe the largest BR ?

Very large production of b-jets at the LHC

• Inclusive production (2 b-jets in final state)
overwhelmed by bkgs by many orders of mag-
nitude

• Signatures of associated productions help re-
ducing the bkgs

• But although S/B can bemuch better, it is never
very large
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VBF Topology

A difficult channel
• Like Hγγ, with poorer resolution
• Not so high-pT jets, not so large multiplicity
• Difficult to even trigger !
• Only public analysis at 13TeV: CMS (2.3 fb−1).
Upper limit 3.4×SM

• ATLAS: result in the VBF+γ topology

VBF+γ channel
• Rare production (αQED compared to
VBF)

• Great at triggering and suppressing
background

• Even more than you think: destruc-
tive interference
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VBF+γ, H→ bb results

First analysis for ICHEP 2016
• ATLAS-CONF-2016-063 with 12.6 fb−1of 13 TeV data
• BDT to create 3 categories, then fit mbb in each of them
• Zbb as first signal to look for

Results
• Still rather low sensitivity
• Hugely dominated by data stat⇒ hope for large datasets
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t̄tH(bb)

t̄tH(bb) channel
• Lower production (but not much
lower) than VH(bb)

• Very busy topologies
• Combinatorics
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Analysis of 13TeV data Phys. Rev. D 97
(2018) 072016
• Semi-leptonic and dileptonic t̄t decays
• Many jets and b-jets in final state
• Use of powerful ML techniques:

• Reconstruction BDT to resolve the combina-
torics: best matching of jets to W, top, Higgs

• MEM and likelihood discriminant as interme-
diate variables

• Final classification BDT to separate t̄tH from
backgrounds

• Use of b-tagging distribution also very impor-
tant

• Simultaneous fit of 9 SR and 10 CR, including a
category with boosted Higgs
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t̄tH(bb) Results

Results
• Compatible results between the single- and di-
lepton channels

• Sensitivity 1.4σ (1.6σ exp)
• Corresponds to a limit of 2.0×SM

• Extreme sensitivity to t̄t + bb̄ modelling
• Also quite sensitive to b-tagging and jet energy
scale
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Uncertainty source ∆µ

tt̄+ ≥1b modeling +0.46 −0.46
Background-model stat. unc. +0.29 −0.31
b-tagging efficiency and mis-tag rates +0.16 −0.16
Jet energy scale and resolution +0.14 −0.14
tt̄H modeling +0.22 −0.05
tt̄+ ≥1c modeling +0.09 −0.11
JVT, pileup modeling +0.03 −0.05
Other background modeling +0.08 −0.08
tt̄+ light modeling +0.06 −0.03
Luminosity +0.03 −0.02
Light lepton (e, µ) id., isolation, trigger +0.03 −0.04
Total systematic uncertainty +0.57 −0.54

tt̄+ ≥1b normalization +0.09 −0.10
tt̄+ ≥1c normalization +0.02 −0.03
Intrinsic statistical uncertainty +0.21 −0.20
Total statistical uncertainty +0.29 −0.29

Total uncertainty +0.64 −0.61
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Hunting VHbb

Processes
• ZH and WH

• Leptonic decays for bkg rejection and trigger
• 3 channels: 0, 1, 2 (charged) leptons

• ZH has gg induced diagrams
• 10% of cross-section
• pT spectrum peaking around 140GeV

g

g

l

l

b

bH

Z

g

g

l

l

b

b

H

Z

q

q

ν

ν

b

b

Z

H

q

q

l

ν

b

b

W

H

q

q

l

l

b

b

Z

H

Previous results
Tevatron legacy: 3.1σ global, 2.8σ at 125GeV (1.5
exp.)

ATLAS and CMS Run 1: 1.4σ (2.6) / 2.1σ (2.5)
LHC combination: 2.6σ (3.7)
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Starting Point: Run 1 analysis

Final Run 1 analysis
• Result of major undertaking
• Highly optimized analysis, to squeeze as much
sensitivity as possible (2.6σ exp)

• Introduction of BDTs, use of pseudo-
continuous tagging

• Price: high complexity. 38 regions in MVA anal-
ysis, 92 regions inmbb analysis (and almost 600
bins fitted)
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From Run 1 to Run 2

Machine and Physics
• Run 1: ∼ 5 + 20 fb−1 @ 7 and 8TeV/ Run 2:
36 fb−1

• But higher pileup
•

√
s = 13 TeV: higher cross-section ∼ ×2

• Backgrounds increase as well: Z/W+jets ×1.7,
but t̄t ×3.3

Towards Run 2 Results
General philosophy: Make the analysis simpler and more robust
• Sacrifice little bit of sensitivity when it simplifies the analysis
• Keep BDTs, but remove difficult regions, and simplify the use of b-tagging
• Major item: background modelling and systematics

⇒ more solid analysis, larger integrated lumi: key to 3σ ?
• First result ICHEP 2016: ATLAS-CONF-2016-091

• Expected sensitivity 1.9σ
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Luminosity challenge

Harsh conditions !
• Up to ∼ 40 PU interactions per event (routinely up to 60
in 2017...)

• Lot of work on reconstruction algorithms in ATLAS to re-
duce their PU dependence

• Especially jet reconstruction and b-tagging
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The ATLAS detector
Muon Spectrometer: (|η| < 2.7)
Air toroid with drift chambers,
Provides µ trigger and momentum measurement,
Resolution < 10% up to p ∼ 1 TeV.

Inner Detector: (|η| < 2.5, B=2T)
Si Pixels, SCT, TRT
Precision tracking,
Vertex reconstruction,
e/π separation
σ/pT ∼ 3.8 10−4pT ⊕ 0.015

Hadronic Calorimeter:
Scint/Fe tiles in barrel (|η| < 1.7)
W/Cu-LAr in endcaps (|η| < 4.9)
Provides jet trigger and energy measurement,
σ/E ∼ 50%/

√
E ⊕ 3%

Hermetic coverage for MET

EM Calorimeter: (|η| < 3.2)
Pb-LAr, accordion structure
Provides trigger on e/γ ,
Identification and measurement
σ/E ∼ 10%/

√
E ⊕ 0.7%

Trigger System:
3 levels
L1: calo and muons, 100 kHz
dedicated electronics
EF: all detectors, 1000Hz
full reconstruction
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Pixel detector upgrade

ATLAS Inner detector
• Made of 3 sub-detectors: Silicon
Pixel, Silicon Strip and TRT

• New innermost layer IBL installed
during LS1
• Comes with a smaller, thinner
beam pipe: R = 3.3 cm

• Smaller pixel size (50× 250 µm)
• More radiation hard

• b-tagging in general and H(bb) in
particular one of the main motiva-
tions for the upgrade !
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Key element #1: b-tagging

b-tagging
• Algorithms to identify jets from b hadrons
• Use track impact parameters, and reconstruction of sec-
ondary vertices

Run 2 performance
• Typical performance: 70%/8.2%/0.3% b/c/light efficiency
• Large improvement compared to Run 1, esp. on c-jet re-
jection
• Tracking optimized for high-PU environments
• Better algorithms + new IBL

• Makes it easier to use only events with 2 good b-tags
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Key element #2: Dijet invariant mass

Mass resolution improvements
We have a pair of b-jets
• Add muons in the vicinity (semi-lep. decays)
• Simple average jet pT correction. Accounts for
neutrinos, and interplay of resolution and pT
spectrum effects.

• Improvement ∼ 18%

Kinematic Fit
• 2 leptons: final state fully reconstructed
• High resolution on leptons
• Constrain jet kinematics better:

∑
pT(`) =

pT(bb) modulo intrinsic kT

• Improvement ∼ 40%
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Our best enemies

Z+hf, W+hf
• Same final state as signal
• non-peaking
• Sherpa 2.2.1

Diboson WZ, ZZ
• Peaking at lower mass than the
signal

• Larger cross-section
• Softer pT(V) spectrum
• Sherpa 2.2.1

t̄t, single-top
• 2 lepton: same final state as signal
• 0 and 1 leptons: additional jets,
and/or missing leptons

• Powheg+Pythia

Multijet
• Very large cross-section and high re-
jection factors

• Channel-dependent
• Data-driven

Conclusions
• mbb , ∆R(b, b) very powerful variables
• Better S/B at higher pT(V)
• S/B depends on number of jets in the event
• Measurement of diboson process excellent validation of the analysis
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Key element #3: high-pT regime

Improving S/B
• Much harder spectrum for signal than bkgs
• Going to high-pT improves S/B
• Use it for event classification:
75 < pT(V) < 150GeV, pT(V) > 150GeV

• Add it in our MVAs as well
• Need large bkg statistics in tails of distributions !

Topology
• H → bb̄ is a simple 2-body decay
• At high pT , can cut hard on ∆R(b, b) with very high
signal efficiency

• Helps reducing backgrounds significantly
• Most prominently t̄t
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0-lepton channel

Z selection
• MET trigger
• MET>150GeV
• Veto leptons pT>7GeV

Higgs candidate
• 2 b-tagged jets. Leading pT>45GeV
• 1 additional jet max

Anti-QCD
• Angular cuts

Signal Acceptance
• ∼20% of expected signal events are WH(τν)
• acceptance for ggZH 70% larger than for qqZH

• Due to harder pT(V) spectrum
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Multijet in 0-lepton channel

Multijet events
• Typically arise from jets with large fluctuations
in their interaction

• MET aligned with jet
• Cuts on min(∆φ(Emiss

T , jets)), ∆φ(Emiss
T , bb),

∆φ(b1, b2) extremely efficient
⇒ Negligible remaining multijet contribution

Non-collisional backgrounds
• Usual backgrounds for hadronic final states
• Negligible when requiring 2 b-tags
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1-lepton channel

W selection
• Single-electron or MET trigger
• Well identified, isolated electron (>27GeV) or
muon (>25GeV)

• Veto additional leptons pT>7GeV
• pT(W) > 150 GeV

Higgs candidate
• 2 b-tagged jets. Leading pT>45GeV
• 1 additional jet max

Anti-QCD
• MET>30GeV in electron channel

W+hf control region
• mbb < 75 GeV and mtop > 225 GeV
• >75% pure
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Multijet in 1-lepton channel

Multijet events
• From semi-lep decays, or from hadrons (elec-
tron channel)

• Reduced by tightening the lepton isolation and
ID criteria

• Isolation tuned for the analysis (need tight iso-
lation at high-pT)

Multijet estimation
• Separate in electron and muon events
• Templates from inverted isolation
• Corrected for bias in kinematics
• Normalization from fit to mT(W)
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2-leptons channel

Z selection
• Single-lepton triggers
• 2 electrons ormuons. Leading pT>27GeV, sub-
leading pT>7GeV

• Z mass: 81 < m`` < 101 GeV
• 75 < pT(Z) < 150 GeV, or pT(Z) > 150 GeV

Higgs candidate
• 2 b-tagged jets. Leading pT>45GeV
• 0, or ≥ 1 additional jets

Top eµ control region
• Opposite-flavour events
• 99% pure

Signal Acceptance
• acceptance for ggZH twice larger than for qqZH

• Due to harder pT(V) spectrum
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Putting all together: MVA analysis

MVA setup
• Pretty standard BDT analysis
• Input variables and hyper-parameters tuned to
yield best sensitivity

Variables
• Kinematic variables, some specific to 3-jet re-
gions

• mbb , ∆R(b, b) and pT(V) most important ones
• Others depend on channel, e.g m`` in 2-lepton

Sensitivity
• Typically S/B from few % to few tens of % in
high sensitivity bins
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Modelling: introduction

Philosophy
• Large backgrounds with many differences
• Bkg composition varies significantly over a large phase space
• Want to constrain modelling of bkg from data

• Use as many regions as possible
• Much easier when cuts and phase space are similar among the channels
• Requires delicate understanding of the extrapolation from one region to another

0 lepton

1 lepton

2 leptons e-µ region

Design principles
• Use state-of-the-art MC generators
• Parametrize extrapolation uncertainties across
regions as uncertainties on ratios of yields

• Shape uncertainties on BDTs
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Modelling: W/Z+hf

Principle
• Rely on MEPS@NLO (multi-jet merging at NLO)
with up to 2 extra jets

• 2 lepton low pT(V) can constrain Z normaliza-
tions, shapes

• 1 lepton Whf CR constrains W norm.
⇒ Normalization factors ∼ 1.25
• Extrapolations to 0-lepton or 1-lepton SR
needed

• Uncertainties on flavour composition
• BDT shapes: throughmbb and pT(V) variations
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Modelling: Top background

Principle
• 2 lepton vs 0/1 lepton: different phase space
• 2 lepton eµ and 0/1 lepton 3-jet regions very
pure

• Normalization factors: ∼ 0.9 for 0/1 lepton, ∼
1.0 for 2-lepton

• Uncertainties needed for extrapolation to 0/1
lepton 2-jet regions

• BDT shapes: throughmbb and pT(V) variations
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Modelling: others

Multijet in 1 lepton
• Large shape and norm. effects on the
data-driven estimate

Signal and Diboson
• No contraints from data
• Follow standard recipes for systematics
• Signal: Separate systematics on produc-
tion (correlated with other channels in fu-
ture Higgs combinations) from acceptance
effects
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Building confidence: Diboson MVA

A must-have for VHbb
• Train the BDTs to look forWZ+ZZ instead of VH
• Done before looking at VH
• Robust validation of backgroundmodel and as-
sociated uncertainties

• Critical to convince ourselves we are ready to
unblind !

Analysis strategy
• One main likelihood fit
• BDT in the 8 SR
• mbb in the 4 top eµ CR
• Normalization in the 2 W+hf CR
• Systematics parametrized as nuisance parame-
ters
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Diboson MVA: results

Results
• Clear observation: 5.8σ (5.3 exp.)
• Agreement with SM
• Excellent agreement between channels
• Much better sensitivity to ZZ than to WZ: com-
binatorics ; impact of low pT(V) region

⇒ Ready to unblind VH !

N. Morange ( LAL Orsay ) 31/38



VHbb results

We have it !
• Evidence for bb decay at 3.5σ (3.0 exp.)
• Dominated by systematics
• Channels compatible at 10% level
• 2.4σ for WH, 2.6σ for ZH: VHbb most sensitive
channel for VH production

• As cross-sections:
• σ(WH) × B(Hbb) = 1.08+0.54−0.47 pb
• σ(ZH) × B(Hbb) = 0.57+0.26−0.23 pb
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VHbb: mbb fit cross-check

mbb fit
• Important cross-check to test robustness of re-
sult

• Cut pT(V) > 150 GeV into 150 − 200 and >

200 GeV
• Add simple cuts on: ∆R(b, b),mT(W) (1 lepton),
Emiss

T significance (2 lepton)
• Then fit mbb !

Results
• Evidence at 3.5σ (2.8σ exp.)
• Consistent with MVA in all channels
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VHbb results: systematics

What limits us on the road to 5σ ?
b-tagging both b and c jet tagging corrections

• Will improve with time
Background modelling Z+hf, W+hf, t̄t

• Better generators ?
• Understand better differences between generators
• Reduce uncertainties through specific SM measure-
ments

• More data-driven approaches
Signal modelling dominated by PS/hadronization

• Needs better understanding of our MCs
MC stats never-ending race between data stat and MC stat

• Improve on MC filters
• Not easy in all cases, e.g t̄t phase space in 0/1-lepton
• Improve on MC generation speed
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Combination with Run 1 result

Combination
How to correlate systematics ?
• Difficult to be sure in many cases (e.g b-tagging,
when new detector / new algo ?)

• Correlate b-jet energy scale uncertainty, and
Higgs production cross-sections

• Test that other correlations have little impact

Results
• Evidence at 3.6σ (4.0 exp.)
• Compatibility of the 6 measurements: 7%
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Perspectives: towards the end of Run 2

Next step: observation !
• 2017: more stat than 2016 !
• Without systematics, observation would be a
no-brainer

• Hard work needed on MC stat generation, back-
ground modelling, b-tagging calibration

Signal Template Cross-sections (?)
• Standardized definition of fiducial regions for
Higgs productions

• Fiducial definitions not too far from what can
be achieved with differential measurements

• Allows easy combination of Higgs channels and
across experiments

• Allows interpretation in EFT bases
• Goal for VH(bb): pT(V) measurement
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Perspectives: HL-LHC

Couplings
• Projections from ATLAS and CMS
• Coupling to b-quarks known in the 5–10% range ?
• Very much dependent on the systematics we can achieve

What for ?
• Deviations from New Physics can be mostly at high-pT

• VH dominates total Higgs x-sec for pT(H) > 800 GeV !
• Decent statistics expected even in this regime
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Conclusions

• Evidence for Hbb decay at 3.6σ in ATLAS
• arXiv:1708.03299

• Similar result by our CMS colleagues
• arXiv:1709.07497

• Interesting to look in all production modes
• As evidenced by the nice VBF+γ or t̄tH(bb)
results

• Systematically limited in several channels
• Adding more data will bring diminishing returns
• Need to reduce systematics

• Next goals: observation and measurements !
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