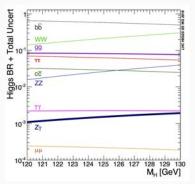
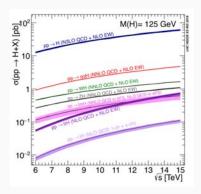
Searching for $H \rightarrow b\bar{b}$ decays at ATLAS

Nicolas Morange

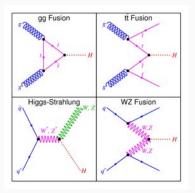
Albert-Ludwigs-Universität Freiburg, 16/05/18

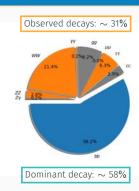



N. Morange (LAL Orsay) 2/38

In the SM, all predictions fixed once Higgs mass is known

- Mass known at 2 per-mille level! $m_H = 125.09 \pm 0.24 \text{ GeV}$
- Very rich phenomenology at 125 GeV


Consequence

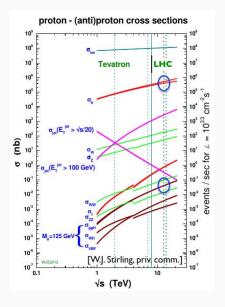

- Any deviation in couplings, spin/CP properties, differential distributions
- Would be a sign of new physics

$H \rightarrow hh$

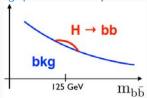
- Important search on its own (coupling to b quark)
- Largest BR: ∼ 58%
- Drives the total width, thus measurements of absolute couplings
- · Limits the amount of BSM decays allowed

Where to look

ggF Need to go to highly boosted regime (CMS
 analysis)

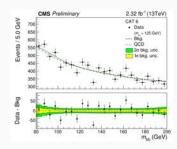

VBF Analysis "à la ${\it H}\gamma\gamma$ ". Also exploits VBF+ γ topology

VH Most sensitive channel

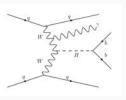

ttH Also important because of ttH production (direct coupling to top quark)

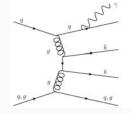
N. Morange (LAL Orsay) 4/38

Very large production of b-jets at the LHC


- Inclusive production (2 b-jets in final state) overwhelmed by bkgs by many orders of magnitude
- Signatures of associated productions help reducing the bkgs
- But although S/B can be much better, it is never very large

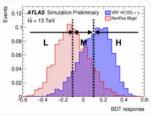
N. Morange (LAL Orsay) 5/38

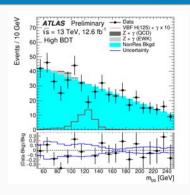

A difficult channel


- Like $H\gamma\gamma$, with poorer resolution
- Not so high-p_T jets, not so large multiplicity
- Difficult to even trigger!
- Only public analysis at 13 TeV: CMS (2.3 fb⁻¹).
 Upper limit 3.4×SM
- ATLAS: result in the VBF $+\gamma$ topology

$VBF+\gamma$ channel

- Rare production ($lpha_{\it QED}$ compared to VBF)
- Great at triggering and suppressing background
- Even more than you think: destructive interference



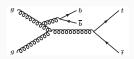


First analysis for ICHEP 2016

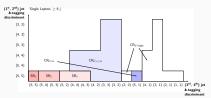
- ATLAS-CONF-2016-063 with 12.6 fb -1 of 13 TeV data
- BDT to create 3 categories, then fit m_{bb} in each of them
- Zbb as first signal to look for

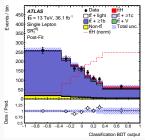
Results

- Still rather low sensitivity
- ullet Hugely dominated by data stat \Rightarrow hope for large datasets


Result	$H(\rightarrow b\bar{b}) + \gamma j$	$jj Z(\rightarrow b\bar{b}) + \gamma jj$
Expected significance	0.4	1.3
Expected p-value	0.4	0.1
Observed p-value	0.9	0.4
Expected limit	$6.0 \begin{array}{c} +2.3 \\ -1.7 \end{array}$	$1.8 \begin{array}{c} +0.7 \\ -0.5 \end{array}$
Observed limit	4.0	2.0
Observed signal strength μ	$-3.9 {}^{+2.8}_{-2.7}$	0.3 ± 0.8

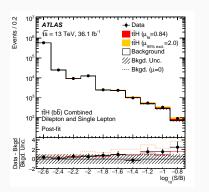
ttH(bb) channel

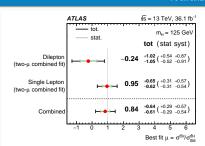

- Lower production (but not much lower) than VH(bb)
- Very busy topologies
- Combinatorics



Analysis of 13 TeV data Phys. Rev. D 97 (2018) 072016

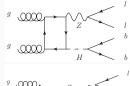
- Semi-leptonic and dileptonic $t\bar{t}$ decays
- Many jets and b-jets in final state
- Use of powerful ML techniques:
 - Reconstruction BDT to resolve the combinatorics; best matching of iets to W. top. Higgs
 - MEM and likelihood discriminant as intermediate variables
 - Final classification BDT to separate $t\bar{t}H$ from backgrounds
- Use of b-tagging distribution also very important
- Simultaneous fit of 9 SR and 10 CR, including a category with boosted Higgs

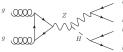




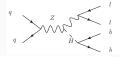
Results

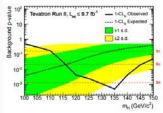
- Compatible results between the single- and dilepton channels
- Sensitivity 1.4 σ (1.6 σ exp)
 - Corresponds to a limit of $2.0 \times SM$
- Extreme sensitivity to t\(\bar{t} + b\bar{b}\) modelling
- Also quite sensitive to b-tagging and jet energy scale


Uncertainty source	Λ	.μ
$t\bar{t} + \ge 1b$ modeling	+0.46	-0.46
Background-model stat. unc.	+0.29	-0.31
b-tagging efficiency and mis-tag rates	+0.16	-0.16
Jet energy scale and resolution	+0.14	-0.14
$t\bar{t}H$ modeling	+0.22	-0.05
$t\bar{t} + \ge 1c$ modeling	+0.09	-0.11
JVT, pileup modeling	+0.03	-0.05
Other background modeling	+0.08	-0.08
$t\bar{t}$ + light modeling	+0.06	-0.03
Luminosity	+0.03	-0.02
Light lepton (e, μ) id., isolation, trigger	+0.03	-0.04
Total systematic uncertainty	+0.57	-0.54
$t\bar{t} + \ge 1b$ normalization	+0.09	-0.10
$t\bar{t} + \geq 1c$ normalization	+0.02	-0.03
Intrinsic statistical uncertainty	+0.21	-0.20
Total statistical uncertainty	+0.29	-0.29
Total uncertainty	+0.64	-0.61


N. Morange (LAL Orsay) 9/38

Processes

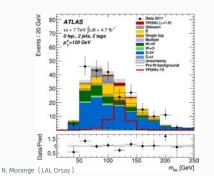

- ZH and WH
 - Leptonic decays for bkg rejection and trigger
 - 3 channels: 0, 1, 2 (charged) leptons
- ZH has gg induced diagrams
 - 10% of cross-section
 - ullet $p_{
 m T}$ spectrum peaking around 140 ${
 m GeV}$

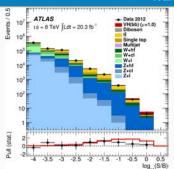

Previous results

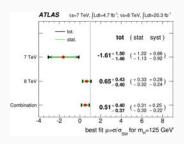
Tevatron legacy: 3.1 σ global, 2.8 σ at 125 GeV (1.5

exp.)

ATLAS and CMS Run 1: 1.4σ (2.6) / 2.1σ (2.5)

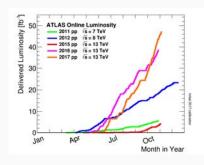

LHC combination: 2.6σ (3.7)





Final Run 1 analysis

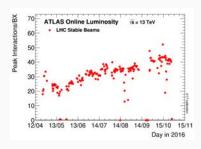
- · Result of major undertaking
- Highly optimized analysis, to squeeze as much sensitivity as possible (2.6 σ exp)
- Introduction of BDTs, use of pseudocontinuous tagging
- Price: high complexity. 38 regions in MVA analysis, 92 regions in m_{bb} analysis (and almost 600 bins fitted)

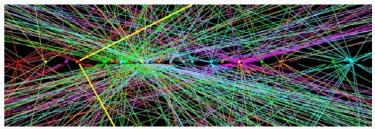


Machine and Physics

- Run 1: $\sim 5 + 20\,\mathrm{fb}^{-1}$ @ 7 and $8\,\mathrm{TeV}/$ Run 2: $36\,\mathrm{fb}^{-1}$
 - But higher pileup
- $\sqrt{s} = 13$ TeV: higher cross-section $\sim \times 2$
- Backgrounds increase as well: Z/W+jets \times 1.7, but $t\bar{t}$ \times 3.3

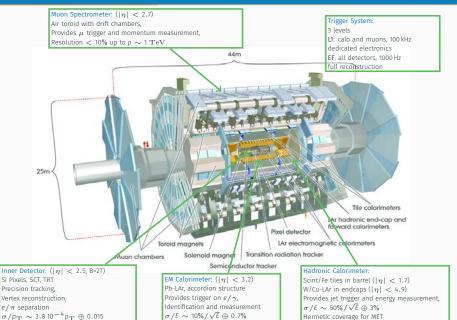
Towards Run 2 Results


General philosophy: Make the analysis simpler and more robust


- · Sacrifice little bit of sensitivity when it simplifies the analysis
- Keep BDTs, but remove difficult regions, and simplify the use of b-tagging
- Major item: background modelling and systematics
- $\Rightarrow\,$ more solid analysis, larger integrated lumi: key to 3 σ ?
 - First result ICHEP 2016: ATLAS-CONF-2016-091
 - ullet Expected sensitivity 1.9 σ

Harsh conditions!

- Up to \sim 40 PU interactions per event (routinely up to 60 in 2017...)
- Lot of work on reconstruction algorithms in ATLAS to reduce their PU dependence
- Especially jet reconstruction and b-tagging



N. Morange (LAL Orsay) 13/38

THE ATLAS DETECTOR

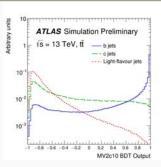
N. Morange (LAL Orsay)

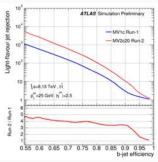
14/38

ATLAS Inner detector

- Made of 3 sub-detectors: Silicon Pixel, Silicon Strip and TRT
- New innermost layer IBL installed during LS1
 - Comes with a smaller, thinner beam pipe: $R = 3.3 \, \mathrm{cm}$
 - Smaller pixel size (50 × 250 μm)
 - More radiation hard
- b-tagging in general and H(bb) in particular one of the main motivations for the upgrade!

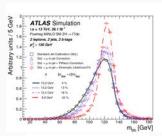


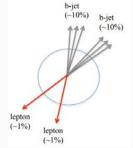

b-tagging


- Algorithms to identify jets from b hadrons
- Use track impact parameters, and reconstruction of secondary vertices

Run 2 performance

- Typical performance: 70%/8.2%/0.3% b/c/light efficiency
- Large improvement compared to Run 1, esp. on c-jet rejection
 - Tracking optimized for high-PU environments
 - Better algorithms + new IBL
- Makes it easier to use only events with 2 good b-tags




Mass resolution improvements We have a pair of *b*-jets

- Add muons in the vicinity (semi-lep. decays)
- Simple average jet p_T correction. Accounts for neutrinos, and interplay of resolution and p_T spectrum effects.
- Improvement \sim 18%

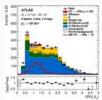
Kinematic Fit

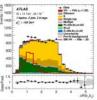
- 2 leptons: final state fully reconstructed
- High resolution on leptons
- Constrain jet kinematics better: $\sum p_{\mathbf{T}}(\ell) = p_{\mathbf{T}}(bb)$ modulo intrinsic $k_{\mathbf{T}}$
- Improvement ∼ 40%

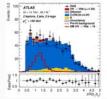
Z+hf, W+hf

- · Same final state as signal
- non-peaking
- Sherpa 2.2.1

Diboson WZ, ZZ


- Peaking at lower mass than the signal
- Larger cross-section
- Softer p_T(V) spectrum
- Sherpa 2.2.1


t, single-top

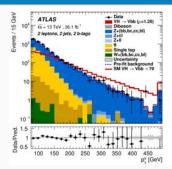

- 2 lepton: same final state as signal
- 0 and 1 leptons: additional jets, and/or missing leptons
- Powheg+Pythia

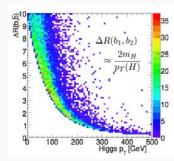
Multiiet

- Very large cross-section and high rejection factors
- Channel-dependent
- Data-driven

Conclusions

- m_{bb} , $\Delta R(b, b)$ very powerful variables
- Better S/B at higher p_T(V)
- S/B depends on number of jets in the event
- Measurement of diboson process excellent validation of the analysis




Improving S/B

- Much harder spectrum for signal than bkgs
- Going to high-p_T improves S/B
- Use it for event classification: $75 < p_T(V) < 150$ GeV, $p_T(V) > 150$ GeV
- Add it in our MVAs as well
- Need large bkg statistics in tails of distributions!

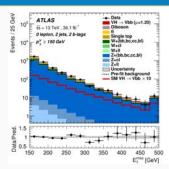
Topology

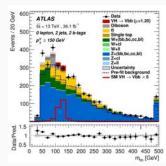
- ullet H o bar b is a simple 2-body decay
- At high $p_{\mathbf{T}}$, can cut hard on $\Delta R(b,b)$ with very high signal efficiency
- Helps reducing backgrounds significantly
 - Most prominently t\u00e4

Z selection

- MET trigger
- MET>150 GeV
- Veto leptons p_T >7 GeV

Higgs candidate

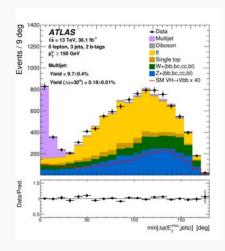

- 2 b-tagged jets. Leading p_{T} >45 GeV
- 1 additional jet max


Anti-QCD

Angular cuts

Signal Acceptance

- \sim 20% of expected signal events are WH $(\tau \nu)$
- acceptance for ggZH 70% larger than for qqZH
 - Due to harder $p_{\mathbf{T}}(V)$ spectrum



Multijet events

- Typically arise from jets with large fluctuations in their interaction
- MET aligned with jet
- Cuts on $\min(\Delta\phi(E_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jets}))$, $\Delta\phi(E_{\mathrm{T}}^{\mathrm{miss}}, bb)$, $\Delta\phi(b1, b2)$ extremely efficient
- ⇒ Negligible remaining multijet contribution

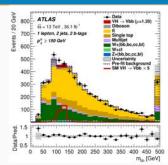
Non-collisional backgrounds

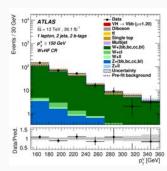
- Usual backgrounds for hadronic final states
- Negligible when requiring 2 b-tags

W selection

- Single-electron or MET trigger
- Well identified, isolated electron (>27 GeV) or muon (>25 GeV)
- Veto additional leptons p_{T} >7 GeV
- $p_{\rm T}(W) > 150 {\rm GeV}$

Higgs candidate

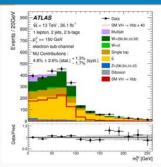

- ullet 2 b-tagged jets. Leading $p_{
 m T}$ >45 ${
 m GeV}$
- 1 additional jet max

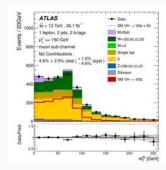

Anti-QCD

• MET>30 GeV in electron channel

W+hf control region

- $m_{bb} < 75~{
 m GeV}$ and $m_{
 m top} > 225~{
 m GeV}$
- >75% pure




Multijet events

- From semi-lep decays, or from hadrons (electron channel)
- Reduced by tightening the lepton isolation and ID criteria
- Isolation tuned for the analysis (need tight isolation at high- $p_{\mathbf{T}}$)

Multijet estimation

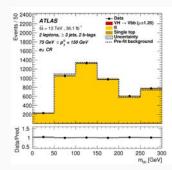
- Separate in electron and muon events
- Templates from inverted isolation
- · Corrected for bias in kinematics
- Normalization from fit to $m_T(W)$

Z selection

- Single-lepton triggers
- 2 electrons or muons. Leading $p_{\rm T}$ >27 GeV, subleading $p_{\rm T}$ >7 GeV
- Z mass: 81 $< m_{\ell\ell} <$ 101 GeV
- 75 < $p_{\mathrm{T}}(Z)$ < 150 GeV, or $p_{\mathrm{T}}(Z)$ > 150 GeV

Higgs candidate

- 2 b-tagged jets. Leading p_T >45 GeV
- 0, or \geq 1 additional jets

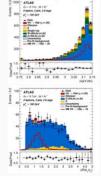

Top $e\mu$ control region

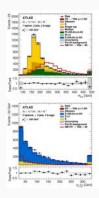
- Opposite-flavour events
- 99% pure

Signal Acceptance

- acceptance for ggZH twice larger than for qqZH
 - Due to harder $p_T(V)$ spectrum

MVA setup

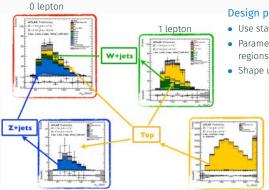

- · Pretty standard BDT analysis
- Input variables and hyper-parameters tuned to yield best sensitivity


Variables

- Kinematic variables, some specific to 3-jet regions
- m_{bb} , $\Delta R(b, b)$ and $p_T(V)$ most important ones
- ullet Others depend on channel, e.g $m_{\ell\ell}$ in 2-lepton

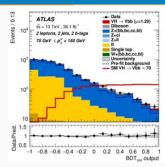
Sensitivity

 Typically S/B from few % to few tens of % in high sensitivity bins



Philosophy

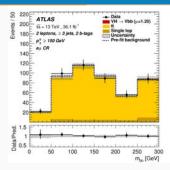
- Large backgrounds with many differences
- Bkg composition varies significantly over a large phase space
- Want to constrain modelling of bkg from data
 - Use as many regions as possible
- Much easier when cuts and phase space are similar among the channels
- Requires delicate understanding of the extrapolation from one region to another

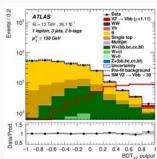

Design principles

- Use state-of-the-art MC generators
- Parametrize extrapolation uncertainties across regions as uncertainties on ratios of yields
- Shape uncertainties on BDTs

Principle

- Rely on MEPS@NLO (multi-jet merging at NLO) with up to 2 extra jets
- 2 lepton low p_T(V) can constrain Z normalizations, shapes
- 1 lepton Whf CR constrains W norm.
- \Rightarrow Normalization factors ~ 1.25
 - Extrapolations to 0-lepton or 1-lepton SR needed
 - Uncertainties on flavour composition
 - BDT shapes: through m_{bb} and $p_{\mathbf{T}}(V)$ variations





Principle

- 2 lepton vs 0/1 lepton: different phase space
- ullet 2 lepton $e\mu$ and 0/1 lepton 3-jet regions very pure
- Normalization factors: \sim 0.9 for 0/1 lepton, \sim 1.0 for 2-lepton
- Uncertainties needed for extrapolation to 0/1 lepton 2-jet regions
- ullet BDT shapes: through m_{bb} and $p_{f T}(V)$ variations

Multijet in 1 lepton

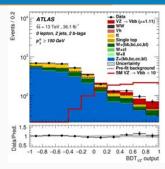
Large shape and norm. effects on the data-driven estimate

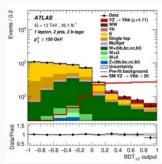
Signal and Diboson

- No contraints from data
- Follow standard recipes for systematics
- Signal: Separate systematics on production (correlated with other channels in future Higgs combinations) from acceptance effects

Signal				
Cross-section (scale)	0.7% (qq), 27% (gg)			
Cross-section (PDF)	$1.9\% (qq \rightarrow WH), 1.6\% (qq \rightarrow ZH), 5\% (qq)$			
Branching ratio	1.7 %			
Acceptance from scale variations (var.)	2.5 - 8.8% (Stewart-Tackmann jet binning method)			
Acceptance from PS/UE var. for 2 or more jets	10 - 14% (depending on lepton channel)			
Acceptance from PS/UE var. for 3 jets	13%			
Acceptance from PDF+as var.	0.5 - 1.3%			
m_{hh} , p_T^V , from scale var.	S			
man, pT, from PS/UE var.	S			
man, pr, from PDF+ou var.	S			
pr from NLO EW correction	8			

N. Morange (LAL Orsay) 29/38

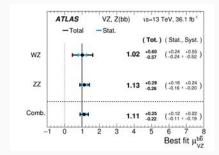


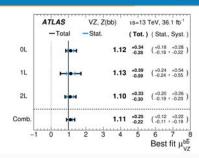

A must-have for VHbb

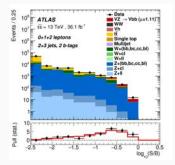
- Train the BDTs to look for WZ + ZZ instead of VH
- Done before looking at VH
- Robust validation of background model and associated uncertainties
- Critical to convince ourselves we are ready to unblind!

Analysis strategy

- One main likelihood fit
- BDT in the 8 SR
- ullet m_{bb} in the 4 top $e\mu$ CR
- Normalization in the 2 W+hf CR
- Systematics parametrized as nuisance parameters

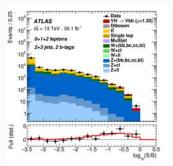


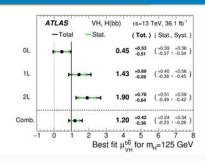


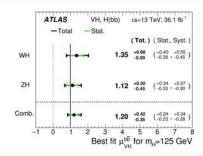


Results

- Clear observation: 5.8σ (5.3 exp.)
- · Agreement with SM
- Excellent agreement between channels
- Much better sensitivity to ZZ than to WZ: combinatorics; impact of low p_T(V) region
- \Rightarrow Ready to unblind VH!

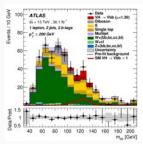


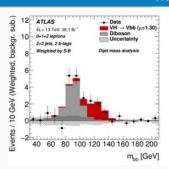

N. Morange (LAL Orsay) 31/38

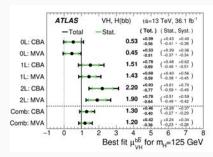


We have it!

- Evidence for bb decay at 3.5σ (3.0 exp.)
- Dominated by systematics
- Channels compatible at 10% level
- 2.4σ for WH, 2.6σ for ZH: VHbb most sensitive channel for VH production
- As cross-sections:
 - $\sigma(WH) \times B(Hbb) = 1.08^{+0.54}_{-0.47} \text{ pb}$
 - $\sigma(ZH) \times B(Hbb) = 0.57^{+0.26}_{-0.23} \text{ pb}$




m_{bb} fit


- Important cross-check to test robustness of result
- Cut $p_{\rm T}(V) >$ 150 GeV into 150 200 and > 200 GeV
- Add simple cuts on: $\Delta R(b,b)$, $m_T(W)$ (1 lepton), E_T^{miss} significance (2 lepton)
- Then fit m_{bb}!

Results

- Evidence at 3.5σ (2.8σ exp.)
- Consistent with MVA in all channels

What limits us on the road to 5σ ?

b-tagging both b and c jet tagging corrections

Will improve with time

Background modelling Z+hf, W+hf, tt

- Better generators ?
- Understand better differences between generators
- Reduce uncertainties through specific SM measurements
- More data-driven approaches

Signal modelling dominated by PS/hadronization

· Needs better understanding of our MCs

MC stats never-ending race between data stat and MC stat

- Improve on MC filters
- Not easy in all cases, e.g tt phase space in 0/1-lepton
- Improve on MC generation speed

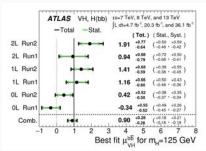
σ_{μ}
0.39
0.24
0.31
0.03
0.03
0.01

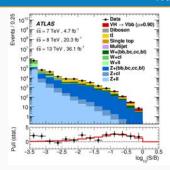
	b-jets	0.09
b-tagging	c-jets	0.04
	light jets	0.04
	extrapolation	0.01

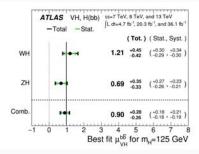
0.01
0.04

Theoretical and modelling uncertainties Signal 0.17

Floating normalisations	0.07
Z + jets	0.07
W + jets	0.07
$t\bar{t}$	0.07
Single top quark	0.08
Diboson	0.02
Multijet	0.02
MC statistical	0.13



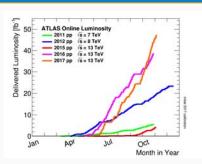

Combination How to correlate systematics?

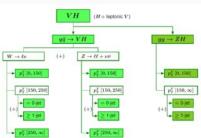

- Difficult to be sure in many cases (e.g b-tagging, when new detector / new algo?)
- Correlate b-jet energy scale uncertainty, and Higgs production cross-sections
- Test that other correlations have little impact

Results

- Evidence at 3.6σ (4.0 exp.)
- Compatibility of the 6 measurements: 7%

N. Morange (LAL Orsay) 35/38



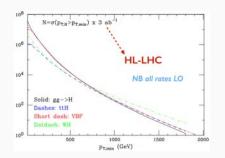

Next step: observation!

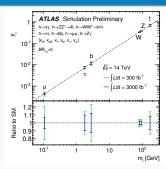
- 2017: more stat than 2016!
- Without systematics, observation would be a no-brainer
- Hard work needed on MC stat generation, background modelling, b-tagging calibration

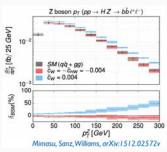
Signal Template Cross-sections (?)

- Standardized definition of fiducial regions for Higgs productions
- Fiducial definitions not too far from what can be achieved with differential measurements
- Allows easy combination of Higgs channels and across experiments
- Allows interpretation in EFT bases
- Goal for VH(bb): $p_T(V)$ measurement

N. Morange (LAL Orsay) 36/38

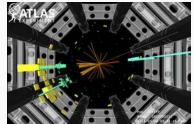



Couplings


- · Projections from ATLAS and CMS
- Coupling to b-quarks known in the 5–10% range?
- Very much dependent on the systematics we can achieve

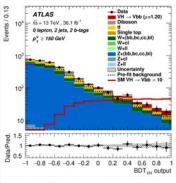
What for?

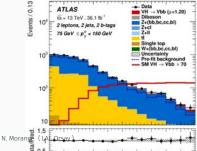
- ullet Deviations from New Physics can be mostly at high- $p_{
 m T}$
- VH dominates total Higgs x-sec for $p_T(H) > 800 \text{ GeV}$!
- Decent statistics expected even in this regime

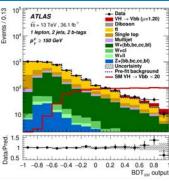


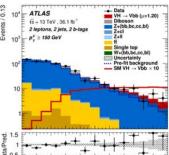
- Evidence for *Hbb* decay at 3.6σ in ATLAS
 - arXiv:1708.03299
- · Similar result by our CMS colleagues
 - arXiv:1709.07497
- Interesting to look in all production modes
 - As evidenced by the nice VBF+ γ or $t\overline{t}H(bb)$
- Systematically limited in several channels
 - Adding more data will bring diminishing returns
 - Need to reduce systematics
- Next goals: observation and measurements!

SUPPLEMENTARY MATERIAL






Pt1	0-le	pton	1-le	epton		2-lepton		
Signal regions	$p_{\rm T}^{V} > 150$ (GeV, 2-b-tag	$p_{\rm T}^V > 150$ (GeV, 2-b-tag	75 GeV < 1	$v_{\rm T}^{V} < 150 {\rm ~GeV}, 2\text{-}b\text{-}{\rm tag}$	$p_{\rm T}^{V} > 150$ (GeV, 2-b-tag
Sample	2-jet	3-jet	2-jet	3-jet	2-jet	≥3-jet	2-jet	≥3-jet
Z + ll	9.0 ± 5.1	15.5 ± 8.1	< 1	-	9.2 ± 5.4	35 ± 19	1.9 ± 1.1	16.4 ± 9.3
Z + cl	21.4 ± 7.7	42 ± 14	2.2 ± 0.1	4.2 ± 0.1	25.3 ± 9.5	105 ± 39	5.3 ± 1.9	46 ± 17
Z + HF	2198 ± 84	3270 ± 170	86.5 ± 6.1	186 ± 13	3449 ± 79	8270 ± 150	651 ± 20	3052 ± 66
W + ll	9.8 ± 5.6	17.9 ± 9.9	22 ± 10	47 ± 22	< 1	< 1	< 1	< 1
W + cl	19.9 ± 8.8	41 ± 18	70 ± 27	138 ± 53	< 1	< 1	< 1	< 1
W + HF	460 ± 51	1120 ± 120	1280 ± 160	3140 ± 420	3.0 ± 0.4	5.9 ± 0.7	< 1	2.2 ± 0.2
Single top quark	145 ± 22	536 ± 98	830 ± 120	3700 ± 670	53 ± 16	134 ± 46	5.9 ± 1.9	30 ± 10
$t\bar{t}$	463 ± 42	3390 ± 200	2650 ± 170	20640 ± 680	1453 ± 46	4904 ± 91	49.6 ± 2.9	430 ± 22
Diboson	116 ± 26	119 ± 36	79 ± 23	135 ± 47	73 ± 19	149 ± 32	24.4 ± 6.2	87 ± 19
Multi-jet e sub-ch.	WIND FOUND	0.000	102 ± 66	27 ± 68	6004000000	-		A.V. (2)
Multi-jet μ sub-ch.	-	-	133 ± 99	90 ± 130	-		-	
Total bkg.	3443 ± 57	8560 ± 91	5255 ± 80	28110 ± 170	5065 ± 66	13600 ± 110	738 ± 19	3664 ± 56
Signal (fit)	58 ± 17	60 ± 19	63 ± 19	65 ± 21	25.6 ± 7.8	46 ± 15	13.6 ± 4.1	35 ± 11
Data	3520	8634	5307	28168	5113	13640	724	3708


Control regions	1-lepton		2-lepton				
Control regions	$p_{\rm T}^{V} > 150$	GeV, 2-tag	75 GeV < 1	$75 \text{ GeV} < p_{\mathrm{T}}^{V} < 150 \text{ GeV}, 2\text{-tag}$		$p_{\rm T}^{V} > 150 {\rm ~GeV}, 2{\rm -tag}$	
Sample	2-jet	3-jet	2-jet	≥3-jet	2-jet	≥3-jet	
Z + ll	< 1	< 1	< 1	< 1	< 1	< 1	
Z+d	-	< 1	< 1	< 1	< 1	< 1	
Z + HF	6.6 ± 0.7	19.3 ± 1.4	2.1 ± 0.2	2.8 ± 0.2	< 1	1.2 ± 0.1	
W + ll	1.1 ± 0.1	2.9 ± 0.1	-	-	-	-	
W + cl	2.6 ± 1.1	8.7 ± 3.7		-		-	
W + HF	234 ± 21	594 ± 45	3.0 ± 0.3	2.7 ± 0.3	< 1	< 1	
Single top quark	10.3 ± 2.8	40 ± 14	50 ± 15	127 ± 45	5.8 ± 1.8	27.9 ± 9.8	
tī	24.8 ± 7.8	107 ± 29	1437 ± 41	4852 ± 85	48.8 ± 3.8	431 ± 21	
Diboson	5.6 ± 1.9	12.1 ± 4.2		< 1		-	
Multi-jet e sub-ch.	8.2 ± 5.3	2.2 ± 5.6	-	-		-	
Multi-jet μ sub-ch.	6.8 ± 5.1	3.7 ± 5.4		-	-	-	
Total bkg.	300 ± 16	791 ± 27	1492 ± 37	4985 ± 68	55.2 ± 3.9	461 ± 19	
Signal (fit)	< I	1.2 ± 0.4	< 1	< 1	< 1	<1	
Data	302	790	1489	4967	50	470	

MODELLING TABLES

	Z + jets
Z + ll normalisation	18%
Z + cl normalisation	23%
Z + bb normalisation	Floating (2-jet, 3-jet)
Z + bc-to-Z + bb ratio	30 - 40%
Z + cc-to- $Z + bb$ ratio	13 - 15%
Z + bl-to- $Z + bb$ ratio	20 - 25%
0-to-2 lepton ratio	7%
m_{bb}, p_T^V	S
	W + jets
W + ll normalisation	32%
W + cl normalisation	37%
W + bb normalisation	Floating (2-jet, 3-jet)
W + bl-to-W + bb ratio	26% (0-lepton) and 23% (1-lepton)
W + bc-to-W + bb ratio	15% (0-lepton) and 30% (1-lepton)
W + cc-to-W + bb ratio	10% (0-lepton) and 30% (1-lepton)
0-to-1 lepton ratio	5%
W + HF CR to SR ratio	10% (1-lepton)
mas, Pr	S

tt (all are uncorrei	ated between the 0+1 and 2-lepton channels)
tt normalisation	Floating (0+1 lepton, 2-lepton 2-jet, 2-lepton 3-jet)
0-to-1 lepton ratio	8%
2-to-3-jet ratio	9% (0+1 lepton only)
W + HF CR to SR ratio	25%
m_{bb} , p_T^V	S
	Single top quark
Cross-section	4.6% (s-channel), 4.4% (t-channel), 6.2% (Wt)
Acceptance 2-jet	17% (t-channel), 35% (Wt)
Acceptance 3-jet	20% (t-channel), 41% (Wt)
m_{bb} , p_T^V	S (t-channel, Wt)

	ZZ
Normalization 0-to-2 lepton ratio Acceptance from scale variations (var.) Acceptance from PS/UE var. for 2 or inore jets Acceptance from PS/UE var. for 3 jets mas, p ² ₁ , from scale var. mas, p ² ₁ , from PS/UE var. mas, prom marix-element var.	207% 10 - 18% (Stewart - Torkensum jet binning method) 5,5% (O-lepton), 8,5% (2-lepton) 7,5% (O-lepton), 3,1% (2-lepton) 8 (courelated with WZ uncertainties) 8 (courelated with WZ uncertainties) 8 (courelated with WZ uncertainties)
	WZ
Normalization Det-I lepton ratio Acceptance from scale var. Acceptance from PS/UE var. for 2 or more jets Acceptance from PS/UE var. for 3 jets ma_p_p_, from scale var. ma_p_p_, from PS/UE var. ma_n_p, from PS/UE var.	26% 117 13 - 21% (Stewart Tackmann jet bluning method 3.9% S (correlated with ZZ uncertainties) S (correlated with ZZ uncertainties) S (correlated with ZZ uncertainties)
	UW
Normalisation	25%