Neutrino Mass and Lepton Mixing

Werner Rodejohann RTG Seminar 24/06/15

Neutrino properties in short

- massive
- mix
- probably Majorana

Neutrinos and the Standard Model

Standard Model of Elementary Particle Physics $SU(3)_C \times SU(2)_L \times U(1)_Y$

Neutrinos and the Standard Model

Standard Model of Elementary Particle Physics $SU(3)_C \times SU(2)_L \times U(1)_Y$

Standard Model

add m_{ν}

Species	#	\sum	_	Species	#	\sum
Quarks	10	10		Quarks	10	10
Leptons	3	13		Leptons	12 (10)	22 (20)
Charge	3	16	~	Charge	3	25~(23)
Higgs	2	18		Higgs	2	27 (25)
strong CP	1	19		strong CP	1	28~(26)

Standard Model*

add $m_{ u}$

Species	#	\sum	Species	#	\sum
Quarks	10	10	Quarks	10	10
Leptons	3	13	Leptons	$12 \ (10)$	22 (20)
Charge	3	16	charge	3	25~(23)
Higgs	2	18	Higgs	2	27~(25)
strong CP	1	19	strong CP	1	28~(26)

- plus new energy scale
- plus new representation
- plus new concepts
- plus...

Neutrino parameters at low energy

$$\mathcal{L} = \frac{1}{2} \nu^T m_{\nu} \nu$$
 with $m_{\nu} = U \operatorname{diag}(m_1, m_2, m_3) U^T$

and Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

$$U = \begin{pmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i\delta} \\ -s_{12} c_{23} - c_{12} s_{23} s_{13} e^{i\delta} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{i\delta} & s_{23} c_{13} \\ s_{12} s_{23} - c_{12} c_{23} s_{13} e^{i\delta} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{i\delta} & c_{23} c_{13} \end{pmatrix} P$$

with $P = \operatorname{diag}(1, e^{i\alpha}, e^{i(\beta+\delta)})$ (\leftrightarrow Majorana, violation of lepton number) \Rightarrow 3 angles, 3 phases, 3 masses

3 Tasks

- determine parameters
- check if minimal description ("3 Majorana neutrino paradigm") is correct
- explain parameters

PMNS matrix is given by

 $|U| = \begin{pmatrix} 0.801\dots0.845 & 0.514\dots0.580 & 0.137\dots0.158 \\ 0.225\dots0.517 & 0.441\dots0.699 & 0.614\dots0.793 \\ 0.246\dots0.529 & 0.464\dots0.713 & 0.590\dots0.776 \end{pmatrix}$

compare with CKM:

 $|V| = \begin{pmatrix} 0.97427 \pm 0.00014 & 0.22536 \pm 0.00061 & 0.00355 \pm 0.00015 \\ 0.225220 \pm 0.000615 & 0.973434 \pm 0.00015 & 0.0414 \pm 0.0012 \\ 0.00886^{+0.00033}_{-0.00032} & 0.0405^{+0.0011}_{-0.0012} & 0.99914 \pm 0.00005 \end{pmatrix}$

Why so different?? \leftrightarrow Flavour symmetries?

why m_{ν} tiny? \Rightarrow Seesaw Mechanism

Mass scale and ordering

scale and normal/inverted fundamental input for model builders!

scale and normal/inverted fundamental input for model builders!

typical: $m_{
u} \propto 1/\Lambda_{
m NP}$

scale and normal/inverted fundamental input for model builders!

Status 24/06/2015

9 physical parameters in m_{ν}

- θ_{12} and $m_2^2 m_1^2$
- θ_{23} and $|m_3^2 m_2^2|$
- θ₁₃
- m_1 , m_2 , m_3
- $sgn(m_3^2 m_2^2)$
- Dirac phase δ
- Majorana phases α and β

Lessons

- consistent picture emerging
- there are 3 generation effects!
- about $1, 2\sigma$ hint for $\theta_{23} \neq \pi/4$, $\delta \neq 0$
- no hint for mass ordering
- future program of experiments to pin down, make more precise
- all is well...?

Sterile Neutrinos??

- LSND/MiniBooNE/gallium
- cosmology
- BBN
- *r*-process nucleosynthesis in Supernovae
- reactor anomaly

	$\Delta m^2_{41} [\mathrm{eV^2}]$	$ U_{e4} $	$ U_{\mu4} $	$\Delta m^2_{51} [\mathrm{eV}^2]$	$ U_{e5} $	$ U_{\mu 5} $	
3+2/2+3	0.47	0.128	0.165	0.87	0.138	0.148	
1+3+1	0.47	0.129	0.154	0.87	0.142	0.163	
or $\Delta m^2_{41} = 1.78 \text{ eV}^2$ and $ U_{e4} ^2 = 0.151$							
	Kopp,	Maltoni	, Schwet	z, 1103.4570			

Sterile Neutrinos

- \ll eV: missing upturn of P_{ee}^{\odot}
- eV: SBL Anomalies
- eV: N_{eff} (Cosmology, BBN), *r*-process
- (eV: BICEP-2 and Planck)
- keV: Warm Dark Matter
- TeV: Z-width, NuTeV
- 10¹⁰ GeV: Leptogenesis
- 10^{15} GeV: Seesaw Mechanism

New New Physics

- Sterile Neutrinos...
 - ... can mix with active neutrinos
 - ... can couple to Higgs
 - ... can couple to BSM physics
- good reasons to look for other exotic things...
 - ...long-range forces
 - ...non-standard interactions
 -CPT violation
 - ...Lorentz invariance violation

—

why m_{ν} tiny? \Rightarrow Seesaw Mechanism

Effective Suppression

There is only 1 dimension-5 operator (Weinberg 1979):

can be UV-completed by introducing $N_R \sim (1,0)$ with couplings

 $1): \quad Y_{\nu} \,\bar{L} \,\Phi \,N_R \to m_D \,\bar{\nu}_L \,N_R$ $2): \qquad M_R \,\bar{N}_R^c \,N_R$

(one of only three tree-level realizations of Weinberg-operator)

Origin of small neutrino masses

Simplest concept^a introduces 3 new aspects:

- fermionic singlets $N_R \sim (1,0)$
- new energy scale $M_R~(\propto 1/m_{
 u})$
- lepton number violation

$$m_
u = m_D^2/M_R = m_{
m SM}^2/M_R = m_{
m SM}\,\epsilon$$
 with $\epsilon = m_{
m SM}/M_R$

^anaturally realized in SO(10) models!

Type I Seesaw Formalism

$$\mathcal{L} = \frac{1}{2} (\bar{\nu}_L, \, \bar{N}_R^c) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix}$$

(arbitrary...) 6×6 (?) matrix, for $M_R \gg m_D$ diagonalized with

$$\mathcal{U}_{\nu} \simeq \begin{pmatrix} 1 - \frac{1}{2}BB^{\dagger} & B \\ -B^{\dagger} & 1 - \frac{1}{2}B^{\dagger}B \end{pmatrix} \begin{pmatrix} U & 0 \\ 0 & V_R \end{pmatrix} \text{ with } B = m_D M_R^{-1}$$

light neutrinos:

$$m_{\nu} = -m_D M_R^{-1} m_D^T = U \operatorname{diag}(m_1, m_2, m_3) U^T$$

light-heavy mixing (unitarity violation):

$$\theta \sim \frac{m_D}{M_R} = \sqrt{\frac{m_\nu}{M_R}} \simeq 10^{-7} \left(\frac{\text{TeV}}{M_R}\right)^{-1/2}$$

BUT: these are matrices, can be increased up to limits of $\mathcal{O}(10^{-2})$

$$\begin{split} &\tilde{\mathsf{Formalism: N}^n\mathsf{LO-Terms}} \\ &\tilde{m}_{\nu} = -m_D^T\,M_R^{-1}\,m_D + \frac{1}{2}\,m_D^T\,M_R^{-1}\,X\,M_R^{-1}\,m_D \\ &\tilde{M}_R = M_R + \frac{1}{2}\,X \\ &\text{with } X \equiv A + A^T\,, \text{ where } A \equiv m_D\,m_D^\dagger\,(M_R^*)^{-1} \text{ and NNLO terms} \\ &\tilde{m}_{\nu}^{\mathsf{NNLO}} = \frac{1}{2}m_D^TM_R^{-1} \Big[\frac{1}{4}AM_R^{-1}A + \frac{1}{4}A^TM_R^{-1}A^T + \frac{1}{2}A^TM_R^{-1}A + \frac{1}{2}(M_R^*)^{-1}A^*A^T \\ &+ \frac{1}{2}AA^\dagger(M_R^*)^{-1} + AA^*(M_R^*)^{-1} + (M_R^*)^{-1}A^\dagger A^T \Big] M_R^{-1}m_D \\ &\tilde{M}_R^{\mathsf{NNLO}} = -\frac{1}{2} \Big[AA^*(M_R^*)^{-1} + (M_R^*)^{-1}A^\dagger A^T + \frac{1}{4}AM_R^{-1}A + \frac{1}{4}A^TM_R^{-1}A^T \Big] \end{split}$$

Hettmansperger, Lindner, W.R., JHEP 1104

The 3 basic seesaw models

i.e. tree level ways to generate the dim 5 operator

Scalar triplet:

(type-II seesaw)

 M_{Δ} : Δ

Right-handed singlet: (type-l seesaw)

 $m_{\nu} = Y_N^T \frac{1}{M_N} Y_N v^2 \qquad m_{\nu} = Y_\Delta \frac{\mu_\Delta}{M_\Delta^2} v^2$

Minkowski; Gellman, Ramon, Slansky; Yanagida;Glashow; Mohapatra, Senjanovic Magg, Wetterich; Lazarides, Shafi; Mohapatra, Senjanovic; Schechter, Valle Fermion triplet: (type-III seesaw)

$$m_{\nu} = Y_{\Sigma}^T \frac{1}{M_{\Sigma}} Y_{\Sigma} v^2$$

Foot, Lew, He, Joshi; Ma; Ma, Roy;T.H., Lin, Notari, Papucci, Strumia; Bajc, Nemevsek, Senjanovic; Dorsner, Fileviez-Perez;....

slide by T. Hambye

Tests of Seesaw? naively, $M_R = m_D^2/m_\nu = v^2/\sqrt{\Delta m_A^2} \sim 10^{15} \text{ GeV}...$ Seesaw portal: $\bar{L} \Phi N_R \longrightarrow m_D$: Vertex of L, Φ, N_R !

- $N_R \to L \Phi$: leptogenesis
- $L_{\alpha} \to N_R \Phi \to L_{\beta}$: lepton flavor violation
- $\Phi \rightarrow N_R L \rightarrow \Phi$: vacuum stability, naturalness

Higgs and Seesaw Mechanism

Naturallness:

Paths to Neutrino Mass

approach	ingredient	quantum number of messenger	L	$m_{ u}$	scale
"SM" (Dirac mass)	RH $ u$	$N_R \sim (1,0)$	$h\overline{N_R}\Phi L$	hv	$h = \mathcal{O}(10^{-12})$
"effective" (dim 5 operator)	new scale + LNV	-	$h \ \overline{L^c} \Phi \Phi L$	$\frac{h v^2}{\Lambda}$	$\Lambda = 10^{14} \mathrm{GeV}$
"direct" (type II seesaw)	Higgs triplet + LNV	$\Delta \sim (3, -2)$	$h\overline{L^{c}}\Delta L + \mu\Phi\Phi\Delta$	hv_T	$\Lambda = rac{1}{h\mu} M_{\Delta}^2$
"indirect 1" (type I seesaw)	RH ν + LNV	$N_R \sim (1,0)$	$h\overline{N_R}\Phi L + \overline{N_R}M_RN_R^c$	$\frac{(hv)^2}{M_R}$	$\Lambda = \frac{1}{h} M_R$
"indirect 2" (type III seesaw)	fermion triplets + LNV	$\Sigma \sim (3,0)$	$h\overline{\Sigma} L\Phi + \mathrm{Tr}\overline{\Sigma}M_{\Sigma}\Sigma$	$rac{\left(hv ight)^2}{M_{\Sigma}}$	$\Lambda = \frac{1}{h} M_{\Sigma}$

plus seesaw variants (linear, double, inverse,...)

plus radiative mechanisms

plus extra dimensions

plusplusplus

Consequence of almost all mechanisms: lepton number violation

Neutrinoless double beta decay $(A, Z) \rightarrow (A, Z + 2) + 2e^{-}$

$$|m_{ee}| \equiv \left| \sum U_{ei}^2 m_i \right| = \left| |U_{e1}|^2 m_1 + |U_{e2}|^2 m_2 e^{2i\alpha} + |U_{e3}|^2 m_3 e^{2i\beta} \right|$$

 $= f\left(\theta_{12}, |U_{e3}|, m_i, \operatorname{sgn}(\Delta m_A^2), \alpha, \beta\right)$

7 of 9 parameters!

...Lifetime vs. smallest mass

Exciting times

HDM-limit from 2001 improved in 2012/13...

Name	lsotope	source = detektor; kalorimetric with			source \neq detector
		ΔE high	ΔE low	topology	topology
AMoRE	¹⁰⁰ Mo	\checkmark	_	-	-
CANDLES	48 Ca	-	\checkmark	-	-
COBRA	116 Cd (und 130 Te)	-	-	\checkmark	-
CUORE	130 Te	\checkmark	—	-	-
CUPID	82 Se / 100 Mo / 116 Cd / 130 Te	\checkmark	-	-	-
DCBA/MTD	82 Se / 150 Nd	-	-	-	\checkmark
EXO	136 Xe	-	-	\checkmark	-
GERDA	⁷⁶ Ge	\checkmark	-	-	-
KamLAND-Zen	136 Xe	-	\checkmark	-	-
LUCIFER	82 Se / 100 Mo / 130 Te	\checkmark	-	-	-
LUMINEU	100 Mo	\checkmark	-	-	-
MAJORANA	⁷⁶ Ge	\checkmark	-	-	-
MOON	82 Se / 100 Mo / 150 Nd	-	_	-	\checkmark
NEXT	136 Xe	-	-	\checkmark	-
SNO+	130 Te	-	\checkmark	_	-
SuperNEMO	82 Se / 150 Nd	-	_	_	\checkmark
XMASS	¹³⁶ Xe	-	\checkmark	_	-

Neutrino mass

$$m({\rm heaviest})\gtrsim \sqrt{|m_3^2-m_1^2|}\simeq 0.05~{\rm eV}$$

complementary methods to measure:

Method	Observable	cur. [eV]	near/far [eV]	pro	con
Kurie	$\sqrt{\sum U_{ei} ^2 m_i^2}$	2.3	0.2/0.1	model-indep.; theo. clean	final?; weakest
Cosmo.	$\sum m_i$	0.7	0.3/0.05	best; NH/IH	systemat.; model-dep.
0 uetaeta	$ \sum U_{ei}^2 m_i $	0.3	0.1/0.05	fundament.; NH/IH	model-dep.; theo. dirty
Complementarity!

Sterile Neutrinos and $0\nu\beta\beta$

- recall: $|m_{ee}|_{
 m NH}^{
 m act}$ can vanish and $|m_{ee}|_{
 m IH}^{
 m act} \sim 0.03$ eV cannot vanish
- $|m_{ee}| = |\underbrace{|U_{e1}|^2 m_1 + |U_{e2}|^2 m_2 e^{2i\alpha} + |U_{e3}^2| m_3 e^{2i\beta}}_{m_{ee}^{act}} + \underbrace{|U_{e4}|^2 m_4 e^{2i\Phi_1}}_{m_{ee}^{st}}$
- sterile contribution to $0\nu\beta\beta$ (assuming 1+3):

$$|m_{ee}|^{\rm st} \simeq \sqrt{\Delta m_{\rm st}^2} |U_{e4}|^2 \simeq 0.03 \text{ eV} \begin{cases} \gg |m_{ee}|_{\rm NH}^{\rm act} \\ \simeq |m_{ee}|_{\rm IH}^{\rm act} \end{cases}$$

• $\Rightarrow |m_{ee}|_{\rm NH}$ cannot vanish and $|m_{ee}|_{\rm IH}$ can vanish! usual phenomenology gets completely turned around!

Light Steriles: Usual plot gets completely turned around!

Interpretation of Neutrinoless Double Beta Decay

• Standard Interpretation:

Neutrinoless Double Beta Decay is mediated by light and massive Majorana neutrinos (the ones which oscillate) and all other mechanisms potentially leading to $0\nu\beta\beta$ give negligible or no contribution

• Non-Standard Interpretations:

There is at least one other mechanism leading to Neutrinoless Double Beta Decay and its contribution is at least of the same order as the light neutrino exchange mechanism

```
W.R., Int. J. Mod. Phys. E20, 1833-1930 (2011)
```

• Standard Interpretation:

• Non-Standard Interpretations:

Why should we expect Lepton Number Violation?

- L and B accidentally conserved in SM
 - L can be made global symmetry...
 - L can be made local symmetry...
- (100ϵ) % of all models BSM violate L by 1 or 2 units
- effective theory: $\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \mathcal{L}_{LNV} + \frac{1}{\Lambda^2} \mathcal{L}_{LFV, BNV, LNV} + \dots$
- baryogenesis: *B* is violated
- B, L often connected in GUTs
- GUTs have seesaw and Majorana neutrinos

⇒ Lepton Number Violation as important as Baryon Number Violation $0\nu\beta\beta$ is **NOT** a neutrino mass experiment!!

Energy Scale:

Note: *standard amplitude* for light Majorana neutrino exchange:

$$\mathcal{A}_{l} \simeq G_{F}^{2} \, \frac{|m_{ee}|}{q^{2}} \simeq 7 \times 10^{-18} \left(\frac{|m_{ee}|}{0.5 \text{ eV}}\right) \, \text{GeV}^{-5} \simeq 2.7 \, \text{TeV}^{-5}$$

if new heavy particles are exchanged:

$$\mathcal{A}_{
m h} \simeq rac{c}{M^5}$$

 \Rightarrow for $0\nu\beta\beta$ holds:

$$1 \text{ eV} = 1 \text{ TeV}$$

\Rightarrow Phenomenology in colliders, LFV

$$T_{1/2}^{0\nu}(m_{\nu} = 1 \,\mathrm{eV}) = T_{1/2}^{0\nu}(M = 1 \,\mathrm{TeV})$$

- RPV SUSY
- left-right symmetric theories
- heavy neutrinos
- Color-octets
- Leptoquarks
- effective operators
- extra dimensions
- . . .

Constraints from Lepton Flavor Violation

Type II dominance (Tello *et al.*, 1011.3522)
$$m_{\nu} = m_L - m_D M_R^{-1} m_D^T = v_L f - \frac{v^2}{v_R} Y_D f^{-1} Y_D^T \longrightarrow v_L f$$

 $\Rightarrow m_{\nu}$ fixes M_R and exchange of N_R with W_R fixed in terms of PMNS:

$$\Rightarrow \mathcal{A}_{N_R} \simeq G_F^2 \left(\frac{m_W}{M_{W_R}}\right)^4 \sum \frac{V_{ei}^2}{M_i} \propto \sum \frac{U_{ei}^2}{m_i}$$

Tri-bimaximal Mixing

$$U_{\rm TBM} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0\\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}}\\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} \end{pmatrix}$$

Harrison, Perkins, Scott (2002)

with mass matrix

$$(m_{\nu})_{\text{TBM}} = U_{\text{TBM}} m_{\nu}^{\text{diag}} U_{\text{TBM}}^{T} = \begin{pmatrix} A & B & B \\ \cdot & \frac{1}{2}(A+B+D) & \frac{1}{2}(A+B-D) \\ \cdot & \cdot & \frac{1}{2}(A+B+D) \end{pmatrix}$$

$$A = \frac{1}{3} \left(2 m_1 + m_2 e^{-2i\alpha} \right), \quad B = \frac{1}{3} \left(m_2 e^{-2i\alpha} - m_1 \right), \quad D = m_3 e^{-2i\beta}$$
$$\Rightarrow \text{Flavor symmetries...}$$

Flavor symmetry issues

- discrete or continuous?
- Abelian or non-Abelian?
- broken at high scale?
- broken at electroweak scale?

How to choose the discrete Non-Abelian group

Group	d	Irr. Repr.'s	Presentation
$D_3 \sim S_3$	6	1, 1′, 2	$A^3 = B^2 = (AB)^2 = 1$
D_4	8	$1_1,\ldots 1_4,2$	$A^4 = B^2 = (AB)^2 = 1$
D_5	10	1 , 1′, 2 , 2′	$A^5 = B^2 = (AB)^2 = 1$
D_6	12	$1_1,\ldots,1_4$, 2, 2'	$A^6 = B^2 = (AB)^2 = 1$
D_7	14	1, 1', 2, 2', 2''	$A^7 = B^2 = (AB)^2 = 1$
A_4	12	1, 1′, 1″, 3	$A^3 = B^2 = (AB)^3 = 1$
$A_5 \sim PSL_2(5)$	60	1, 3, 3′, 4, 5	$A^3 = B^2 = (BA)^5 = 1$
T'	24	1, 1', 1", 2, 2', 2", 3	$A^3 = (AB)^3 = R^2 = 1, \ B^2 = R$
S_4	24	1 , 1', 2 , 3 , 3'	$BM: A^4 = B^2 = (AB)^3 = 1$
			$TB: A^3 = B^4 = (BA^2)^2 = 1$
$\Delta(27) \sim Z_3 \ \rtimes \ Z_3$	27	$1_1,\ldots,1_9,3,\overline{3}$	
$PSL_2(7)$	168	$1,3,\overline{3},6,7,8$	$A^{3} = B^{2} = (BA)^{7} = (B^{-1}A^{-1}BA)^{4} = 1$
$T_7 \sim Z_7 \ times \ Z_3$	21	$1,1',\overline{1'},3,\overline{3}$	$A^7 = B^3 = 1, \ AB = BA^4$

Altarelli, Feruglio, 1002.0211

- smallest group with 3-dim irrep.
- has 3 one-dimensional irreps. 1, 1', 1"
- angle between two faces: $\alpha = 2 \theta_{\text{TBM}}$, where $\sin^2 \theta_{\text{TBM}} = \frac{1}{3}$

Tests of Flavor Symmetry Models

• sometimes: $U = U_{\ell}^{\dagger} U_{\nu}$ with $U_{\ell} \simeq R_{12}$ and neutrino sector:

$$U_{\nu} = \begin{pmatrix} c_{12}^{\nu} & s_{12}^{\nu} & 0\\ \cdot & \cdot & \sqrt{\frac{1}{2}}\\ \cdot & \cdot & \sqrt{\frac{1}{2}} \end{pmatrix} \text{ and } \sin^2 \theta_{12}^{\nu} = \begin{cases} \frac{1}{2} & \text{bimaximal} & S_4\\ \frac{1}{3} & \text{tri-bimaximal} & A_4, T\\ \frac{1}{1+\varphi^2} & \text{Golden Ratio A} & A_5\\ \frac{3-\varphi}{4} & \text{Golden Ratio B} & D_{10}\\ \frac{1}{4} & \text{hexagonal} & D_{12} \end{cases}$$

gives sum-rule $\sin^2 \theta_{12} = \sin^2 \theta_{12}^{\nu} + |U_{e3}| \sin 2\theta_{12}^{\nu} \cos \delta$

- sometimes: neutrino mass sum-rules, e.g. $\tilde{m}_1 + \tilde{m}_2 = \tilde{m}_3$
- sometimes: models broken at electroweak scale...

Chasing the Higgs Ambulance I									
	l	e_R	μ_R	$ au_R$	χ	Φ	ξ		
A_4	<u>3</u>	<u>1</u> 1	<u>1</u> 3	<u>1</u> 2	<u>3</u>	<u>3</u>	<u>1</u> 1		
Z_4	i	i	i	i	1	-1	-1		
$\mathrm{SU}(2)_L$	2	1	1	1	2	1	1		
$\mathrm{U}(1)_Y$	-1/2	-1	-1	-1	1/2	0	0		

Holthausen, Heeck, W.R., Shimizu, NPB896

Chasing the Higgs Ambulance II												
	L_e	L_{μ}	$L_{ au}$	e_R	μ_R	$ au_R$	N_e	N_{μ}	$N_{ au}$	Φ_1	Φ_2	S
$\mathrm{U}(1)_{L_{\mu}-L_{\tau}}$	0	1	-1	0	1	-1	0	1	-1	-2	0	1
$\mathrm{SU}(2)_L$	2	2	2	1	1	1	1	1	1	2	2	1
$\mathrm{U}(1)_Y$	-1/2	-1/2	-1/2	-1	-1	-1	0	0	0	1/2	1/2	0

$$\mathcal{L} = y_{\alpha} \,\overline{L^{\alpha}} \,\delta_{\alpha\beta} \,\ell_R^{\beta} \,\Phi_2 + \xi_{\tau\mu} \,\overline{\tau_L} \,\mu_R \,\Phi_1$$

Holthausen, Heeck, W.R., Shimizu, NPB896

	L_e	L_{μ}	$L_{ au}$	e_R	μ_R	$ au_R$	N_e	N_{μ}	$N_{ au}$	Φ_1	Φ_2
$\mathrm{U}(1)_{L_{\mu}-L_{\tau}}$	0	1	-1	0	1	-1	0	1	-1	-2	0
$\mathrm{SU}(2)_L$	2	2	2	1	1	1	1	1	1	2	2
$\mathrm{U}(1)_Y$	-1/2	-1/2	-1/2	-1	-1	-1	0	0	0	1/2	1/2
–1.5 ()			CMS 2σ BaBar J0%CC	$\frac{2.27}{2.08}$ 1.88 1.69 1.49 1.29 1.10 0.90 0.71 0.51 0.31 0.12 BR ($h \rightarrow \tau \tau$) BR ($h \rightarrow \tau \tau$) _{SM}	(⁽ //) ← 0.01 ← U) 20001 0.001		μτ	ł	±		

Open Neutrino Questions

- Testable with current experiments:
 - Dirac or Majorana?
 - CP violated?
 - mass ordering normal or inverted? Mass scale?
 - θ_{23} maximal?
 - light sterile neutrinos?
- Very hard to address experimentally:
 - scale of neutrino mass generation?
 - explanation of mixing pattern?
 - unification with quarks possible?
 - neutrino CP related to baryon asymmetry?

Summary

- precision era!
- testing the standard paradigm!
- testing models!
- reaching beyond pure neutrino sector!
- influence on new fields!
- exciting new results in sight!

Thank you!

Mixing Angles

$$\begin{array}{c} U = \begin{pmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i\delta} \\ -s_{12} c_{23} - c_{12} s_{23} s_{13} e^{i\delta} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{i\delta} & s_{23} c_{13} \\ s_{12} s_{23} - c_{12} c_{23} s_{13} e^{i\delta} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{i\delta} & c_{23} c_{13} \end{pmatrix} = \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} & \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} & \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \text{atmospheric and} & \text{SBL reactor} & \text{solar and} \\ \text{LBL accelerator} & \text{LBL reactor} \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}} + \epsilon \\ 0 & \sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}} + \epsilon \end{pmatrix} & \begin{pmatrix} 1 & 0 & \epsilon \\ 0 & 1 & 0 \\ \epsilon & 0 & 1 \end{pmatrix} \\ (\sin^2 \theta_{23} = \frac{1}{2} - \epsilon) & (\sin^2 \theta_{13} = \epsilon^2) \\ \Delta m_A^2 & \Delta m_A^2 & \Delta m_{\odot}^2 \end{array}$$

Status of global fits: T2K

- ν_{μ} disappearence: θ_{23}
- ν_e appearence: θ_{13} and δ
- reactor $\bar{\nu}_e$ disappearence as input: δ

rather mild preference for $\delta = 3\pi/2$

Recent Results $\Gamma^{0\nu} = G(Q,Z) \, |\mathcal{M}(A,Z) \, \eta|^2$

• ⁷⁶Ge:

- GERDA: $T_{1/2} > 2.1 \times 10^{25}$ yrs
- GERDA + IGEX + HDM: $T_{1/2} > 3.0 \times 10^{25}$ yrs

• ¹³⁶Xe:

- EXO-200: $T_{1/2} > 1.1 imes 10^{25}$ yrs (first run with less exposure: $T_{1/2} > 1.6 imes 10^{25}$ yrs...)
- KamLAND-Zen: $T_{1/2} > 2.6 \times 10^{25}$ yrs

Xe-limit is stronger than Ge-limit when:

$$T_{\rm Xe} > T_{\rm Ge} \left. \frac{G_{\rm Ge}}{G_{\rm Xe}} \left| \frac{\mathcal{M}_{\rm Ge}}{\mathcal{M}_{\rm Xe}} \right|^2 \, {\rm yrs} \right.$$

NME	⁷⁶ Ge		¹³⁶ Xe	
	GERDA	comb	KLZ	comb
EDF(U)	0.32	0.27	0.13	_
ISM(U)	0.52	0.44	0.24	-
IBM-2	0.27	0.23	0.16	_
pnQRPA(U)	0.28	0.24	0.17	_
SRQRPA-B	0.25	0.21	0.15	_
SRQRPA-A	0.31	0.26	0.23	_
QRPA-A	0.28	0.24	0.25	_
SkM-HFB-QRPA	0.29	0.24	0.28	_

Bhupal Dev, Goswami, Mitra,

W.R., Phys. Rev. **D88**

Predictions of SO(10) theories Yukawa structure of SO(10) models depends on Higgs representations $10_H (\leftrightarrow H), \overline{126}_H (\leftrightarrow F), 120_H (\leftrightarrow G)$ Gives relation for mass matrices: $m_{\rm up} \propto r(H + sF + it_u G)$ $m_{\rm down} \propto H + F + iG$ $m_D \propto r(H - 3sF + it_D G)$ $m_\ell \propto H - 3F + it_l G$ $M_R \propto r_R^{-1} F$ Numerical fit including RG, Higgs, θ_{13} $10_H + \overline{126}_H$: 19 free parameters $10_H + \overline{126}_H + 120_H$: 18 free parameters 20 (19) observables to be fitted

Predictions of $SO(10)$ theories									
model	Fit	$ m_{ee} $ [meV]	m_0 [meV]	M_3 [GeV]	χ^2				
$10_H + \overline{126}_H$ $10_H + \overline{126}_H + SS$	NH NH	$0.49 \\ 0.44$	$2.40 \\ 6.83$	3.6×10^{12} 1.1×10^{12}	23.0 3.29				
$10_H + \overline{126}_H + 120_H$ $10_H + \overline{126}_H + 120_H + SS$	NH NH	2.87 0.78	$1.54 \\ 3.17$	9.9×10^{14} 4.2×10^{13}	11.2 6.9×10^{-6}				
$10_H + \overline{126}_H + 120_H$ $10_H + \overline{126}_H + 120_H + SS$	IH IH	35.52 24.22	30.2 12.0	1.1×10^{13} 1.2×10^{13}	$13.3 \\ 0.6$				

Dueck, W.R., JHEP 1309

vacuum probably metastable: could tunnel to true vacuum replacing all fields and forces with new fields and forces

Degrassi *et al.*; 1205.6497

dependence on top mass, α_s

Phenomenology of heavy singlets: Higgs Lepton-Higgs- N_R vertex: Dirac Yukawa $\bar{L} Y_{\nu} N_R$ contribution $\Delta \beta_{\lambda} = -8 \operatorname{Tr} (Y_{\nu}^{\dagger} Y_{\nu})^2 \propto m_D^4$

Casas et al.; Strumia et al.; W.R., Zhang

makes vacuum stability condition worse!

(also effect if tricks are played to produce TeV-scale N_R at colliders)

Alternative to Standard Seesaw I: inverse seesaw basis (ν_L, N_R^c, S) $M = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & 0 & M \\ 0 & M^T & \mu \end{pmatrix}$ $\Rightarrow m_{\nu} = m_D (M^T)^{-1} \mu M^{-1} m_D^T = 0.1 \left(\frac{m_D}{10^2 \,\text{GeV}}\right)^2 \left(\frac{10^4 \,\text{GeV}}{M}\right)^2 \left(\frac{\mu}{\text{keV}}\right) \text{ eV}$

- 't Hooft...
- unitarity violation $U^{\dagger}U 1 \simeq \frac{m_D^2}{M^2}$
- keV-scale \leftrightarrow warm dark matter

Alternative to Standard Seesaw III: d = 7 operator

 $\mathcal{O} = L L L e^c H$

open up to generate 1-loop neutrino mass model:

Theoretical Expectation of Neutrino Mass Generation Scale

$$m_{\nu} = \frac{(y v)^2}{\Lambda} \left(\frac{y^2}{16\pi^2}\right)^n \left(\frac{y v}{\Lambda}\right)^{d-5} \epsilon$$

- classical seesaw
- *n*-loop
- dimension d
- nearly conserved L

M. Hirsch, talk at WIN2015

Schechter-Valle theorem: observation of $0\nu\beta\beta$ implies Majorana neutrinos

is 4 loop diagram:
$$m_{\nu}^{\text{BB}} \sim \frac{G_F^2}{(16\pi^2)^4} \text{MeV}^5 \sim 10^{-25} \text{ eV}$$

Distinguishing Mechanisms

The inverse problem of $\mathbf{0}\nu\beta\beta$

- 1.) Other observables (LHC, LFV, KATRIN, cosmology,...)
- 2.) Decay products (individual e^- energies, angular correlations, spectrum,...)
- 3.) Nuclear physics (multi-isotope, 0ν ECEC, $0\nu\beta^+\beta^+$,...)

Left-right Symmetry

6 neutrinos with flavor states n_L' and mass states $n_L = (\nu_L, N_R^c)^T$

$$n'_{L} = \begin{pmatrix} \nu'_{L} \\ \nu_{R}{}^{c} \end{pmatrix} = \begin{pmatrix} K_{L} \\ K_{R} \end{pmatrix} n_{L} = \begin{pmatrix} U & S \\ T & V \end{pmatrix} \begin{pmatrix} \nu_{L} \\ N_{R}^{c} \end{pmatrix}$$

Right-handed currents:

$$\mathcal{L}_{CC}^{\text{lep}} = \frac{g}{\sqrt{2}} \left[\overline{\ell_L} \gamma^{\mu} K_L n_L (W_{1\mu}^- + \xi e^{i\alpha} W_{2\mu}^-) + \overline{\ell_R} \gamma^{\mu} K_R n_L^c (-\xi e^{-i\alpha} W_{1\mu}^- + W_{2\mu}^-) \right]$$

(K_L and K_R are 3×6 mixing matrices)

plus: gauge boson mixing

$$\begin{pmatrix} W_L^{\pm} \\ W_R^{\pm} \end{pmatrix} = \begin{pmatrix} \cos \xi & \sin \xi \, e^{i\alpha} \\ -\sin \xi \, e^{-i\alpha} & \cos \xi \end{pmatrix} \begin{pmatrix} W_1^{\pm} \\ W_2^{\pm} \end{pmatrix}$$

Connection to Neutrinos

Majorana mass matrices $M_L = f_L v_L$ from $\langle \Delta_L \rangle$ and $M_R = f_R v_R$ from $\langle \Delta_R \rangle$ (with $f_L = f_R = f$)

$$\mathcal{L}_{\text{mass}}^{\nu} = -\frac{1}{2} \left(\overline{\nu_L'} \ \overline{\nu_R'}^c \right) \begin{pmatrix} M_L & M_D \\ M_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L'^c \\ \nu_R' \end{pmatrix} \Rightarrow m_{\nu} = M_L - M_D \ M_R^{-1} \ M_D^T$$

useful special cases

- (i) type I dominance: $m_{\nu} = M_D M_R^{-1} M_D^T = M_D f_R^{-1} / v_R M_D^T$
- (ii) type II dominance: $m_{\nu} = f_L v_L$

for case (i): mixing of light neutrinos with heavy neutrinos of order

$$|S_{\alpha i}| \simeq |T_{\alpha i}^T| \simeq \sqrt{\frac{m_{\nu}}{M_i}} \lesssim 10^{-7} \left(\frac{\text{TeV}}{M_i}\right)^{1/2}$$

small (or enhanced up to 10^{-2} by cancellations)

Right-handed Currents in Double Beta Decay $(A, Z) \rightarrow (A, Z + 2) + 2e^{-}$

$$\mathcal{L}_{CC}^{lep} = \frac{g}{\sqrt{2}} \sum_{i=1}^{3} \left[\overline{e_L} \gamma^{\mu} (U_{ei} \nu_{Li} + S_{ei} N_{Ri}^c) (W_{1\mu}^- + \xi e^{i\alpha} W_{2\mu}^-) + \overline{e_R} \gamma^{\mu} (T_{ei}^* \nu_{Li}^c + V_{ei}^* N_{Ri}) (-\xi e^{-i\alpha} W_{1\mu}^- + W_{2\mu}^-) \right]$$

$$\mathcal{L}_Y^\ell = -\overline{L}_L^{\prime c} i\sigma_2 \Delta_L f_L L_L^\prime - \overline{L}_R^{\prime c} i\sigma_2 \Delta_R f_R L_R^\prime$$

classify diagrams:

- mass dependent diagrams (same helicity of electrons)
- triplet exchange diagrams (same helicity of electrons)
- momentum dependent diagrams (different helicity of electrons)

Flavor Symmetry Models: sum-rules

Barry, W.R., Nucl. Phys. B842

Master Formula: $2 \times 2 = 3 + 1$ $SU(2)_L \times U(1)_Y$ with $2 \otimes 2 = 3 \oplus 1$: $\overline{L} \tilde{\Phi} \sim (2, +1) \otimes (2, -1) = (3, 0) \oplus (1, 0)$

To make a singlet, couple (1,0) or (3,0), because $3 \otimes 3 = 5 \oplus 3 \oplus 1$

Alternatively:

 $\overline{L}L^c \sim (2,+1) \otimes (2,+1) = (3,+2) \oplus (1,+2)$

To make singlet, couple to (1, -2) or (3, -2). However, singlet combination (1, +2) is $\overline{\nu} \ell^c - \overline{\ell} \nu^c$, which cannot generate neutrino mass term

$$\implies (1,0) \text{ or } (3,-2) \text{ or } (3,0)$$

type I type II type III