Confidence Intervals and Limits for Pedestrians

Markus Schumacher

GK Lecture, Freiburg, 26 - 28 September 2017

Goal of the lecture: understand the content and interpretation of the two figures

Outline

Lecture 1: Basics (26.9.)

- Motivation
- Frequentist and Bayesian Probability
- Parameter Estimation from Maximum Likelihood
- Frequentist Confidence Intervals a la Neyman and Coverage
- Bayesian Credibility Interval from Likelihood Principle

Lecture 2: Limits for Gaussian Probability Distribution (27.9)

- Connection of Frequentist Limit to Frequentist Hypothesis Test
- Limits close to physical boundary
- Frequentist and Bayesian Limits
- Modified Frequentist: CL_s Method and Power Constrained Limit (PCL)
- Unified Approach, Feldman- Cousins Intervals (FCL)

Lecture 3: Limits for Poisson Distribution (28.9.)

- Confidence Intervals
- Limits close to physical boundary
- > Frequentist, Bayesian, PCL, CL_s, FC Limits

Outline

Lecture 1: Basics (Today)

- Motivation
- Frequentist and Bayesian Probability
- Parameter Estimation from Maximum Likelihood
- Frequentist Confidence Intervals a la Neyman and Coverage
- Bayesian Credibility Interval from Likelihood Principle

Lecture 2: Limits for Gaussian Probability Distribution (27.9)

- Connection of Frequentist Limit to Frequentist Hypothesis Test
- Limits close to physical boundary
- Frequentist and Bayesian Limits
- Modified Frequentist: CL_s Method and Power Constrained Limit (PCL)
- Unified Approach, Feldman- Cousins Intervals (FCL)

Lecture 3: Limits for Poisson Distribution (28.9.)

- Confidence Intervals
- Limits close to physical boundary
- Frequentist, Bayesian, PCL, CL_s, FC Limits

Motivation

Consider measurement of 50 decay times $_{\rm t}$ of instabile particle ($\tau_{\rm true}$ = 1) Random variable (RV) t follows exponetial PDF. $f(t;\tau)=\frac{1}{2}e^{-t/\tau}$

Goal 1: estimate of life time

$$\hat{\tau} = 1.062$$

and estimate for dispersion of estimate
 in repeated identical experiments
 → variance and standard deviation

$$\widehat{V[\hat{ au}]} = \frac{\hat{ au}^2}{n}$$
 $\widehat{\sigma}_{\widehat{ au}} = 0.151$

Goal 2: try to make a probabilistic statement connecting measured value and true value

→ confidence interval [a,b] and/or limit c₉₅

Motivation (2)

Consider measurement of a counting rate n_{obs} =4 (n_{true} = v = 3) Random variable (RV) n follows Poisson PDF.

$$f(n;\nu) = \frac{\nu^n}{n!} e^{-\nu} \quad (n \ge 0) \qquad E[n] = V[n] = \nu$$

Goal 1: estimate for v: $\hat{\mathcal{V}}$

$$\hat{\nu} = n_{obs} = 4$$

estimate of variance $\hat{V}[\hat{\nu}]=\hat{\nu}=4$ and of standard deviation $\hat{\sigma}[\hat{\nu}]=\sqrt{\hat{\nu}}=2$

Naive estimate of confidence interval to CL = 68% naive CI = $[n_{obs}$ - σ , n_{obs} + σ] = [2,0;,6,0] length = 4,0 correct frequentist CI = [2,1;7,2] length = 5,1

→ estimate ± 1-sigma only correct if estimate follows Gauss PDF

Motivation (3)

First step in interpretation:

Estimate of parameter and its variance (often with ML method)

Second step: estimate of

- a two-sided confidence interval [a,b] at 68% confidence level CL
- \succ or single-sided confidence interval = limit c_{95} at 95% CL which make a statistical statement between outcome of experiment and the true value of a parameter

Two statistical schools: Frequentist and Bayesian statistics

- different method for construction of confidence interval
- > numerical identical for sample size n_{sp} → ∞ and estimated value not close to physical boundary (e.g. estimates $m_v^2 = -5 \pm 2 \text{ eV}^2$ s = n-b = 0 -3 = -3)
- interpretation always different

Modified (pseudo)-frequentist methods:

Power Constrained Limit (PCL), CL_S Limit, Feldman-Cousins Limit (FCL)

Axiomatic Definition of Probability

For all
$$A \subset S, P(A) \ge 0$$
 Kolmogorov $P(S) = 1$ Axioms (1933)

If
$$A \cap B = \emptyset$$
, $P(A \cup B) = P(A) + P(B)$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Axiomatic Definition of Probability

Consider set S with subsets A, B, ...
Assign to each set a number between 0 and 1 with

For all
$$A \subset S, P(A) \ge 0$$

$$P(S) = 1$$

If
$$A \cap B = \emptyset$$
, $P(A \cup B) = P(A) + P(B)$

Kolmogorov Axioms (1933)

Conditional probability (for $P(B) \neq 0$))

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

If subsets A,B independent:

$$P(A \cap B) = P(A)P(B)$$

$$P(A|B) = \frac{P(A)P(B)}{P(B)} = P(A)$$

Axiomatic Definition of Probability (2)

From the definition of conditional probability:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \qquad P(A \cap B) = P(B \cap A) \qquad P(B|A) = \frac{P(B \cap A)}{P(A)}$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Thomas Bayes (1702-1761)

An essay towards solving a problem in the doctrine of chances, Philos. Trans. R. Soc. **53** (1763) 370.

Axiomatic definition not helpful in real life.

Need: definition of subsets, rule to assign probability values

 $B \cap A_i$

2 Schools: Frequentists and Bayesians

Bayes Theorems holds and is accepted in both schools

Controversy about: what are the subsets, to which probability values can be assigned

Frequentist

and

Bayesian

Subsets:

Outcome of (repeatable) experiment

Any hypothesis

Assignment of probabilities:

Relative frequency in limit nr of trials \rightarrow inf.

Degree of belief in hypothesis

$$P(A) = \lim_{n \to \infty} \frac{\text{times outcome is in } A}{n}$$

P(A) = degree of belief that A is true

P (SUSY exists)

 $P (9.81 \text{ m/s}^2 < g < 9.82 \text{m/s}^2)$

P (rain in Freiburg on 27.9.2017)

Not defined. Either 0 or 1.

No problem. This is the goal.

Bayesian definition: More general (includes Frequentist definition)

Applicable to singular events, "true" values, ...

Does not care about repeatability of experiment

Needs a-priori probability in application of Bayes theorem

Bayesian Statistics: General Philosophy

How to use Bayes theorem to update "degree of belief" in light of data

Probability to observe data assuming a hypothesis H (true value of a parameter)

Likelihood function (also used by Frequentists)

$$P(H|\vec{x}) = \frac{P(\vec{x}|H)\pi(H)}{\int P(\vec{x}|H)\pi(H) dH}$$

A-priori probability, i.e. before data taking (not defined in Frequentist school)

Posterior probabilty, i.e. after analysis of the data (not defined in Frequentist school)

Normalisation includes sum/integral over all possible hypothesis/par. values

No general rule for choice of a-priori probability → "subjective"

```
"Objective" prior = uniform? - not well defined probability for infinite parameter space - uniform in \theta, \theta^2 sqrt(\theta), ln \theta, ...? \rightarrow Jeffrey Prior p(\theta) = sqrt( Information (\theta) ) uniform for mean \mu of Gauss pdf 1/\text{sqrt}(\mu) for Poisson 1/\tau for exp(-t/\tau)
```

Properties of estimators

Estimator is a function of the sample to determine an unknown parameter Estimator is a randomvariable and hence has a PDF $g(\hat{\theta}; \theta)$

We want small (or vanishing) Bias (systematic error) $b = E[\hat{\theta}] - \theta$

→ expectation value from repeated measurment should be = true value

We want small variance (statistical uncertainty): $V[\widehat{\theta}]$

→ small bias and small variance are are in general competing criteria

Minimum Variance Bound

In information theory one can show, that there is a lower limit for the variance for the estimator of an parameter

(if the sample range is independent on the true paramater value)

Minimmum Variance Bound (MVB) from Rao-Cramer-Frechet-Ineuqality

$$V\left[\hat{\theta}\right] \ge \frac{\left(1 + \frac{\partial b}{\partial \theta}\right)^{2}}{E\left[-\frac{\partial^{2} \log \mathcal{L}}{\partial \theta^{2}}\right]}. \qquad V\left[\hat{\theta}\right] \ge \frac{\left(1 + \frac{\partial b}{\partial \theta}\right)^{2}}{E\left[\left(\frac{\partial \log \mathcal{L}}{\partial \theta}\right)^{2}\right]}.$$

Information according to R.A Fisher: $I(\theta) \equiv E \left[\left(\frac{\partial \log \mathcal{L}}{\partial \theta} \right)^2 \right] = E \left[-\frac{\partial^2 \log \mathcal{L}}{\partial \theta^2} \right]$

→ the large the information, the smaller the statistical uncertainty

Likelihood and Desired Properties of Estimators

Given a sample of measurements $(x_1...x_n)$ for a RV x following PDF $f(x;\theta)$ the common PDF for the sample is given by: $f(x_1,...,x_n;\theta) = \prod_{i=1}^n f(x_i;\theta)$

Considerering the samples fixed, this is called the likelihood:

$$L(\vec{\theta}) = \prod_{i=1}^{n} f(x_i; \vec{\theta})$$

Consistency

$$\widehat{\theta}^{(n)} \stackrel{n \to \infty}{\longrightarrow} \theta$$

Bias

$$b^{(n)} = E[\widehat{\theta}^{(n)}] - \theta$$

bias should be small / "0" b=0 estimator unbiased

consistent estimators with finite variance are asymptotically $(n \rightarrow \infty)$ unbiased

Efficency

Effizienz
$$\left[\widehat{\theta}^{(n)}\right] = \frac{SMV}{V\left[\widehat{\theta}^{(n)}\right]}$$

Efficiency should be close to "1"

Maximum-Likelihood: Basic Idea

If hypothetically value θ close to true value θ_{true} , then probability to observe actual measured sample to is large

(b)

0.6

0.4

Hence define "Maximum Likelihood (ML)" estimator as parameter value, wich maximises likelihood den Parameterwert

$$\mathcal{L}(\hat{\theta}) = \prod_{i=1}^{n} f(x_i; \hat{\theta}) = \text{Maximum.}$$
 $\frac{\partial \log \mathcal{L}}{\partial \theta} \Big|_{\hat{\theta}} = 0$

Estimator for Mean Value of Gauss-PDF

Gauss-PDF μ =5, σ =1 sample size N= 20

Gauss-PDF μ =5, σ =1 sample size N= 50

 $\hat{\mu} \approx 5.19$

 $\hat{\mu} \approx 5.05$

 $I(\mu) = 20$

$$I(\mu) = 50$$

Estimator for Mean of Exponential PDF

Consider Exponential PDF:

$$f(t;\tau) = \frac{1}{\tau}e^{-t/\tau}$$

and sample of n indepdent measurments

$$t_1,\ldots,t_n$$

The likelihood is given by

$$L(\tau) = \prod_{i=1}^{n} \frac{1}{\tau} e^{-t_i/\tau}$$

The value of τ which maximises $L(\tau)$ t, also yields the maximum of its logarthm (Ithe log/In-Ilkelihood function):

$$\ln L(\tau) = \sum_{i=1}^{n} \ln f(t_i; \tau) = \sum_{i=1}^{n} \left(\ln \frac{1}{\tau} - \frac{t_i}{\tau} \right)$$

Estimator for Mean of Exponential PDF (2)

$$\log \mathcal{L}(\tau) = \sum_{i=1}^{n} \log f(t_i; \tau) = \sum_{i=1}^{n} \left(\log \frac{1}{\tau} - \frac{t_i}{\tau} \right) = n \log \frac{1}{\tau} - \frac{1}{\tau} \sum_{i=1}^{n} t_i$$

Determination of maximum

$$0 = \frac{\partial \log \mathcal{L}(\tau)}{\partial \tau} \bigg|_{\tau = \hat{\tau}} = -n \frac{1}{\hat{\tau}} + \frac{1}{\hat{\tau}^2} \sum_{i=1}^{n} t_i$$

Yields the ML estimator:

$$\hat{\tau} = \frac{1}{n} \sum_{i=1}^{n} t_i$$

which is the arithmetic mean of the sample and hence consistent and unbiased

Monte Carlo Test: Generate 50 Measurments for $\tau = 1$.

The ML estimator yields:

$$\hat{\tau} = 1.062$$

Estimator for Mean of Exponential PDF (3)

Variance of sample mean is given by:
$$V[\hat{\tau}] = \frac{1}{n}V[t] = \frac{1}{n}\tau^2$$

Comparison with Minimum Variance Bound (MVB):

$$\frac{\partial^2 \log \mathcal{L}}{\partial \tau^2} = \frac{n}{\tau^2} \left(1 - \frac{2}{n\tau} \sum_{i=1}^n t_i \right) = \frac{n}{\tau^2} \left(1 - \frac{2\hat{\tau}}{\tau} \right)$$

$$V[\hat{\tau}] \ge \frac{-1}{E\left[\frac{n}{\tau^2}\left(1 - \frac{2\hat{\tau}}{\tau}\right)\right]} = \frac{-1}{\frac{n}{\tau^2}\left(1 - \frac{2E[\hat{\tau}]}{\tau}\right)} = \frac{\tau^2}{n}$$

Hence ML Estimator is efficient for this problem

Estimator for Variance

$$\widehat{V[\hat{\tau}]} = \frac{\hat{\tau}^2}{n}$$

Maximum-Likelihood: Estimate of Variance

Graphically $\Delta \ln L = 0.5$

$$[1.02 - 0.12, 1.02 + 0.16]$$

Analytically or curvature in minimum

$$\widehat{V[\hat{\tau}]} = \frac{\hat{\tau}^2}{n} \approx 0.021$$

$$\hat{\sigma} \approx 0.14$$

MC-Method:

0.13.

Estimator for Mean and Variance of Gauss PDF

Consider n independent measurements $x_1, ..., x_n$, from Gauss PDF $f(x; \mu, \sigma^2)$

$$f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$$

The Log-Likelihood Function is given by:

$$\ln L(\mu, \sigma^2) = \sum_{i=1}^n \ln f(x_i; \mu, \sigma^2)$$

$$= \sum_{i=1}^n \left(\ln \frac{1}{\sqrt{2\pi}} + \frac{1}{2} \ln \frac{1}{\sigma^2} - \frac{(x_i - \mu)^2}{2\sigma^2} \right).$$

Set derivatives w.r.t. μ , σ^2 to zero, and solve equations

$$0 = \frac{\partial \log \mathcal{L}(\mu, \sigma^2)}{\partial \mu} \bigg|_{\mu = \hat{\mu}} = \sum_{i=1}^{n} \frac{(x_i - \hat{\mu})}{\sigma^2} \qquad 0 = \frac{\partial \log \mathcal{L}(\mu, \sigma^2)}{\partial \sigma^2} \bigg|_{\sigma^2 = \widehat{\sigma^2}}$$

Estimator for Mean and Variance of Gauss PDF (2)

Yields the maximum likelihood estimators:

$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i, \qquad \widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \widehat{\mu})^2.$$

Arithmetic mean is estimator for μ , hence consistent and unbiased

But estimator for variance σ^2 is biased

$$E[\widehat{\sigma^2}] = \frac{n-1}{n} \sigma^2 ,$$

only asympthotically unbiased: $b \rightarrow 0$ für $n \rightarrow \infty$.

Reminder: is unbiased estimator for variance

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$$

Properties of ML Estimators

Consistency: if exectation value and variance of estimator finite and sample space independent of parameter

Bias: No general statement possible. Investigate with MC method Asymptotically $(n \rightarrow \infty)$ unbiased if consistent.

Efficiency: If an efficient estimator exists it is given by ML method (if sample range independent of parameter) Efficiency \rightarrow 1 for $n\rightarrow\infty$.

Asymptocially (n→∞) it holds. WDF für ML-Schätzer:

PDF for estimator converges Gauss PDF.

Likelihood → Gauss and log-Likelihood → parabola

$$\mathcal{L}(\theta) = \mathcal{L}(\hat{\theta}) \exp\left(-\frac{(\hat{\theta} - \theta)^2}{2V[\hat{\theta}]}\right) \qquad \log \mathcal{L}(\theta) = \log \mathcal{L}(\hat{\theta}) - \frac{(\hat{\theta} - \theta)^2}{2V[\hat{\theta}]}$$

Bayesian Parameter Estimator

"Likelihood principle": the results of the measurments is summarised by the likelihood function $L(\theta) = L(\vec{x}|\theta) = f_{\text{joint}}(\vec{x}|\theta)$

Knowledge about parameter updated via Bayes theorem:

$$p(\theta|\vec{x}) = \frac{L(\vec{x}|\theta)\pi(\theta)}{\int L(\vec{x}|\theta')\pi(\theta') d\theta'}$$

Bayesian parameter estimate, by maximising the posterior probability $\,\widehat{\theta}_{\mathsf{Bayes}}$

How to choose prior p(q)? Often $\pi(\theta)$ = constant considered.

Then maximum likelihood and Bayesian estimators identical:

$$\hat{\theta}_{\text{Bayes}} = \hat{\theta}_{\text{ML}}$$

Example for Parameter Estimation

Frequentist: maximise likelihood Bayes

Bayesian: maximise posterior probability

Estimation of mean value θ of Gaussian PDF Resolution σ = 20. Sample mean yields: x = 25

Consider two sample sizes: n= 1 (100)

→ Likelihood functions are Gaussians with $\sigma/\sqrt{n} = 20$ (2)

Four different a-priori probabilities for Bayesian estimate normalised in range 5 to 105

uniform, 1/x, x^2 , ln(x)

Parameter Estimation - Posterior Probabilities

Sample size n = 1 Large spread in posterior prob.

Significant dependence of mode on a-priori probability

Large samples size n = 100 Small spread in posterior prob.

Small dependence of mode on prior probability

For sample size n → infinity Bayesian and Frequentist results identical Bayesian with uniform a-priority prob. and Frequentist numerical identical Exception: in special situations e.g. close to a physical boundary But interpretation is always different in both schools

Interpretation of CI: Frequentist and Bayesian

CI: Attempt for a probability statement connecting measurement with true value

- Frequentist: objects to / can not make probability assignment to true values
 - construct a confidence interval CI [a,b] at xy% CL from data in such a way that in a sequence of repeated identical measurements the fraction xy% of such intervals contains the true value
 - "the coverage probability of the interval is XY %"
 - no problems with "empty" intervals: $m_v^2 < -1 \text{ eV}^2$, s < 0.3 @95% CL

Bayesian:

- wants to make statement about probability of true value from single measurement
- credibility interval / Bayesian confidence interval [a,b] at xy% CL
- probability / degree of belief that true values lies in [a,b] is xy%
- coverage and outcome of not observed experiments not interesting
- all information is in observed likelihood function → likelihood principle
- "empty" intervals are meaningless in Bayesian interpretation but are avoided by an apropiate prior probability

Classical Frequentist Intervals

Neyman construction for equal tailed CI at CL = $1 - \alpha - \beta = 1 - \gamma$ $\alpha = \beta = \gamma/2$

Consider: estimate $\widehat{\theta}$ for parameter θ and measured value $\widehat{\theta}_{\text{Obs}}$.

Need PDF for estimate for all possible true values $heta = g(\widehat{ heta}; heta)$.

Specify tail probabilities e.g. $\alpha = \beta = 0.025$ (0.16) and determine functions $u_{\alpha}(\theta)$ und $v_{\beta}(\theta)$ with:

$$\alpha = P(\widehat{\theta} \ge u_{\alpha}(\theta))$$

$$= \int_{u_{\alpha}(\theta)}^{\infty} g(\widehat{\theta}; \theta) d\widehat{\theta}$$

$$\beta = P(\widehat{\theta} \le v_{\beta}(\theta))$$

 $= \int_{\widehat{\theta}}^{v_{\beta}(\theta)} g(\widehat{\theta}; \theta) d\widehat{\theta}$

for $\alpha = 0$, $u_{\alpha}(\theta) \rightarrow \inf \rightarrow]$ - inf., b] "upper limit b" for $\beta = 0$, $v_{\beta}(\theta) \rightarrow -\inf \rightarrow [a, +\inf]$ "lower limit a"

Classical Frequentist Intervals

Region btw. $u_{\alpha}(\theta)$ and $v_{\beta}(\theta)$ is the confidence belt

$$P(l_{\beta}(\theta) \le \hat{\theta} \le u_{\alpha}(\theta)) = 1 - \alpha - \beta$$

Boundaries of confidence interval given by intersect of observed value with confidence belt → [a,b]

$$a(\hat{\theta}) \equiv u_{\alpha}^{-1}(\hat{\theta})$$
$$b(\hat{\theta}) \equiv l_{\beta}^{-1}(\hat{\theta}).$$

 $u_{\alpha}(\Theta)$ $v_{\beta}(\theta)$ 2 b 0

For all possible true values θ holds:

$$\hat{\theta} \ge u_{\alpha}(\theta) \Leftrightarrow a(\hat{\theta}) \ge \theta \quad P(a(\hat{\theta}) \ge \theta) = \alpha$$

$$\hat{\theta} \le l_{\beta}(\theta) \Leftrightarrow b(\hat{\theta}) \le \theta, \quad P(b(\hat{\theta}) \le \theta) = \beta$$

$$P(a(\hat{\theta}) \le \theta \le b(\hat{\theta})) = 1 - \alpha - \beta.$$

Correct coverage by construction

Construction of CI for Exponential PDF

ML-Schätzer Estimator = arithmetic mean of lifetimes PDF for ML estimator is special case of gamma function

PDF for N_{SP} =5 various true lifetimes

for true lifetime = 4, various N_{SP}

for $N_{SP} \rightarrow \infty$ PDF converges to Gausian PDF due to Central Limit Theorem

Construction of CI for Exponential PDF (2)

PDF for ML-estimator for various true life times for sample size $N_{SP} = 20$

Construction of CI for Exponential PDF (3)

Comparison of CI from estimator ± 1 standard deviation (triangles) and from correct Nyman Construction (points)

nterval for ξ

for $n = N_{SP} \rightarrow \infty$ both CI get identical as PDF for estimator \rightarrow Gauss-PDF f_{Gauss}

for finite/small $n = N_{SP}$

- correct Neyman CI longer
- coverage of naive CI smaller than claimed CLI

Bayesian Credibility Interval

Result from experiment is posterior PDF for true parameter value θ

$$P(\theta; x_{SP}) = const. \ \mathcal{L}(x_{SP}; \theta)\pi(\theta)$$

Integrate posterior PDF to get CI [a,b] at credibility CL = 1 - α - β

$$\alpha = \int_{0}^{a} P(\theta; x_{SP}) d\theta$$
 lower limit [a, ∞ [

$$\beta = \int_{-\infty}^{\infty} P(\theta; x_{SP}) d\theta \qquad \text{upper limit }]-\infty, b]$$

$$1 - \alpha - \beta = \int_{a}^{b} P(\theta; x_{SP}) d\theta$$
 two sided CI [a,b]

Implement physical boundary via $\pi(\theta)$: $\pi(\theta) = 0$ in unphysical region Repeatability of experiment and coverage is not of (main) interest for Bayesian