Confidence Intervals and Limits
for Pedestrians
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Goal of the lecture: understand the content and interpretation of the two figures



Outline

Lecture 1: Basics (26.9.)

» Motivation

» Frequentist and Bayesian Probability

» Parameter Estimation from Maximum Likelihood

» Frequentist Confidence Intervals a la Neyman and Coverage
» Bayesian Credibility Interval from Likelihood Principle

Lecture 2: Limits for Gaussian Probability Distribution (27.9)

» Connection of Frequentist Limit to Frequentist Hypothesis Test

» Limits close to physical boundary

» Frequentist and Bayesian Limits

» Modified Frequentist: CL_s Method and Power Constrained Limit (PCL)
» Unified Approach, Feldman- Cousins Intervals (FCL)

Lecture 3. Limits for Poisson Distribution (28.9.)
» Confidence Intervals

» Limits close to physical boundary

» Frequentist, Bayesian, PCL, CL_s, FC Limits



Outline

Lecture 1. Basics (Today)

» Motivation

» Frequentist and Bayesian Probability

» Parameter Estimation from Maximum Likelihood

» Frequentist Confidence Intervals a la Neyman and Coverage
» Bayesian Credibility Interval from Likelihood Principle

Lecture 2: Limits for Gaussian Probability Distribution (27.9)

Lecture 3: Limits for Poisson Distribution (28.9.)



Motivation

Consider measurement of 50 decay times , of instabile particle (t, .= 1)
Random variable (RV) t follows exponetial PDF. Flt:7) = le_t/T

-

— 1

= Goal 1: estimate of life time
0.75 T = 1.062

05 and estimate for dispersion of estimate

In repeated identical experiments

025 | 1 - variance and standard deviation

1
0 1 2

2

—_— 7/:

| ; 0-5—‘ — 0.151

Goal 2: try to make a probabilistic statement connecting
measured value and true value
—> confidence interval [a,b] and/or limit cgs



Motivation (2)

Consider measurement of a counting rate n_, .=
Random variable (RV) n follows Poisson PDF.

=4 (ntrue= V= 3)

f(n,v) = I;—Te_’/ (n > 0) E[n] — V[n] =3,

Goal 1: estimate forv: LV

20 v=3 ﬁ:nobs:4

10 estimate of variance V[ﬁ] =y =4
L and
| 6| of standard deviation fy[ﬁ] — \/5 — 9

Naive estimate of confidence interval to CL = 68%
naive Cl = [n, -0, n,to] =[2,0;,6,0] length=4,0
correct frequentist CI =[2,1;7,2] length= 51

- estimate = 1-sigma only correct if estimate follows Gauss PDF



Motivation (3)

First step in interpretation:
Estimate of parameter and its variance (often with ML method)

Second step: estimate of

> atwo-sided confidence interval [a,b] at 68% confidence level CL
» or single-sided confidence interval = limit c45; at 95% CL

which make a statistical statement between outcome of experiment
and the true value of a parameter

Two statistical schools: Frequentist and Bayesian statistics
» different method for construction of confidence interval
» numerical identical for sample size ny, > « and
estimated value not close to physical boundary
(e.g. estimates mz?= -5+2eV? s=n-b= 0-3=-23)
» interpretation always different

Modified (pseudo)-frequentist methods:
Power Constrained Limit (PCL), CLg Limit, Feldman-Cousins Limit (FCL)



Axiomatic Definition of Probability

Forall ACc S,P(A) >0 Kolmogorov

P(S) =1 Axioms (1933) P(A|B) — P(ANB)

P(B)

If ANB =0, P(AUB) = P(A) + P(B)

B




Axiomatic Definition of Probability

Consider set S with subsets A, B, ...
Assign to each set a number between 0 and 1 with

Forall AC S,P(A) >0

P(S) =1 -
If ANB=0,P(AUB) = P(A) + P(B) /@il;nn?g?;%\ém
Conditional probability (for P(B) # 0)) B
P(ANB A
paB) = ZADE) /
P(B)
If subsets A,B independent: > \
P(ANB) = P(A)P(B) -———i
A
peaim) = OB — peay

AN B




Axiomatic Definition of Probability (2)

From the definition of conditional probability:

P(A]B):P(AHB) P(AHB):P(BH/D P(B|A):P(BHA>

P(B) P(A)
P(BLAP(A) P(B) = >; P(B|A;) P(A;)
B
P(A|B) = /
P(B) /
L Thomas Ba - S
- yes (1702-1761) ~\\\‘
_ An essay towards solving a
¢ problem in the doctrine of chances, = A i
? Pnhilos. Trans. R. Soc. 53 (1763) 370. =
Axiomatic definition not helpful in real life.
Need: definition of subsets, rule to assign probability values B N A

2 Schools: Frequentists and Bayesians

Bayes Theorems holds and is accepted in both schools
Controversy about: what are the subsets, to which probability values can be assigned



Frequentist and Bayesian

Subsets:
Outcome of (repeatable) experiment Any hypothesis

Assignment of probabilities:

Relative frequency in limit nr of trials - inf. Degree of belief in hypothesis
P(A) = lim times outcome is in A P(A) = degree of belief that A is true
n— n
P (SUSY exists)

P (9.81 m/s? < g < 9.82m/s?)
P (rain in Freiburg on 27.9.2017)

Not defined. Either O or 1. No problem. This is the goal.

Bayesian definition: More general (includes Frequentist definition)
Applicable to singular events, “true” values, ...
Does not care about repeatability of experiment
Needs a-priori probability in application of Bayes theorem



Bayesian Statistics: General Philosophy

How to use Bayes theorem to update “degree of belief” in light of data

Probability to observe data assuming a hypothesis H (true value of a parameter)
Likelihood function (also used by Frequentists)

\ A-priori probability,

P(Z|H)n(H) — & before data taking
(not defined in Frequentist

[P(Z|H)m(H)dH school)

P(H|Z) =

Posterior probaélty, .e. >\
after analysis of the data Normalisation includes sum/integral

(not defined in Frequentist school) over all possible hypothesis/par. values

No general rule for choice of a-priori probability = “subjective”

“Objective” prior = uniform? - not well defined probability for infinite parameter space
- uniform in 6, 62 sqrt(6), In 6, ... ?
- Jeffrey Prior p(0) = sqrt( Information (6) )
uniform for mean u of Gauss pdf
1/sqrt(u) for Poisson 1/t for exp(-t/ t )



Properties of estimators

Estimator is a function of the sample to determine an unknown parameter

Estimator is a randomvariable and hence has a PDF g¢(8; 9)

R A best
g(6;6) |
large biased
Variance
: )
0

We want small (or vanishing) Bias (systematic error) p = E[f] — 0

l

expectation value from repeated measurment should be = true value

We want small variance (statistical uncertainty): V/[0]

— small bias and small variance are are in general competing criteria



Minimum Variance Bound

In informaton theory one can show, that there is a lower limit for
the variance for the estimator of an parameter
(if the sample range is independent on the true paramater value)

Minimmum Variance Bound (MVB) from Rao-Cramer-Frechet-Ineuqgality

VMZ <1+%>2 v[é]> (1+%>2

2 ' B 1 2
P - 0%log L 5 <f9 0g£>
log £ ° 21
Information according to R.A Fisher: () =FE (8 §§£> =L [_8 a;)fﬁ]

— the large the information, the smaller the statistical uncertainty



Likelihood and Desired Properties of Estimators

Given a sample of measurements (x...x,) for a RV x folllowing PDF f(x;0)

the common PDF for the sample is given by:

1=1

Considerering the samples fixed > ik ~
this is called the likelihood: L(0) = .Hl f(zi; 6)
1=

Consistency

Bias

Efficency

Q)

~ bias should be small /0"
b(n) — E[(g(n)] — 0 b=0 estimator unbiased

consistent estimators with finite variance
are asymptotiically (n—><«) unbiased

SMV
= ] Efficiency should

V [6’(") be close to “1”

Effizienz [(/9\ (")} —



Maximume-Likelihood: Basic Idea

0

If hypothetically value 6 close to true value 6,,,.,
then probability to observe actual measured sample to is large
T T T T T "‘;‘ 6 T T T T T

b
—— log L=41 2 (ML fit) (a) T — log L=13.9 (b)
-~ - log L=410 (true parameters) --- logL=18.9

Hence define “Maximum Likelihood (ML)” estimator as parameter value,
wich maximises likelihood den Parameterwert

Olog L
a0 |,

L(6) = H f(x4;0) = Maximum. =)
i=1



Estimator for Mean Value of Gauss-PDF

(b,

Gauss-PDF ’ Gauss-PDF
u=9, o=1 u=9, o=1
sample size N= 20 | sample size N= 50
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Estimator for Mean of Exponential PDF

1 _
Consider Exponential PDF: f(t;, )= ;e t/T

and sample of n indepdent t]_, c ey tn
measurments

The likelihood is given by L(r) =[] ~e il T

The value of 7 which maximises L(x)t, also yields the
maximum of its logarthm (Ithe log/In-llkelihood function):

NLE) = S Inflt) =3 (ml_ﬁ)
1=1

i—1 T T



Estimator for Mean of Exponential PDF (2)

1t 1 1<
log L(T Zlogf ti; ) = Z(log;——z> :nlog;—; ti
=1

T
=1

Determination of maximum  , _ mogTﬁ(T) - n%%;}
. . 1 )
Yields the ML estimator: =" Z t;
n ‘—
=1

which is the arithmetic mean g’
of the sample and hence
consistent and unbiased R T

05
Monte Carlo Test:
Generate 50 Measurments for 7= 1. s |
The ML estimator yields: I T T T

7 = 1.062 oo

¢



Estimator for Mean of Exponential PDF (3)

Variance of sample mean is givenby: V|7 = —V[t] = —71

Comparison with Minimum Variance Bound (MVB) :

0?logL n 2 — n 2T
R (“E;t@) -5(1-%)

-1 —1 72
ViF] > ST = N
TEEEO-E] (-2 n

T T

Hence ML Estimator is efficient for this problem

Estimator for Variance 2

—_— 7/;

n



Maximum-Likelihood: Estimate of Variance

1

Graphically AInL=0,5 3 o0
= @ S [ tAr ot AR, (®)
[1.02 — 0.12,1.02 + 0.16] ' = .
0.6
04 L
-51.5F
0.2 i
Analytlcally or o) e sl . .
curvature in minimum ¢ T
S,
V7] = = ~ 0.021
~ ~~ 3
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Estimator for Mean and Variance of Gauss PDF

Consider n independent measurements x;, ..., x,, from Gauss PDF f(x;u,o?)

F(@i p,02) = ———e~(@=)?/207

V2mo?

The Log-Likelihood Function is given by:

NL(uo?) = 3 In fai; i o?)
=1

n

_ 1 1 1 (z—p)°
— Z(In\/ﬂ+2m02— 5 )

1=1

Set derivatives w.r.t. u, o? to zero, and solve equations

dlog L(p,0?)
Oy

S [ 2
0 = _Z(wi /L) 0 — alogﬁ(uaa)

o2 o2

—~

02=02

p=R =1



Estimator for Mean and Variance of Gauss PDF (2)

Yields the maximum likelihood estimators:

n
T 21 )2
,u—nigmza —nzjl(ajz n)° .

n

Arithmetic mean is estimator for u, hence consistent and unbiased

But estimator for variance o2 is biased A n—1
Elo?] = o2 ,
T
only asympthotically unbiased: b—0 flir n—co.
Reminder: gc — Z (wz N)

is unbiased estimator for variance n—1 =1



Properties of ML Estimators

Consistency: if exectation value and variance of estimator finite
and sample space independent of parameter

Bias: No general statement possible. Investigate with MC method
Asymptotically (n—> ) unbiased if consistent.

Efficiency:  If an efficient estimator exists it is given by ML method
(if sample range independent of parameter)
Efficiency > 1 for n>,

Asymptocially (n=>< ) it holds. WDF fur ML-Schatzer:

PDF for estimator converges Gauss PDF.

Likelihood - Gauss and log-Likelihood = parabola

. ) _ 0)2 ) i _ )2
£O) = L) exp <(9 9)> (60 —0)

Ve log £(0) = logL(0) — -



Bayesian Parameter Estimator

“Likelihood principle”: the results of the measurments is summarised by
the likelihood function - _
L(0) = L(Z]0) = fjoint(Z]6)

Knowledge about parameter updated via Bayes theorem:

W L(Z0)m(0)
p0]Z) = [ L(Z|0") 7 (0") do’

Bayesian parameter estimate, by maximising the posterior probability éBayeS

How to choose prior p(q)? Often a(6) = constant considered.

Then maximum likelihood and Bayesian estimators identical:

eBayes = ML



Example for Parameter Estimation

Frequentist: maximise likelihood Bayesian: maximise posterior probability

Estimation of mean value 6 of Gaussian PDF
Resolution o = 20. Sample mean yields: x =25
- likelihood(x;0)
n=1
n=100

Consider two sample sizes: n=1 (100)

- Likelihood functions are
Gaussians with o/An = 20 (2)

T 0.025—
= L

L1miform

X
X2
Log(x)

Four different a-priori probabilities ool
for Bayesian estimate :
normalised in range 5 to 105

0.015

0.01

0.005

uniform, 1/x, x2, In(x)




Parameter Estimation - Posterior Probabilities

Sample size n = 1
Large spread in posterior prob.

S=) .
= 0.05 uniform
g — 1
X
X2
0.04— —— Log(x)
0.03
0.02—
0.01
111 ‘ I ‘ 111 ‘ I ‘ 111 L1
10 20 30 40 50 60 70 80 90 100

0

Significant dependence of mode
on a-priori probability

0.12

Large samples size n = 100
Small spread in posterior prob.

;_ n l1Jniform
— X

X2
—— Log(x)

Small dependence of mode
on prior probability

For sample size n = infinity Bayesian and Frequentist results identical
Bayesian with uniform a-priority prob. and Frequentist numerical identical

Exception: in special situations e.g. close to a physical boundary

But interpretation is always different in both schools



Interpretation of Cl: Frequentist and Bayesian

Cl: Attempt for a probability statement connecting measurement with true value

Frequentist: - objects to / can not make probability assignment to true values
- construct a confidence interval Cl [a,b] at xy% CL from data

in such a way that in a sequence of repeated identical measurements
the fraction xy% of such intervals contains the true value

- "the coverage probability of the interval is XY %"

- no problems with “empty” intervals: m? <-1eV?, s<-0.3 @95% CL

Bayesian: - wants to make statement about probability of true value
from single measurement
- credibility interval / Bayesian confidence interval [a,b] at xy% CL
- probability / degree of belief that true values lies in [a,b] is xy%
- coverage and outcome of not observed experiments not interesting
- all information is in observed likelihood function - likelihood principle
- ,empty® intervals are meaningless in Bayesian interpretation
but are avoided by an apropiate prior probability



Classical Frequentist Intervals

Neyman construction for equal tailed ClatCL=1—-a—-=1-y a=p=y/2

—~

Consider: estimate 6 for parameter & and measured value gobs-

Need PDF for estimate for all possible true values 6 g(é; (9) :

Specify tail probabilities e.g. == 0.025 (0.16) and determine
functions u,(6) und v(6) with:

—
)

~—

P(0 = ua(0)) 7 Vet

- 9: 0) do
/ua(e)g( 0

PO < wvg(0))
/”B(Q) g(0: 0) dd N\

— OO

0
|

05 [

®
|

»

(as]]

fora=0, u,(6)->inf - ]-inf,b] ,upper limitb"
forB=0, vi6) > -inf > [a, +inf] Jlower limita"



Classical Frequentist Intervals

Region btw. u,(6) and v,(6) is the confidence belt ~ P(lg(0) < 0 < u,

Boundaries of confidence interval given .0
by intersect of observed value H

with confidence belt 2 [a’b] \4\

g (6) B

=
VN
D
N——"
|||

b(0) =15 (é

\_/

Correct coverage
by construction




Construction of Cl for Exponential PDF

ML-Schatzer Estimator = arithmetic mean of lifetimes
PDF for ML estimator is special case of gamma function

3 0.6 T T T T T G 0.6 T T T T T T
5 @ | .5 (b)
s —— E=2 a iF — n=2
o> 05 41 & 05 }F J
- E=4 > --- n=5
=6 n=10
0.4 . . §
=8 04 - n=20
0.3 n=>5 - 03 £ &=4 y
/":,"" ~
0.2 : 02 t NG
0.1 . 01 ¢ / \\ +
0 A~ i 0 /"-‘.- L ! \\1 ~
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
S §
PDF for Ngp=5 various true lifetimes for true lifetime = 4,various Ngp

for Ngp 2 « PDF converegs to Gausian PDF due to Central Limit Theorem



Construction of Cl for Exponential PDF (2)

2(8:9)

2(8:0)

PDF for ML-estimator for various true life times for sample size Ngp = 20

Confidence belt: u, and I;

~ lllllllllllllllllll

LW\ _
A 0=1 1T 2 3 4 5 ¢
. \ ¢ 0

% T 2 3 7] 5 ¢ Confidence interval [a,;b]



Construction of Cl for Exponential PDF (3)

Comparison of Cl from estimator £ 1 standard deviation (triangles)
and from correct Nyman Construction (points)

interval for &

w

\J | T Al

* 68.3% confidence interval

&oosioi
N -
A LI
A . -
- B '00..
E’o AAAAA‘.“x:x‘x:‘
bs
e 0 o @ 1311
oc'zzzdthlxx‘:lx“
N
a
L e 1 1
5 10 15 20

25

forn = Ngp 2 < both Cl get
identical as PDF for estimator
- Gauss-PDF f., .

for finite/small n = Ngp

» correct Neyman ClI longer

» coverage of naive ClI
smaller than claimed CLI



Bayesian Credibility Interval

Result from experiment is posterior PDF for true parameter value 6

P(0;xgp) = const. L(xgp;0)m(0)

Integrate posterior PDF to get Cl [a,b] at credibility CL=1- a—f

a

o= / P(0: 2p)d0 lower limit [a, =
B = /P(H;a:sp)de upper limit ]-«,b]
b
b
| —a_f= / P(0: z5p)db two sided Cl [a,b]

Implement physical boundary via w(6): ®(6) =0 in unphysical region
Repeatability of experiment and coverage is not of (main) interest for Bayesian



