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Goal of the lecture: understand the content and interpretation of the two figures
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Outline

Lecture 1: Basics (26.9.)

» Frequentist Confidence Intervals a la Neyman and Coverage
» Bayesian Credibility Interval from Likelihood Principle

Lecture 2: Limits for Gaussian Probability Distribution (today)

» Connection of Frequentist Limit to Frequentist Hypothesis Test

» Limits close to physical boundary

» Frequentist and Bayesian Limits

» Modified Frequentist: CLg Method and Power Constrained Limit (PCL)
» Unified Approach, Feldman- Cousins Intervals (FCL)—> 28.9

Lecture 3: Limits for Poisson Distribution (28.9.)
» Confidence Intervals with and w/o background
» Limits close to physical boundary

» Frequentist, Bayesian, PCL, CL_s, FC Limits



Interpretation of Cl: Frequentist and Bayesian

Cl: Attempt for a probability statement connecting measurement with true value

Frequentist: - objects to / can not make probability assignment to true values
- construct a confidence interval Cl [a,b] at xy% CL from data

in such a way that in a sequence of repeated identical measurements
the fraction xy% of such intervals contains the true value

- no statement about true value in a single experiment

- "the coverage probability of the interval is XY %"

- no problems with “empty” intervals: m? <-1eV?, s<-0.3 @95% CL

Bayesian: - wants to make statement about probability of true value
from single measurement
- credibility interval / Bayesian confidence interval [a,b] at xy% CL
- probability / degree of belief that true values lies in [a,b] is xy%
- coverage and outcome of not observed experiments not interesting
- all information is in observed likelihood function - likelihood principle
- ,empty“ intervals are meaningless in Bayesian interpretation
but are avoided by an appropiate prior probability



Classical Frequentist Intervals

Region btw. u,(6) and v,(6) is the confidence belt  P(lg(0) < 0 < u,

Boundaries of confidence interval given .
by intersect of observed value H
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Calculation of confidence belt

P(a(0) <6 <b()=1—a— 3| veryCPUintensive




Construction of Cl for Exponential PDF

ML-Schatzer Estimator = arithmetic mean of lifetimes
PDF for ML estimator is special case of gamma function
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PDF for Ngp=5 various true lifetimes for true lifetime = 4,various Ngp

for Ngp 2 «° PDF converges to Gaussian PDF due to Central Limit Theorem



Construction of Cl for Exponential PDF (2)

2(8:9)

2(8:0)

PDF for ML-estimator for various true life times for sample size Ngp = 20

Confidence belt: u, and I;
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Construction of Cl for Exponential PDF (3)

Comparison of Cl from estimator £ 1 standard deviation (triangles)
and from correct Nyman Construction (points)
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forn = Ngp 2 < both Cl get
identical as PDF for estimator
- Gauss-PDF fg, .

for finite/small n = Ngp

» correct Neyman CI longer

» coverage of naive ClI
smaller than claimed CLI



Basics of Hypothesis Tests

Null hypothesis H, : hypothesis which you try to falsify / reject
(one can not verify / approve hypothesis)

Test statistic t: any function of your data which is used
to quantify (dis-)agreement with H,

a(t|H,): probability density function PDF for test statistics
under null hypothesis H,
Critical region: range of test statistic for which H, is rejected
03 Nullhypothese H , (a)

g(tH )

o: significance (level)
size of test
error of 1stkind.
probability to reject H,,
if H, is true

Akzeptanzregion  t, kritische Region
H , akzeptieren H , verwerfen
<t

>
Fehler erster Art
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Basics of Hypothesis Tests (2)

In principle: infinity many possibilities to choose critical region for given a
(especially for one sided tests you need an alternative hypothesis to decide
what you call inconsistent with null hypothesis)

Alternative hypothesis H, : hypothesis which you would like to approve

g(t|H,): probability density function for test statistics
under alternative hypothesis H,

tk ; 0.3 . alternative Hypothese H | (b)
6 — g (t ‘ H 1 )dt ) % I Akzeptanzregion  t, kritische Region
—00 B H , akzeptieren H , verwerfen
02— < >
- Fehler zweiter Art

B: error of 2"9 kind 0.1

M=1-B: power - j>(

[  prob.toreject H, if H, is true ok e

’ 0 5 10

1-f prob to “accept” H,, if H, is true



One- and Twosided Tests

f(x) (%)

Xa

1

~Xa ia X

Depending on problem deviation in one or two directions are considered
as incompatible with null hypothesis

—> one or two-sided test and critical region
—> if two-sided distribute significance a on both regions (mostly a/2)



P-Value

P-value: probability to observe a data set, which is as consistent or less
with null hypothesis as the actual observation

Test statistic: q,

14 PDF for g, under Hy: f(q,|0)
Critical region: large values of q,
Jo obs- OPserved value in data

po = / f(qo[0) dqo
q ‘

0.obs

P-value is random variable (c.f. significance level o fixed before measurement)
if P-value = significance level o, then . = 9 itical

if P-values less then significance level a then reject null hypothesis

1-P-value = confidence level of the tests

Beware of wrong interpretation: P-value is not probability, that H, is wrong
1-P-value is not probability, that H, is true



One and Two sided P-Values

(b)

T 04
M -

t=0 for perfect agreement between data and H,

left: one-sided P-vlaue  right two-sided P-value



Expected P-Value / Sensitivity

Often interested in sensitivity of experiment:
evaluate p-value under null hypothesis (u)
from median value of test statistic under alternative hypothesis (u’)

med[q |u]
f(q, Im) g

/

(CATY

/ p—value




Example: Test for Mean Value of Gaussian PDF

Null Hypothesis: mean value A=A, Data set of size n (for illustration =2): x;,x,
Test statistic: maximum likelihood estimate !
= arithmetic mean X= ﬁ(xl X+ 1+X)
with PDF given by Gauss . Jn n )
with mean A, und Variance ¢°/n flesho) = o CXp (—272(x 0) )
Choice of 4 different critical regions with same significance o
L 0
two sided in tails Up:x < Mundx > )1 mltf fx)dx = fAH fx)dx = %Ol
one-sided in upper tail Uy:x > }»HI mit fxﬂl dx o,
one-sided in lower tail Uy:x <A mltf f Jdx =0 ;

two-sided in center Uy AP P it /AV WM f(x)dx _ %0{ |



An Example: Test for Mean Value of Gaussian PDF

(at)

Rows: 4 critical regions

two sided in tails
one-sided in upper tail
one-sided in lower tail
two-sided in center

I

Upix <Hundx > 20 mit /_koof(x)dx = [y fr)dr= %a ;

Uyix> Ml mit fﬁﬁf(x)dx:a;

g < it | flde=e;

Upd <ral mit f;vo flx)dx :fkwf(x)dx —ly.

My

Left column: critical region for n=2
in data set space

Middle column: PDF for test statistics
for Hy and H, with critical regions

A=A =Ap+1

Right column: power for n=2 and n=10 o
depending on A4-A S. Brandt




Example: Test for Mean Value of Gauss PDF

U, power 2 significance for all A
two sided test from ratio

of profiled likelihoods

forHi: A=A #A

U,: larger power for A,>A,
one sided test from NPL
forH: A=A, > A,

U,: larger power for A,<A,
one sided test from NPL
forHi: A=A, < A,

U,: no useful test
maximal power for A=A,

(al)

(b1)

(c1)

)\!II

(@a3)

X2

N Ai=No
T T

T T T T
3 -2 1 0 1 2 3

0.8+
0.6+
0.4+

0.2
A Miho

83 -2 -1 0 1 2 3

S. Brandt




Classical Frequentist Intervals

Region btw. u,(6) and v,(6) is the confidence belt  P(lg(0) < 0 < u,

Boundaries of confidence interval given .
by intersect of observed value H

with confidence belt = [a’b] \4\
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Correct coverage
by construction




Cl from Inversion of Hypothesis Test

5 I 1 I I

)

true

u,(8)

The Confidence belt is the acceptance
region of all possible hypothesis tests.

Cl for a parameter 6 :
find all true hypothetical values 6 which 2 r
are not rejected in a test of size 1-CL -
given the observed value 6, T /
a b
0 1 1 1
0 1 2 3 4

An upper limit b for 6 is the smallest value for which holds p, 2 y.

In practical life: for given sizes / tail probabilites o. and 3
find largest a and smallest b, fulfilling the equations:

A A A

o0 Oobs .. A
o= / 9(9; a)d9 =1- G(@Obs; a) B = / g(0;0)d0 = G(Bops; b)
0 —00




Determination of CI

The recipe to find [a, b] reduces to solve

g(8:a)
B
g(0:h)

05

— a is max. hypothetical value of 6 for which P(8 > O,ps) = o.
— b is min. hypothetical value of 6 for which P (8 < gobs) = 3.




Cl for Estimator in Gaussian PDF

9(6;0) = 1 exp (— 6 9>2>

Confidence belt for 0=1 at 90 % CI

2703 2%2 § D prrr e
_ _ . _ F | Feldman /E
Very simple if variance known and constant: 5 I€busing: Y
: N VAN
A 9058 —a C 4 ]
a = 1—G(90b3;a,0é):1—<b< — ) %3: // 1 Cl=
. ’ o / 1 uxl6do
N obs " / ]
5 — G(eobs;ba Jé) = o ( bO'é ) ) | C // // ]
- v -
SOIVed by ’ 1 Moeasureil Mearzlx _ !
R 1 a1 WO Sided One sided
a = Oups—0y® (1 —a)
R - O 1-7/2) 1-9 o l1-a) 1-a
= Oops + 0,27 (1 —0) I 060 E
2 0.9544 2 0.9772
3 0.9973 3 0.9987
For a=p= 0.16 4 1-6.3x107°
[9—(;@,6’4—0@] 5 1= 57x 1077
1-0 Intervall 6 1-20x107°




Cl for Estimator in Gaussian PDF

o(0:6) = 1 - (_ (é%§)2> Confidence belt for =1 at 90 % ClI
27709 6 R
Very simple if variance known and constant: s b //
: N A
a = 1—G(é0b3;a,aé):1—<b(90b8_a) = //
%9 2 E 4 ;
A Oops — b o f // 4
6 = G(‘gobs;ba Ué) =& ( obs R ) ) : / // ]
0'0 1 - V4 / ]
’ 2: /1””0””1'”/2””%'”'4
SOIVed by _ _ Measured Mean x _
0 o1 (1 ) « Two sided One sided
a = — O0p —
e 1=y 0172 [1-a & '(1-q)
= Oops + 03 (1 = f) 090 1645 000 1282
0.95  1.960 0.95  1.645
For a=p=0.16 0.99  2.576 0.99  2.320
0—0py,0+0 0.999  3.29
1-0 Intervall 0.9999 3.89




Cl at Physical Boundary

Gaussian estimator with known variance allowed range: true value 6 = 0.

Classical Neyman construction yields upper limit:

2 —1
example: observation =-2 variance =1 ; CL =95%

2> b=-2+1.645=-0.355 CI ,empty” / completely in unphysical region

Frequentist: no problem. If true value is ,,0%, 5% of all Cl should not contain ,,0*
Bayesian: not satisfactory. Worked for years, spent many Euros to get this answer.

Option 0: increase CL until upper limit > 0
CL=99% 2>b =-2+236=0.326 b <<resolution=1 - arbitrary
even worse: adjust CL for best limit CL =97.725% - b=10-°

this option is not to be used!



Cl at Physical Boundary: Solutions

Option 1: replace measurement by boundary value if measurement in unphysical region
- upper limit (CL = 68%) > resolution
- for measurement above border identical to classical Cl
- coverage 100% for measurement in unphysical region
(equivalent to Power Constrained Limit with minimal power = 50%)

Option 2: Bayesian limit

Implement physical boundary
L .
P(u;x) = T (@ ) () via (n): m(u) =0 in forbidden region
[ L(z; p)m(pn)du mostly: n(u) = const else
Hup
1 , Integrate posterior-PDF
ClL=1-a= / Py ) dps P (u | x) to get correct credibility

— 0

Hup
_ZO Liw: pm(p)dp Coverage larger than quoted CL,
CL=1—a= =

[ Liw; p)m(p)dps but not goal of Bayesian method




Frequentist, Shifted and Bayesian Limit
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upper limit for mean of Gauss PDF with Variance 1 at 95% CL



Bayesian Upper Limit for Gauss PDF

Condition for upper limit

MHup

[ Lz; p)m

T
S Las ) (p)dp

(1)dp
CL=1—-—«a=

Yields ratio of two integrasl over Gauss PDF

starting at physical boundary

f@la)m (a)

Likelihood function

A-priori probability

(w—p)*
_ mp) = 0 foru<0
L T: — ex 27‘(‘0‘2
( ; :u> p = const. for u >0
Hup _(@=w?
f eXp vV 2r o du
CL=1—-a="

Unphysical | Physical g(ala) =
region region f fl@la)(
g(a 1&) (before
/ normalization)

€ of area
in physical
region

'

UCTEING

400 _(z—w)?
f exp \/27Tc7 d,u
0

BayeS|an upper limit at 95% CL

w
-
(=]

f =

<
D
=

4 or o

Confidence limit 1 — ¢

Upper limit always > 0
Coverage greater CL

For large measured x approaching

classical limit of x+1.64 (o=1)

B. Cousins .

10 4 N W b 0O N 0 ©
1 HHHHHHHHHHHHHHHHH\L

1 2 3 4 5 6 7
Measured Mean x



Bayesian Upper Limit for Gauss PDF

Unphysical | Physical
region region
g(a 16) (before
/ normalization)
f(ala) ¢ of area
S in physical
region

Mean

-
(=}

.LNOD-hU'IO’\lm(O

10

a or o
Confidence limit 1 — ¢

Measured Mean x

(@|OJ) m(a)
() da

g(oz|a{) — ff

Yields ratio of two integrals
over Gauss PDF
starting at physical boundary

Upper limit always > 0

Coverage greater CL

For large measured x approaching
classical limit of x+1.64 (o=1)



Frequentist, Shifted and Bayesian Limit

e 5 T | T ' '

& 4 [ -7 shied |

A Bayesian, n(6) = const.

I |

o 3 r

R

wH

m gl ISR o —
1 E e |
0 | g
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-4 -3 2 g : 1 |
90bs

upper limit for mean of Gauss PDF with Variance 1 at 95% CL



The “problem” with the classical Freq. Method

oo

p, = P(G,> cjzbs | signal+background) = F(q.lp, szs) dq,,

~obs
'

Pure frequentist would stop and say: ,signal + background® hypothesis is
excluded with a confidence level CLg,50f 1- p,

,Problem®: Spurious exclusion of hypothesis (signal) with no sensitivity (s<<b)

Iarge S @, -~ critical region — critical region s<<b
/ f(q 10)
power M= 1-13 Y power M = 1-13
large w.r.t. ~ significance
significance level o
level a L0 )

signal+BG-like &< - BG only like,

By construction: probability to reject u if u is true is o
for s<<b probability to reject very small n if u=0 is true ~ a + epsilon
—> probability to exclude hypotheses with zero signal
(due to downwards fluctuation) ~ o ,spurious exclusion w/o sensitivity”




CLg for Continuous Random Variable

P-value(u) P-value(u)  P(x < zopsi 1)

CLg = =
ST - P-value(u = 0) Power( =0vs.u) Pz < xops; 0 =0)

A hypothesis is called excluded at confidence level CLif CLg<1-CL

Motivation for this “ad hoc” correction of P-value (A. Read 1997) later in lecture
Gaussian example: small (large) value of x inconsistent with u (u=0) hypothesis

Tobs CEDE Numerically identical to Bayesian limit
[ dxexp Vomo? dx
CLg = xoo —=or Clgg = P-value(u) ClLgg = classical limit
obs black = 1-P- vaIue(O) CLs = CLg limit
drexp V2ro? dx S S
f ? ;: T f s 5—“‘\“‘\“‘\“‘““““““
S102F 4 5 L,
E1040 1 = *%| B. Murray E
= F E £ 4F .
= §10°F 4 =
£ B *
£ o8 -4 B0k B.Murray | = 3 3 E
- o102 1 3 28 :
. — 4L 1 b E
E ::8-16 B * 2; E
B B el S CL, 3 15 E
] L ] 10-20: 7CLS E 1; E
- ] 1022 1 o5 E
% 6 4 =2 o =z a & ® 0 a2 0 2 e B % 6 4 2 0 2 4 6 8
measured value measured value, x measured value, x



CLg for Mean of Gaussian PDF

= 1

= B

[q¢] L
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2 e B

Lobs _(m—u) o 0.8_—

[ dxexp Vero? dx -

—00 0.6—

CLs = 5 -

Lobs _ﬂ L

[ dxexp Voro? dx 0.4

—00 :

0.2

Og
=- 5: E
[ - -
2 4.5 E
£ aF E
L 3.5 =
s - :
1 3__ —_
(&) = 3
2 2.5 —
o = 3
(52 2 —
15
1= =
0.5t ; =
O: 1 1 ‘ 1 1 1 ‘ 1 1 1 ‘:'\' 1 1 ‘ 1 1 1 ‘ 1 1 1 ‘ 1 1 1 ‘ 1 1 \:
-8 -6 -4 -2 (0] 2 4 6 8
measured value, x
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measured value

CLgg = classical limit
CLg = CLg limit



Constraint Limits (PCL) (Cowan et al. 2010)

f(q,lw)

—> critical region

LOEREN
4 N
\
\
\

f(q,10)

— critical region

f(q,10)

Upper limit from inversion of hypothesis test
All values u 2y, are called excluded

First normal condition for exclusion of a value of u:

measurement x is in critical region (o, ) for a test of u
or p-value for x is smaller than size of test a=1-CL

Supplemented by second condition:

sufficient sensitivity for discrimination of u

from alternative hypothesis u'=0

or power M=1-f of testing u’ vs u 2 minimal value

Power M defined with critical M (1) = P(x € qu)
region or via p-value w.r.t.
) Y My (i) = Ppu < alyt)

Procedure: determine “usual” upper limit
Find minimal u value which has minimal power M, W i,

The PCL u*,, is then given by larger of the two: ,uf‘lp = max(fbup, fmin)

For M., ,=16% u ., = “median expected — 1 ¢~ under hypothesis u' =0



PCL for Gauss-PDF with u' =

u=0, o=1

Y 1=0.64, o=1

G. Cowan et al.

X(critical) = -1
red area: Power = 0.16
W min=0.64 vs u=0

blue area: significance = 0.05
foru ,,= 0.64

Mo(u) = P (i < p— 0@} (1~ )|0)

My(p) =@ (£~ 271~ a)

o

<power of the test for uw w.r.t. w'=0
fora=0.05and o= 1

My(0) = « My(p) > a for all g >0

M_. =16% > u.. =0.64
M. =50% > u . =164



PCL for Gauss-PDF with u' =

u=0, o=1

Y 1=0.64, o=1

G. Cowan et al.

Critical region in a test of u with size o
f<p—o® 1 —a)
The “usual” limit is then given by:
~ —1
fpup = i + 027 (1 — )
The power of the test for u w.r.t. =0
Mo(u) = P (i < p— 0@} (1~ )|0)
My(p) =@ (£~ 271~ a)

<power of the test for uw w.r.t. w'=0
fora=0.05and o= 1

Mo(O) =
My(p) > « for all >0

M, =16% > u . =0.64
M. =50%>u,._. =1.64



PCL for Gauss-PDF with u' =

upper limit

u=0, o=1

u=0.64, o=1

.....

Requiring a minimal power @ (g — 11— a)) > Mmin

Minimal limitis:  fmin = (©7" (M) + @7 (1 - a))
Unconstrained limit:  fup = [t + c® (1 - a)

Replace normal limitif: 1 < 0® 1 (Mpin)

2 - <
S PCL given by
e, / (@ ) e () <o (M)
Hup = {ﬂ n 0<I>_1(1 ~q) otherwise .
5. Cowan et //
ol / Fora=0.05 M,,=16% o="1
/ W = Umeas ¥ 1,64 uy, =-1+1.64 =0.64
____________ Wk,o = Max (-1, Upeqs) + 1.64
4 R 2 4

a = 0.05 gives d71(1 — a) = 1.64

=



Power Constraint Limits at Work

95% CL Limit on o/cg,,

Hup

Cowan et al.

median unconstrained limit
median + lo

observed unconstrained limit
PCL

10?

10

ATLAS

—e— Observed, PCL
----- Expected, PCL
\s=7 TeV [ + 10, PCL
4 [J+20,PCL
Ldt~35 pb1 —=— Observed, CL_
..... Expected, CLS

1

|

Tevatron exclusion

|:| LEP exclusion

—_
o
o

200 300 400

500 600
my, [GeV]

" { o ((I)_l(Mmin) + (I)_l(l — Oé)) ﬂ < J(I)_l(Mmin)
Hrp =

f+oc® 1 - a) otherwise .

for M,,;,=16%:

replace ,observed” classical limit
by expected — 1 o under H1
hypothesis if less than this value

PCL used in first ATLAS Higgs boson
searches from 2010 data at 7 TeV

expected limit: median value of u

which will be excluded under BG-only
green and yellow bands are 68% (95%)
confidence intervals around this

expected CLg limit worse due to division
by 1-p-value(b-only) = 0.5 on average



Comparison of Upper Limits and Their Coverage

upper limit

Gauss-PDF with variance =1 physical region u= 0 CL=95%
(PCL with M_,,=16%, equivalent to replace observation by -1 if < -1)

— PCL | G. Cowan
---------- Classical :
6 [ e Bayesian / CL

G. Cowan

coverage probability

09 r

— PCL

.......... Classical
..... Bayesian /CLS

-4 -2 0 2 4 0 1 2

=

PCL: coverage known either desired one or 100%
CLs : now preferred at LHC as used for long time and
equivalent to Bayesian with flat a-priori probability




Flip-Flop-Problem for Mean of Gauss-PDF

In principle: decide before measurement whether to quote one- or two-sided interval
In praxis: if two-sided Cl at XY% CL does not contain 0 then

quote two-sided Cl at 68% CL, else upper limit at 95% CL

—> this is the flip-flop problem with too small coverage

One and two-sided Cl at 90% CL for variance =1

6 rrri rrri LILLIL LILLIL LILLILI LILBLILI 6 | L LB | LI L L LI rTrri | LI LI LI
L | Fekdman/ - C | Feldman/ 4
5 [--Colssing // 5 [-|.Cousins //
X A : WA
= [ 3 N .
=3 F /. 7 =D / ]
< / - g3 F Y4 .
- - = r .
2 F % - 5 F / A
: / : : 2 e
0 -l |/ L1111 L1411 1 111 111 ||||_ : l/ / :
2 _1 0 1 2 3 4 0 [ [ .|||| L4111 1 1 1 11l L 111
2 -1 0 1 2 3 4

Measured Mean x
Measured Mean x

_m one-sided: measured x + 1.28 two-sided: measured x + 1.64 o



Flip-Flop-Problem for Mean of Gauss-PDF

Mean |

6 LILILL L LI LILILIL! LILELIL! LILELEL LILILIL!
L | Feldnian/ 2 Assumption: flip-flop at 3
T F - for X ;s> 3 two-sided Cl
, E - else one-sided ClI
3 F .
C - Problem:
, C A for 1.36 <u <4.28
C / N coverage is only 85%
L E o] 1-€- smaller than quoted
: ] value of CL=90%
O -I L1l | . | LA 0 1l | | . | L _l l-
2 -1 0 1 2 3 4

Measured Mean x

Solution unified approach / unified confidence intervals
Re-discovered for HEP in 1998 by Feldman and Cousins



Construction of Cl using Likelihood Ratio

Ordering principle: include possible measured x values according to
decreasing likelihood ratio R(x) in confidence belt

Maximum likelihood estimator for u ¥ best = X for x20
given true value constrained to=0: West =0 forx<0

1/4/2m, r >0
exp(—22/2) /2w, x < 0.

Likelihood for x assuming w P(x|ptpest) = {

Likelihood ratio R(x) R(z) - P(x|u) _ Jexp(=(z - 1)?/2), >0
defined according to : P (] thest exp(ap — 2/2), <0

o
Determine x, and x, from / P(x|p)dz = a.
z1

With condition R(x,1) = R(x2)



Feldman-Cousins Cl for Gauss-PDF

Gauss PDF with variance =1, physical allowed range u=0
Confidence belt at 90% CL

yaa A gy Ll :{exp(—<w—u>2/2>, 1>
= / = P(ﬂﬂbest) eXp(I:u_:uQ/2)7 <0
* [ / .
= f A f .
z? - pd /5 / P(x|p)dxr = .
= v = x1
1 f // // f N

Measured Mean x

FIG. 10. Plot of our 90% confidence intervals for mean of a Gaussian, constrained to be
non-negative, described in the text.

- no empty intervals, automatic transition from one-sided to two-sided ClI
- for large measured values of x Cl identical to classical (for Gauss-PDF)
- for small measured value of x FC-CI longer than classical ClI

(this is the price one has to pay when avoiding flip-flop-problem)



Comparison of Upper Limits 95% CL for Gauss PDF

Measured Mean x

Measured Mean x

Classical Bayesian / CLg FC unified
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Comparison of Upper Limits and Their Coverage

Gauss PDF with variance =1, physical region u= 0. upper limit at 95% CL
(PCL with M_..=16% (50%), equivalent to replacing observation by -1 if <-1 (0 if < 0))

= 8 ; z F
£ ’ . =
- 7L — PCL M, =0.16 G. Cowan = G. Cowan
. o]
< T (R— Classical ° .
o o 1 """""
RS I Bayesian / CL S
2 (®)]
. PCLLM_ =05 g
min -
® [ - Feldman-Cousin 8 -
A4
3 09 __pcLM_ =0.16
min
~~~~~~~~~~ Classical / F-C full
2 L 1 I - Bayesian / CL5
S S— - / [0 R I I PCLLM_ =05
; min
L e s s / e e I B F-C upper edge
_: - 5 ’ 08 ] ] ] 1
0 ' 0 1 2 3 4 5

i

FC gives smallest upper limits for large negative values
FC/unified approach can be supplemented by power constraint



