Confidence Intervals and Limits for Pedestrians

GK Lecture, Freiburg, 26-28 September 2017

Goal of the lecture: understand the two figures

Outline

Lecture 1: Basics (26.9.)
> Motivation
> Frequentist and Bayesian Probability
> Parameter Estimation from Maximum Likelihood
> Frequentist Confidence Intervals a la Neyman and Coverage
> Bayesian Credibility Interval from Likelihood Principle
Lecture 2: Limits for Gaussian Probability Distribution (27.9)
> Connection of Frequentist Limit to Frequentist Hypothesis Test
$>$ Limits close to physical boundary
> Frequentist and Bayesian Limits
> Modified Frequentist: CL_s Method and Power Constrained Limit (PCL)
> Unified Approach, Feldman- Cousins Intervals (FCL)

Lecture 3: Limits for Poisson Distribution (28.9.)
> Confidence Intervals
$>$ Limits close to physical boundary
> Frequentist, Bayesian, PCL, CL_s, FC Limits

Outline

Lecture 1: Basics (26.9.)
> Motivation
> Frequentist and Bayesian Probability
> Parameter Estimation from Maximum Likelihood
> Frequentist Confidence Intervals a la Neyman and Coverage
> Bayesian Credibility Interval from Likelihood Principle
Lecture 2: Limits for Gaussian Probability Distribution (27.9)
> Connection of Frequentist Limit to Frequentist Hypothesis Test
> Limits close to physical boundary
> Frequentist and Bayesian Limits
> Modified Frequentist: CL_s Method and Power Constrained Limit (PCL)
> Unified Approach, Feldman- Cousins Intervals (FCL)

Lecture 3 +4: Limits for Poisson Distribution (28.+29.9.)
> Confidence Intervals
$>$ Limits close to physical boundary
> Frequentist, Bayesian, PCL, CL_s, FC Limits

Confidence Intervals for Poisson-PDF

$$
f(n ; \lambda)=\frac{\lambda^{n}}{n!} \exp (-\lambda)
$$

$\mathrm{n}=$ observed events $=\mathrm{ML}$ estimate for λ Target: confidence interval for λ

Due to the discreteness of n the "confidence belt" equations can not be fulfilled exactly. "Conservative" modification of equations e.g:

$$
\alpha \geq P\left(\hat{\lambda} \geq u_{\alpha}(\lambda)\right)
$$

Hence over-coverage per construction

$$
P(a \leq \lambda \leq b) \geq 1-\alpha-\beta
$$

Inversion of test $\alpha=\sum_{n=n_{o b s}}^{\infty} f(n ; a)=1-\sum_{n=0}^{n_{o b s}-1} f(n ; a)=1-\sum_{n=0}^{n_{\text {obs }}-1} \frac{a^{n}}{n!} e^{-a}$,
Solve numerically the equtions \rightarrow

$$
\beta=\sum_{n=0}^{n_{\text {obs }}} f(n ; b)=\sum_{n=0}^{n_{\text {obs }}} \frac{b^{n}}{n!} e^{-b} .
$$

Poisson PDF

$$
f(n ; \lambda)=\frac{\lambda^{n}}{n!} \exp (-\lambda)
$$

$\mathrm{n}=\mathrm{nr}$. of observed events $=\mathrm{ML}$ estimate for λ Target: confidence interval for λ

Poisson Distribution

Determination of Cl for Poisson-Parameter

Simple case: no observed event $\beta=e^{-b} \Longrightarrow b=-\log \beta$

$$
\text { hence at } C L=95 \% \quad b=-\log (0.05)=2.996 \approx 3 \text {. }
$$

For general case use relation btw. Poisson-PDF and Chi²-PDF

$$
\begin{aligned}
\sum_{n=0}^{n_{o b s}} \frac{\lambda^{n}}{n!} e^{-\lambda} & =\int_{2 \lambda}^{\infty} f_{\chi^{2}}\left(z ; n_{\text {dof }}=2\left(n_{o b s}+1\right)\right) d z \\
& =1-F_{\chi^{2}}\left(2 \lambda ; n_{d o f}=2\left(n_{o b s}+1\right)\right)
\end{aligned}
$$

The borders of the Cl are obtained via the cumulative of the Chi^{2}-PDF

$$
\begin{aligned}
a & =\frac{1}{2} F_{\chi^{2}}^{-1}\left(\alpha ; n_{d o f}=2 n_{o b s}\right) \\
b & =\frac{1}{2} F_{\chi^{2}}^{-1}\left(1-\beta ; n_{d o f}=2\left(n_{o b s}+1\right)\right)
\end{aligned}
$$

	lower limit a				upper limit b		
$n_{\text {obs }}$	$\alpha=0.1$	$\alpha=0.05$	$\alpha=0.01$	$\beta=0.1$	$\beta=0.05$	$\beta=0.01$	
0	-	-	-	2.30	3.00	4.61	
1	0.105	0.051	0.010	3.89	4.74	6.64	
2	0.532	0.355	0.149	5.32	6.30	8.41	
3	1.10	0.818	0.436	6.68	7.75	10.04	
4	1.74	1.37	0.823	7.99	9.15	11.60	
5	2.43	1.97	1.28	9.27	10.51	13.11	
6	3.15	2.61	1.79	10.53	11.84	14.57	
7	3.89	3.29	2.33	11.77	13.15	16.00	
8	4.66	3.98	2.91	12.99	14.43	17.40	
9	5.43	4.70	3.51	14.21	15.71	18.78	
10	6.22	5.43	4.13	15.41	16.96	20.14	

Frequentist Confidence Intervals for Poisson-PDF

Confidence belt

Upper a and lower b limits

$n_{\text {obs }}$	lower limit a			upper limit b		
	$\alpha=0.1$	$\alpha=0.05$	$\alpha=0.01$	$\beta=0.1$	$\beta=0.05$	$\beta=0.01$
0	-	-	-	2.30	3.00	4.61
1	0.105	0.051	0.010	3.89	4.74	6.64
2	0.532	0.355	0.149	5.32	6.30	8.41
3	1.10	0.818	0.436	6.68	7.75	10.04
4	1.74	1.37	0.823	7.99	9.15	11.60
5	2.43	1.97	1.28	9.27	10.51	13.11
6	3.15	2.61	1.79	10.53	11.84	14.57
7	3.89	3.29	2.33	11.77	13.15	16.00
8	4.66	3.98	2.91	12.99	14.43	17.40
9	5.43	4.70	3.51	14.21	15.71	18.78
10	6.22	5.43	4.13	15.41	16.96	20.14

Application in OPAL LEP 1 Higgs Boson Searches

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{obs}}=0 \rightarrow \mathrm{~s} \leq 3.0 \text { at } 95 \% \mathrm{CL} \\
& \mathrm{n}_{\mathrm{obs}}=1 \rightarrow \mathrm{~s} \leq 4.7 \text { at } 95 \% \mathrm{CL}
\end{aligned}
$$

$M_{H}<59.6 \mathrm{GeV}$ excluded at $95 \% \mathrm{CL}$

Poisson-PDF for Signal plus Background

Expected known background rate b
Expected signal rate s to be estimated from data

Upper limit for Poisson-PDF with Background

Upper limits at CL=1- γ given by solving the equation from test inversion

$$
\gamma=P\left(n \leq n_{\mathrm{obs}} ; s, b\right)=\sum_{n=0}^{n_{\mathrm{obs}}} \frac{(s+b)^{n}}{n!} e^{-(s+b)}
$$

Boundaries of $\mathrm{Cl}_{\mathrm{s}_{\mathrm{l}}}$, $s_{\text {up }}$ determined using Chi²-PDF:
$s_{\mathrm{IO}}=\frac{1}{2} F_{\chi^{2}}^{-1}(\alpha ; 2 n)-b$
$s_{\text {up }}=\frac{1}{2} F_{\chi^{2}}^{-1}(1-\beta ; 2(n+1))-b$
same as for „ $\mathrm{b}=0$ " - b
\rightarrow called „background subtraction"

Frequentist Limit at Physical Boundary

e.g. for $b=2.5$ and $n_{\text {obs }}=0$ we find upper limit of $\quad s$ up $=-0.197 \quad(\mathrm{CL}=0.90)$
increase CL to 0.95 yields
„cheating" with CL $=0.917923$ yields

$$
\begin{aligned}
& s_{\text {up }}=0.496 \\
& s_{\text {up }}=10^{-4}!
\end{aligned}
$$

naive argument: for $b=2.5 \rightarrow$ variance is $\sqrt{ } 2.5=1.6$. how can limit be so small?

MC simulation:
determine median limit under „b-only" hypothesis ($s=0$) \rightarrow expected limit
distribution of 95% CL upper limits for $b=2.5, s=0$.
\rightarrow Median $\mathrm{s}_{\text {up }}=4.44$

Bayesian Upper Limit for Poisson-PDF

Bayesian upper limit to $C L=1-\alpha$ to be derived from
with likelihood function
$L(n \mid s)=\frac{(s+b)^{n}}{n!} e^{-(s+b)}$

$$
1-\alpha=\int_{-\infty}^{s_{\mathrm{up}}} p(s \mid n) d s=\frac{\int_{-\infty}^{s_{\mathrm{up}}} L(n \mid s) \pi(s) d s}{\int_{-\infty}^{\infty} L(n \mid s) \pi(s) d s}
$$

and uniform prior in physical region

$$
\pi(s)= \begin{cases}1 & s \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Posterior probability:

$$
p(s \mid n)=\frac{(s+b)^{n} e^{-(s+b)}}{\Gamma(b, n+1)}
$$

$$
\Gamma(b, n+1)=\int_{b}^{\infty} x^{n} e^{-x} d x
$$

Need so solve:

$$
1-\alpha=\int_{0}^{s_{\mathrm{up}}} p(s \mid n) d s
$$

$$
\alpha=e^{-s_{\mathrm{up}}} \frac{\sum_{m=0}^{n}\left(s_{\mathrm{up}}+b\right)^{m} / m!}{\sum_{m=0}^{n} b^{m} / m!}
$$

$$
s_{\text {up }}=\frac{1}{2} F_{\chi^{2}}^{-1}[p, 2(n+1)]-b \int_{0}^{a} x^{n} e^{-x} d x=\Gamma(n+1) F_{\chi^{2}}(2 a, 2(n+1))
$$

Frequentist formula modified by replacing $(1-\alpha)$ by p

$$
p=1-\alpha\left(1-F_{\chi^{2}}[2 b, 2(n+1)]\right)
$$

Classical and Bayesian Limits at 95\% CL

Frequentist Limit at CL=95\%

Upper limit can be „0"
sup $=\frac{1}{2} F^{-1} \chi^{2}(1-\beta ; 2(n+1))-b$
for $\mathrm{b}=0$ identical for $\mathrm{n} \gg \mathrm{b}$ also identical other b values Bayesian> classical limit \rightarrow "conservative" coverage > CL Bayesian Limit independent on b for $\mathrm{n}=0$

Neyman Pearson Lemma

Best test: for given significance level α, maximize power $M=1-\beta$

Questions: Which test statistic t? Which choice of critical region?

Simple hypothesis H_{0} and H_{1}

Neyman-Person-Lemma: a test of a simple null hypothesis H_{0} w.r.t. to the simple alternative hypothesis H_{1} is a best test, if the critical region is chosen such that inside it holds:

$$
t_{N P}=\frac{\mathcal{L}\left(x_{S P} \mid H_{0}\right)}{\mathcal{L}\left(x_{S P} \mid H_{1}\right)}
$$

$P=$ probability to observe sample x ($\leq \mathrm{c}$ outside critical region)
c is a constant depending on α
Equivalent statement: the optimal test statistics is given by the likelihood ratio

$$
t_{N P}<t_{\text {crit }}(\alpha)
$$ (or any monotonic function $1 / t(, t /(1+t)$, $\ln t$)

Challenge in praxis: determination of PDFs for t under different hypothesis

Neyman Pearson Test Statistic for Exclusion

The Likelihood to observe n given $\mathrm{H}_{0}(\mathrm{~s}=0, \mathrm{~b})$ is:
The Likelihood to observe n given $H_{1}(s, b)$ is:
\rightarrow Neyman-Pearson-Lemma: best test given by or monotonic function

$$
L_{b}=\frac{b^{n}}{n!} e^{-b}
$$

$$
\begin{aligned}
& L_{s+b}=\frac{(s+b)^{n}}{n!} e^{-(s+b)} \\
& \frac{L_{s+b}}{L_{b}} \\
& \ln \frac{L_{s+b}}{L_{b}}=n \ln \left(1+\frac{s}{b}\right)-s
\end{aligned}
$$

Likelihood ratio is monotonic function of n.
PDF for optimal test statistic is also Poisson distribution
\rightarrow Counting rate n is optimal test statistic

$$
\text { Take e.g. } \mathrm{b}=100, \mathrm{~s}=20
$$

Suppose in real expe1 Q is observed here.

Often used at LEP :

$$
Q=-2 \ln \frac{L_{s+b}}{L_{b}}
$$

Optimal use of distributions/ combination of channels \rightarrow product of likelihoods per bin/channel or sum of In lik. per channel/bin

Profile Likelihood Test Statistic

Nullhypothesis H_{0} simple, Alternative hypothesis H_{1} composite

$$
t_{P L}=\frac{\mathcal{L}\left(x_{S P} \mid H_{0}(\theta)\right)}{\mathcal{L}\left(x_{S P} \mid H_{1}\left(\hat{\theta}_{M L}\right)\right)}
$$

$>$ not mathematically proof that this the best, but in praxis no better found
> allows easy incorporating of syst. uncertainties via profiled nuisance parameters
$>$ PDF for $q=-2 \ln t_{\text {PL }}$ is Chi2-PDF with 1 degree of freedom $f_{\text {Chi2 }}(q ; v=1)$ for N_{SP} not too small (Wilks theorem)
two sided critical region / test recommended from application to particular problem

Profile Likelihood Test Statistic for Exclusion

So far: signal rate fixed (known) under alternative hypothesis
Now: find best number of signal events under H_{1} via maximum likelihood fit i.e. H_{1} is composite hypothesis with signal count as free parameter

Likelihood function

$$
L(n ; s, b)=\frac{(s+b)^{n}}{n!} e^{-(s+b)}
$$

Test statistic: $\lambda(s)=\frac{L(s)}{L(\hat{s})}$
λ in [0, 1]:
1 good agreement with H_{0}

Enumerator (zähler): likelihood for H_{0} (s fixed, for discovery $\mathrm{s}=0$)
Denominator: likelihood for H_{1} (s estimated from data)
Maximum likelihood estimate for signal counts: $\quad \hat{s}=n-b$

Test statistics for discovery ($\mathrm{s}=0$ in enumerator):

$$
\lambda(s)=n \ln (s+b)-(s+b)-n \ln n+n
$$

$\ln \lambda$ in [0, -infinity]:
0 good agreement with H_{0}

Comparison of Test Statistic for Exclusion

From Neyman-Pearson-Lemma (simple hypothesis):

$$
\ln \frac{L_{s+b}}{L_{b}}=n \ln \left(1+\frac{s}{b}\right)-s
$$

From profile likelihood ratio (composite alternative hypothesis H_{1})

$$
\lambda(s)=n \ln (s+b)-(s+b)-n \ln n+n
$$

If we consider a deviation from background only hypothesis only for $n>b$ (e.g. set $\ln \lambda(0)=0$ for $n<b$)
then both are monotonic and as optimal as using n (for counting experiment neglecting systematic uncertainties)

In $\lambda(s)$ preferred for multiple channels / distributions add values of $\ln \lambda(s)$ for each/bin channel
PDF for $-2 \ln \lambda(s)$ for „s+b" /"b-only) given by Wilks' (Wald's)theorem

Profile Likelihood Test statistic for Exclusion

H_{0} : signal+background $\rightarrow \mu=1, \mathrm{~b} \quad \mathrm{H}_{1}$: background only $\mu=0, \mathrm{~b}$ μ parametrises strength w.r.t. "standard prediction" $\mu=s_{\text {obs }} / s_{S M}$

Test statistic $q_{\mu}=-2 \ln (\mu)$

One sided test, only signal strength $<\mu$ considered as inconsistent with H_{0}

large values H_{1}-like small values H_{0}-like

$$
\mu^{95 \% \mathrm{CL}}
$$

decrease tested μ until P-value $=\alpha=1$ - CL

„Spurious Exclusion" with Frequentist Limit

$$
p_{\mu}=P\left(\tilde{q}_{\mu} \geq \tilde{q}_{\mu}^{\text {obs }} \mid \text { signal }+ \text { background }\right)=\int_{\tilde{q}_{\mu}^{\text {os }}}^{\infty} f\left(\tilde{q}_{\mu} \mid \mu, \hat{\theta}_{\mu}^{\text {obs }}\right) d \tilde{q}_{\mu}
$$

Pure frequentist would stop and say: „signal + background" hypothesis is excluded with a confidence level L_{S+B} of 1- p_{μ}
„Problem": Spurious exclusion of signals with no sensitivity (s<<b)

By construction: probability to reject μ if μ is true is α for $s \ll b$ probability to reject very small μ if $\mu=0$ is true $\sim \alpha+$ epsilon
\rightarrow probability to exclude hypotheses with zero signal (due to downwards fluctuation) $\sim \alpha \quad$ "spurious exclusion w/o sensitivity"

Pseudo-Frequentist or Zech‘s Interpretation

Bayesian limit with uniform prior first proposed by O. Helene (1983) Condition can be rewritten as

$$
\alpha=e^{-s_{\mathrm{up}}} \frac{\sum_{m=0}^{n}\left(s_{\mathrm{up}}+b\right)^{m} / m!}{\sum_{m=0}^{n} b^{m} / m!}
$$

Numerical identical result derived by G. Zech (1988) in different context

$$
P(n ; s+b)=\frac{\mathrm{e}^{-(s+b)}(s+b)^{n}}{n!} \quad \text { stems from } \quad P(n ; s+b)=\sum_{n_{\mathrm{b}}=0}^{n} \sum_{n_{\mathrm{s}}=0}^{n-n_{b}} P\left(n_{\mathrm{b}} ; b\right) P\left(n_{\mathrm{s}} ; s\right)
$$

If $\mathrm{N}<\mathrm{b}$ we know background in data $<\mathrm{b}$
\rightarrow renormalilze background PDF and replace it in compound PDF

Find upper limit s by solving (with $\varepsilon=\alpha$)

$$
P^{\prime}\left(n_{\mathrm{b}} ; b\right)=P\left(n_{\mathrm{b}} ; b\right) / \sum_{n_{\mathrm{b}}=0}^{N} P\left(n_{\mathrm{b}} ; b\right)
$$

$$
\epsilon=\sum_{n=0}^{N} P(n ; s+b) / \sum_{n_{\mathrm{b}}=0}^{N} P\left(n_{\mathrm{b}} ; b\right)
$$

Zech's interpetation \rightarrow (not accepted by many Frequentist as one conditions on data, but known as the PDG formula for many years)

Zech's Interpretation

$$
\epsilon=\sum_{n=0}^{N} P(n ; s+b) / \sum_{n_{\mathrm{b}}=0}^{N} P\left(n_{\mathrm{b}} ; b\right)
$$

different. The limit in the "frequency interpretation"

 can be stated as follows: for an infinitely large number of experiments, looking for a signal with expectation s and Poisson distributed background with mean b, where the background is restricted to values of less than or equal to N, the frequency of observing N or less events is ϵ.(not accepted by many Frequentist as one conditions on data, but known as the PDG formula for many years)

$C L_{s}$ Limit for Poisson

A. Read (1997): applied Zech's "background conditioning" to the LEP test statistic Q $\mathrm{CL}_{\mathrm{s}} \approx$ "confidence in the signal-only hypothesis"

$$
\begin{gathered}
C L_{s+b}=P_{s+b}\left(Q \leq Q_{o b s}\right) \\
C L_{b}=P_{b}\left(Q \leq Q_{o b s}\right) \\
C L_{s} \equiv C L_{s+b} / C L_{b}
\end{gathered}
$$

A hypothesis is exlcuded at confidence level CL if

$$
1-C L_{s} \leq \mathrm{C} L
$$

Applied to Poisson case yields Zech's formula:

$$
C L_{s}=\frac{P\left(X \leq X_{o b s}\right)}{P\left(X_{b} \leq X_{o b s}\right)}=\frac{P\left(n \leq n_{0 b s}\right)}{P\left(n_{b} \leq n_{o b s}\right)} \quad C L=1-\frac{\sum_{n=0}^{n_{0 b s}} \frac{e^{-(b+s)}(b+s)^{n}}{n!}}{\sum_{n=0}^{n_{o b s}} \frac{e^{-b b n}}{n!}} .
$$

Remark: denominator is not 1 -p-value for the b-only hyp.
The sum would only run from 0 up to $\mathrm{n}_{\text {obs }}-1$.
Calling it the power is correct (I think)

Classical and $C L_{s}$ Limit compared for Poisson PDF

Expected background $b=3$
Expected signal yield $s=3$

Upper limits from
classical approach $\mathrm{CL}_{\text {sb }}$
CL_{s} technique

Flip-Flop-Problem for Poisson-Parameter $\mathbf{s}=\mu$

Known background =3
One-sided Cl at $\mathrm{CL}=90 \%$

$P(n \mid \mu)=(\mu+b)^{n} \exp (-(\mu+b)) / n!$
Two-sided Cl at $\mathrm{CL}=90 \%$

For „Flip-Flop" again to small coverage
Construction of confidence belt via likelihood ratio

$$
l(s)=\frac{L(n \mid s, b)}{L(n \mid \hat{s}, b)} \quad \text { where } \quad \hat{s}= \begin{cases}n-b & n \geq b \\ 0 & \text { otherwise }\end{cases}
$$

„Unified Approach": Poisson-CI at 90\% CL

Construction of confidence belt for $\mu=0.5, b=3$
confidence belt for $b=3$

$$
R=P(n \mid \mu) / P\left(n \mid \mu_{\mathrm{best}}\right)
$$

Standard

x	$\mathrm{P}(x \mid \mu)$	$\hat{\mu}$	$\mathrm{P}(x \mid \hat{\mu})$	R	rank	U.L.	C.L.
0	0.030	0.0	0.050	0.607	$6 \bullet$		
1	0.106	0.0	0.149	0.708	$5 \bullet$	\bullet	\bullet
2	0.185	0.0	0.224	0.826	$3 \bullet$	\bullet	\bullet
3	0.216	0.0	0.224	0.963	$2 \bullet$	\bullet	\bullet
4	0.189	1.0	0.195	0.966	$1 \bullet$	\bullet	\bullet
5	0.132	2.0	0.175	0.753	$4 \bullet$	\bullet	\bullet
6	0.077	3.0	0.161	0.480	$7 \bullet$	\bullet	\bullet
7	0.039	4.0	0.149	0.259		\bullet	\bullet
8	0.017	5.0	0.140	0.121		\bullet	

Unified Approach": Poisson-Cl at 90\% CL

FIG. 8. Upper end μ_{2} of our 90% C.L. confidence intervals $\left[\mu_{1}, \mu_{2}\right]$, for unknown Poisson sign mean μ in the presence of expected Poisson background with known mean b. The curves for tl cases n_{0} from 0 through 10 are plotted. Dotted portions on the upper left indicate regions whes μ_{1} is non-zero (and shown in the following figure). Dashed portions in the lower right indical regions where the probability of obtaining the number of events observed or fewer is less than 19 even if $\mu=0$.

FIG. 9. Lower end μ_{1} of our 90% C.L. confidence intervals $\left[\mu_{1}, \mu_{2}\right]$, for unknown Poisson signal mean μ in the presence of expected Poisson background with known mean b. The curves correspond to the dotted regions in the plots of μ_{2} of the previous figure, with again $n_{0}=10$ for the upper right curve, etc.

Classical and Feldman Cousins Intervals

Classic Frequentist

Upper limit Equal-tailed interval

\boldsymbol{N}	$\mathbf{9 5 \%} \mathbf{C L}$	$\mathbf{6 8 \%} \mathbf{C L}$	$\mathbf{9 5 \%} \mathbf{C L}$	$\mathbf{6 8 \%} \mathbf{C L}$
0	3.00	$[0.00,1.84]$	$[0.00,3.09]$	$[0.00,1.29]$
1	4.74	$[0.17,3.30]$	$[0.05,5.14]$	$[0.37,2.75]$
2	6.30	$[0.71,4.64]$	$[0.36,6.72]$	$[0.74,4.25]$
3	7.75	$[1.37,5.92]$	$[0.82,8.25]$	$[1.10,5.30]$
4	9.15	$[2.09,7.16]$	$[1.37,9.76]$	$[2.34,6.78]$
5	10.51	$[2.84,8.38]$	$[1.84,11.26]$	$[2.75,7.81]$
6	11.84	$[3.62,9.58]$	$[2.21,12.75]$	$[3.82,9.28]$
7	13.15	$[4.42,10.77]$	$[2.58,13.81]$	$[4.25,10.30]$
8	14.43	$[5.23,11.95]$	$[2.94,15.29]$	$[5.30,11.32]$
9	15.71	$[6.06,13.11]$	$[4.36,16.77]$	$[6.33,12.79]$
10	16.96	$[6.89,14.27]$	$[4.75,17.82]$	$[6.78,13.81]$

Comparison of Different Intervals

"Unified Approach"

Bayes/Zech/CLS

Classic Frequentist

Coverage of Different Limits

Due to discrete nature of Poisson random variable the coverage is per construction larger than quoted Cl also for Frequentist methods for most true values

Comparison of Different Limits for Poisson Mean

Simple counting experiment with exactly known background expectation of 7 events

- CL_{s}, Zech and Bayesian limit with flat prior in signal rate mathematically identical in praxis also very similar results for test statistics used at LHC (Tevatron, LEP)
- PCL= power constrained limit: require that power $\geq 16 \%$ (cut off at expected -1σ)

Conclusion of Lecture Series

In Limit of large event Samples and not close to a physical boundary
$>$ Frequentist Cl and Bayesian Cl from flat prior agree numerically
$>$ but the interpetation is always different
$>\mathrm{Cl}=$ estimate ± 1 standard deviation is a good aproximation for Cl at 68%

Frequentist Limits

> Coverage Probabilty of quoted CL is guiding principle
> Neyman construction of confidence belt is cumbersome
> For many cases Cl can be obtained from inversion of hypothesis test
$>$ "Empty Cl" not a problem in principle
> "Empty" Cl can be avoided by PCL, CL_{s} and FC limits
> Ad-hoc correction of PCL, CL_{s} „punish" outcomes with small power for discrimination between μ_{up} and μ_{0}, but violate the coverage interpretation
> Unified approach with FC limits circumvent the "flip flop problem"

Bayesian limits

> Simple calculation based on integration of posterior probabilty
$>$ Likelihood principle is the main focus. Coverage in principle not interesting
> Choice of prior is as always a matter of taste and debate (flat, Jeffrey's,..)
$>$ Numerically identical to CL_{s} limits for Poisson and Gauss PDF

Conclusion of Lecture Series

In Limit of large event Samples and not close to a physical boundary
$>$ Frequentist Cl and Bayesian Cl from flat prior agree numerically
$>$ but the interpetation is always different
$>\mathrm{Cl}=$ estimate ± 1 standard deviation is a good aproximation for Cl at 68%

Frequentist Limits

> Coverage Probabilty of quoted CL is guiding principle
> Neyman construction of confidence belt is cumbersome
> For many cases Cl can be obtained from inversion of hypothesis test
$>$ "Empty Cl" not a problem in principle
> "Empty" Cl can be avoided by PCL, CL_{s} and FC limits
> Ad-hoc correction of PCL, CL_{s} „punish" outcomes with small power for discrimination between μ_{up} and μ_{0}, but violate the coverage interpretation
> Unified approach with FC limits circumvent the "flip flop problem"

Bayesian limits

> Simple calculation based on integration of posterior probabilty
$>$ Likelihood principle is the main focus. Coverage in principle not interesting
> Choice of prior is as always a matter of taste and debate (flat, Jeffrey's,..)
$>$ Numerically identical to CL_{s} limits for Poisson and Gauss PDF

Final Words

Dr. John Watson: I wonder what desperate circumstances could occasion such an appeal. Sherlock Holmes: I have devised seven separate explanations, each of which would cover the facts as far as we know them.
Dr. John Watson: Oh, and which one do you favour, Holmes?
Sherlock Holmes: At the moment, I have no favourites.
Data, data, data! I cannot make bricks without clay!

Dr. John Watson: We cannot theorize without data, I'm afraid.
(A. C. Doyle, The Copper Beeches)

