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Goal of the lecture: understand the two figures

Number of observed events
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Confidence Intervals for Poisson-PDF

Poisson Distribution

A"
F(n:3) = =5 exp(—)

n ' 025

Probability

n = observed events = ML estimate for A
Target: confidence interval for A

01 23 45 6 7 8 9 10111213 141516 17 18 19

Due to the discreteness of n the ,confidence W=t Blmenzs Woner=e
belt equations can not be fulfilled exactly. .
,2conservative® modification of equations e.g: a = P()\ = Ua()\))
Hence over-coverage per construction Pla<A<b)>1—a-p
Nobs—1 Nobs—1 an
Inversion of test a = ana—l—ana—l—Zme ’,
N=MNoybps n=0

Solve numerically Mobs whs g

the equtions =2 g = Zf n;b) = Z

nO



Poisson PDF

)\n

n!

exp(—A\)
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n = nr. of observed events = ML estimate for A
Target: confidence interval for A

Poisson Distribution
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Determination of Cl for Poisson-Parameter

Simple case: no observed event  (§ = el —ph=— log [3
hence at CL=95% = -log(0.05) = 2.996 ~ 3.

For general case use relation btw. Poisson-PDF and Chi?-PDF

Nobs )\n \ [o'e)
Z e = fy2(Zngop = 2(nops +1))dz
n=0 22

= 1= FX2 (2)\; Ndof = 2(nobs + 1))7

The borders of the Cl are obtained via the cumulative of the Chi2-PDF

Pt lower limit a upper limit b
s 1 v =01 a=005 a=001]4=01 B=005 =001
1 ol 0 0 T = 530 3.00 161
- — (a- n — ) 1 | 0105 0051 0010 | 380 474 6.64
27 x* V7 dof Tbobs ) 9 | 0532 0355 0149 | 532 630 8.41
s | 110 0818 0436 | 668 775 10.04
1 F_l(l o | 4 | 174 1.37 0823 | 799 9.5 11.60
= - — 3 — 5 | 243 1.97 1.28 927 1051  13.11
27 x? B; Ndof (nObS + )) 6 | 3.15 2.61 179 | 1053 11.84 1457
7 | 3.89 3.29 933 | 1177 1315 16.00
8 | 4.66 3.98 901 | 1299 1443  17.40
o | 543 4.70 351 | 1421 1571  18.78
10 | 6.22 5.43 413 | 1541  16.96  20.14




Frequentist Confidence Intervals for Poisson-PDF

Confidence belt Upper a and lower b limits
q 16 o e
1 . J -, lower imit a upper limit b
; a=01 a=00 a=001]f=01 f=005 f=00I
12 [ i 0 - - - 230 300 46l
3 L1005 0051 0010 | 380 474 664
91 0530 0355 0049 | 532 630 84l
30 110 0818 04% | 668 77 1004
g0 1y 083 | T 915 1160
51 243 LY 18 19 1080 1B
6 | 315 26 179 11053 1184 145
7138 329 9238 | 1L 1305 16.00
§ 1 466 998 200 | 1200 W4 174
0 | 543 470 351 | M 1671 1878
01 620 543 413 | 1541 1696 2.1




Application in OPAL LEP 1 Higgs Boson Searches

N, =0 > s<3.0at95 %CL
Ny=1 2> s<4.7at95% CL
3 OPAL
= 0.25
g o L€ e analysis 1
3 .
s 0.15 - -
o |
3 —
5 >
r4 2 30
2
E -
e 532 GeV ) |
1 0.15 -
— Both channels combined ] o1 i
---- Missing energy channel 1
''''''' Charged lepton channel "] 0.05 - .
) 20 ‘ ‘ 80
Ll 1 1l I Ll 1 1l I Ll 1l l Ll 1l l L1 1 1 I L 1l l Ll Ll 1 I Ll L.l I Ll Ll I Ll 1 .
40 425 45 475 50 525 55 515 60 625 65 Recoil Mass (GeV)
mpo [GeV]

M < 59.6 GeV excluded at 95% CL



Poisson-PDF for Signal plus Background

0.2

Probability

measured value

Expected known background rate b

Expected signal rate s to be estimated from data

L S

3 sb E

S . - b)"

i_ _; P(’I’L, S,b) — (8 +| ) 6—(8+b)
50 E N A W E n!
by e

0 2 4 6 8 10 12



Upper limit for Poisson-PDF with Background

Upper limit s at CL=1-y Mobs (s+b)" _
given by solving the v = P(n <ngpg; $,b) = Z ¢ (s+)
equation from test inversion n=0 '

Boundaries of Cl s, s,
determined using Chi?-PDF:

11
Slo = EFXQ (a;2n) — b

1
sup = F 5 (1= ;2(n+1)) - b

classical v e (1-p=0.95)

same as for ,b=0“—-Db
—> called ,background subtraction”

n<b canyields,,<0



Frequentist Limit at Physical Boundary

e.g. for b=2.5and n,,, = 0 we find upper limit of s,p =-0.197 (CL =0.90)
increase CL to 0.95 yields Syp = 0.496

,Ccheating” with CL = 0.917923 yields S, = 107!

naive argument: for b =2.5 - variance is V2.5 =1.6. how can limit be so small?

MC simulation:

determine median limit under _ ]
,b-only“ hypothesis (s = 0) B S U p
- expected limit

distribution of 95% CL upper limits
forb=25,s=0.

9I\/Iediansup=4'44 L 1 (o fh Iﬂlnl d L1 |1

O 5] 10 15



Bayesian Upper Limit for Poisson-PDF

Bayesian upper limit to CL = 1-a.

to be derived from

with likelihood function

(s +0)"

L(n|s) = .

Posterior probability:

e~ (5+0)

| Plelnds = [ L(ns) n(s) ds

1—a:/8up [P L(n|s) 7(s)ds

and uniform prior in physical region

1 s>0
m(s) = .
O otherwise

p(sn) =

(s4b)'e”5tP)

CEEE) I'b,n+1)= [, x"e *dx

Need so solve:

Sup .
L—a= [ p(slyds| |o=e =T

m=0(8up + )" /m!

Upper limit given by

1 ! n —X
Sup = EFX—ZI p,2(n+1)]—b /Ox e tdx=T(n+1)F,2(2a,2(n+1))

Frequentist formula modified
by replacing (1-a. ) by p

p=1—-a (1 —F[2b,2(n+ 1)])




Classical and Bayesian Limits at 95% CL

Frequentist Limit at CL=95%

12

10

classical v (1-p=0.95)

Upper limit can IEl)ae ,0°
I
Sup = §FX21(1 ~B2n+1))-b

for b= 0 identical

Bayesian v.ur (1-B=0.95)

Bayesian Limit at CL=95%
with uniform prior
12

10

Upper limit always = 3 le‘“(l‘FxﬂQbaZ(”“ﬂ)

1
Sup = Eszl lp,2(n+1)] —b

for n>>b also identical

other b values Bayesian> classical limit >“conservative” coverage > CL
Bayesian Limit independent on b for n=0



Neyman Pearson Lemma

Best test: for given significance level o, maximize power M=1-3

T van. S Questions: Which test statistic t?
= critical e Which choice of critical region?

Simple hypothesis H, and H,

Neyman-Person-Lemma: a test of a simple null hypothesis H, w.r.t. to the simple

alternative hypothesis H, is a best test, if the critical region is chosen such that
inside it holds:

P = probability to observe sample x
Enp = L(zsp|Ho) (< ¢ outside critical region)
L(zxgsp|H1) c is a constant depending on o

Equivalent statement: the optimal test statistics

is given by the likelihood ratio tNP < tC?“it (Od)

(or any monotonic function 1/t(, t/(1+t), In t)

Challenge in praxis: determination of PDFs for t under different hypothesis



Neyman Pearson Test Statistic for Exclusion

b? 1

The Likelihood to observe n given H, (s=0,b) is: L, = _,e—b
n!
The Likelihood to observe n given H, (s,b) is: L., — (s + b)ne—(s+b)
Loit - n!
- Neyman-Pearson-Lemma: best test given by L
b
. . l'/q S
or monotonic function In ELI) — nln (1 n 5) .
b
Likelihood ratio is monotonic function of n.
PDF for optimal test statistic is also Poisson distribution
Suppose in real expel
- Counting rate n is optimal test statistic =~ ™<c &b~ 100.s720. 0 is observed here.
§008_ /
Oftenused | () = —2]p Lt O - /(Qlb)
v — f(Qls+b) |
at LEP : . “oml i
L, A

Optimal use of distributions/ combination of channels
- product of likelihoods per bin/channel % G e

Q

or sum of In lik. per channel/bin p-value of b only p-value of s+b




Profile Likelihood Test Statistic

Nullhypothesis H, simple, Alternative hypothesis H, composite

E($5P|H0A(9))
L(xsp|H1(0pmL))

tpr, =

» not mathematically proof that this the best, but in praxis no better found
» allows easy incorporating of syst. uncertainties via profiled nuisance parameters
» PDF for q=—-2Int, is Chi2-PDF with 1 degree of freedom f.,,(q; v=1)

for Ngp not too small (Wilks theorem)

two sided critical region / test recommended from application to particular problem



Profile Likelihood Test Statistic for Exclusion

So far: signal rate fixed (known) under alternative hypothesis
Now: find best number of signal events under H, via maximum likelihood fit
i.e. H, is composite hypothesis with signal count as free parameter

(8 - b) 6—(s—|—b)

Likelihood function L(n;s,b) =
n!
L(s . _
Test statistic: | \(s5) = (5) A-in [0, 1] |
L(Q) 1 good agreement with H,
Enumerator (zahler):  likelihood for H, (s fixed, for

discovery s=0)
Denominator: likelihood for H, (s estimated from data)

N

Maximum likelihood estimate for signal counts: s=mn—>b

Test statistics for discovery (s=0 in enumerator):

In A in [0, -infinity]:
A(s) =nln(s+b) —(s+b) —nlnn+n | 0goodagreement with H,




Comparison of Test Statistic for Exclusion

From Neyman-Pearson-Lemma From profile likelihood ratio
(simple hypothesis): (composite alternative hypothesis H,)
L.C;—}—b S
In L =nln 1+5 — 5 A(s) =nln(s+b) —(s+b) —nlnn+n
b

—_
N

If we consider a deviation from
background only hypothesis
only for n>b (e.g. set In A(0) = 0 for n<b)

—_
o

o)

then both are monotonic and

as optimal as using n

- (for counting experiment neglecting
q0 20 80 40 80, systematic uncertainties)

oo~ NDODN MO
TT TT T TTT[TTI[TTT[TTT

O

In A(s) preferred for multiple channels / distributions
add values of In A (s) for each/bin channel
PDF for -2 In A(s) for ,s+b" /"b-only) given by Wilks’ (Wald’'s)theorem



Profile Likelihood Test statistic for Exclusion

H,: signal+background - u=1 , b H,: backgroundonly wu=0,b
u parametrises strength w.r.t. “standard prediction” w = s, ./Sgy

Test statisticq, =- 2 In (u )

One sided test, only signal strength < u considered as inconsistent with H,

f(q,lw)
—> critical region

#(q,l0)

/ large values H,-like

-~
N
\
\
\
\
\
\
\
\
\

small values H,-like

,L695%CL

decrease tested u until
P-value = a=1- CL




»opurious Exclusion® with Frequentist Limit

oo

p, = P(G,> qubs | signal+background) = F(q.lu, szs) dq,,

~obs
'

Pure frequentist would stop and say: ,signal + background® hypothesis is
excluded with a confidence level CLg,50f 1- p,

,Problem®: Spurious exclusion of signals with no sensitivity (s<<b)

Iarge S @, -~ critical region — critical region s<<b
/ . o)
power M= 1-13 Ve powerM = 1-f3
large w.r.t. ~ significance
significance level a
level o Pt ’

q q

signal+BG-like &< - BG only like,

By construction: probability to reject w if u is true is o
for s<<b probability to reject very small u if u=0 is true ~ a + epsilon
—> probability to exclude hypotheses with zero signal
(due to downwards fluctuation) ~ o ,spurious exclusion w/o sensitivity”



Pseudo-Frequentist or Zech's Interpretation

Bayesian limit with uniform prior first
proposed by O. Helene (1983)
Condition can be rewritten as

m—o(Sup +0)™/m!

Dm0 0" /m!

o =¢e °Up

Numerical identical result derived by G. Zech (1988) in different context

e (+D (54 p)"

P(n;s+b)= =

n—n

stems from  P(n;s+b)= Z 2, P(ny,; b)P(ngs)

n,=0n.=0

If N<b we know background in data<b

-> renormalilze background PDF
and replace it in compound PDF

Find upper limit s by solving (with e=a)

Zech's interpetation -

(not accepted by many Frequentist
as one conditions on data, but known
as the PDG formula for many years)

P'(ny; b) P(ny; b)/ Z P(ny; b)

nb—O

N

N
=Y P(n;s+b)/ Y P(nyb)

n=0 n,=0

different. The limit in the “frequency interpretation”
can be stated as follows: for an infinitely large number
of experiments, looking for a signal with expectation s
and Poisson distributed background with mean b, where
the background is restricted to values of less than or
equal to N, the frequency of observing N or less events
is €.




Zech's Interpretation

N

e= ) P(n;s+b) z P(ny; b)

n=0 n,=0

different. The limit in the “frequency interpretation”
can be stated as follows: for an infinitely large number
of experiments, looking for a signal with expectation s
and Poisson distributed background with mean b, where
the background is restricted to values of less than or
equal to N, the frequency of observing N or less events
1S €.

(not accepted by many Frequentist as one conditions on data,
but known as the PDG formula for many years)




CLg Limit for Poisson

A. Read (1997): applied Zech'’s “background U
conditioning” to the LEP test statistic Q 2004 -
CLg = “confidence in the signal-only hypothesis” %0.12 :

CLs-I—b — Ps—I—b(Q < Qobs)
CLy = Py(Q < Qops)
CL.S = CLS_H,/CL[).

A hypothesis is exlcuded at confidence level CL if

1-CLy; <CL

Applied to Poisson case yields Zech’s formula:

b =(b4s) (p g\
P(XSXobs)_P(ngnobs) CL‘l—Ez:bo%

P, <X Pl <ngy y s ¢

n=0

(L =

S ciaciacic Expected for signal (m,=115.6 GeV. Ic )
+ background

—— Observed LEP B

------ Expected for background

Remark: denominator is not
1-p-value for the b-only hyp.
The sum would only run
from O up to n_-1.

Calling it the power is
correct (I think)



Classical and CLg Limit compared for Poisson PDF

Expected background b = 3 Upper limits from
Expected signal yield s =3 classical approach CL,
CLg technique
> FTT L e e e L e B B — T T T
=0.22F = = 12 g N
2 s f -
o 0.2 — = i
o E 1o s
a 0.18F —b . - I
o6 | | 1 8 o
014k [ | b sb = é :
o120 | = 2 e E
o= i — E 8 I
008_ ______ ] 4__—_|—_|—_ |
006F | | . | E [ e e CL,,
0.045 ¢+ | E 2 L —ClL B
0.02F S -
O-:--|--1: [T BRI R RN |f!T! T | |-"|"i"'|': O_l | PR AN NN WO TN RN TN N NN NN TN A SO NN TN NN N S N RN
0O 2 4 6 8 10 12 0O 2 4 6 8 10 12

measured value measured value, X



Flip-Flop-Problem for Poisson-Parameter s=u

Known background =3

One-sided Cl at CL=90%

P(nlp) = (14 0)" exp(—(u + 0))/n!

Two-sided Cl at CL=90%

15 —

14 reregaran S

13 |-+iCdushrs

12 —

11 T
=.10 _
5 0 =
= 8 ] >
= / =
o5 W

4 S

3

5 |

1 S

0

012345678 9101112131415

Measured n

For ,Flip-Flop® again to small coverage

Construction of confidence
belt via likelihood ratio

[(s)

_ L(n|s,b)
L(n|s,b)

15
14
13
12
11

—
o O

o = bW s Oy 1 0

aldina;”n

SUSirE e

012345678 9101112131415

where s = {

Measured n

n—=ob

O

n > b,
otherwise



,Unified Approach*: Poisson-Cl at 90% CL

R = P(nlp)/P(npmest)

Construction of confidence belt

for u=0.5, b=3

Standard

P(xlp)

P(xlp)

rank

UL.

C.L.

0.030

0.0

0.050

0.607

0.106

0.0

0.149

0.708

0.185

0.0

0224

0.826

0.216

0.0

0224

0.963

0.189

1.0

0.195

0.966

0.132

2.0

0.175

0.753

0.077

3.0

0.161

0.480

0.039

4.

0.149

0.259

o0 (A |ON | | (W | — [ | =

0.017

3.0

0.140

0.121

|

wignal Mean

= =
[l L

|
WO O

o T S o S T O L T L S, B e's

confidence belt for b=3

o1 2 3 4 5 6 78 9101112131415
Measured n




,Unified Approach*: Poisson-Cl at 90% CL

1

[a—
n
for
[U—
n

. Int.

~

) events. abserve

—
=

P
o

N

n
71

Upper end of conf. int. for p

[.ower end of cont
1
|

20 0& |\\1|||||||||||_
0

5 10 15
Mean Expected Background b 5 10 15
Mean Expected Background b

FIG. 8. Upper end pi5 of our 90% C.L. confidence intervals [u;, pio], for unknown Poisson sign.
mean 4 in the presence of expected Poisson background with lmown mean b. The curves for tl FIG. 9. Lower end yt, of our 90% C.L. confidence intervals [, fty], for unknown Poisson signal
cases ny from 0 through 10 are plotted. Dotted portions on the upper left indicate regions whe
pi1 1 non<zero (and shown in the following figure). Dashed portions in the lower right indica
regions where the probability of obtaining the number of events observed or fewer is less than 1%
even if p = 0.

mean g in the presence of expected Poisson background with known mean b. The curves correspond
to the dotted regions in the plots of jio of the previous figure, with again 1 = 10 for the upper
right curve, etc.



Classical and Feldman Cousins Intervals

Classic Frequentist Feldman-Cousins

Upper limit  Equal-tailed interval
N 95%CL 68% CL 95% CL 68% CL
0 3.00 0.00, 1.84] 0.00, 3.09] 0.00, 1.29]
1 4.74 0.17, 3.30] 0.05, 5.14] [0.37; 2.75]
2 6.30 0.71, 4.64] 0.36, 6.72] 0.74, 4.25
3 775 [1.37; 5.92] 0.82, 8.25] 1.10, 5.30]
4 9.15 2.09, 7.16] 1,37, 9.76/ 2.34,6.78
5 10.51 2.84, 8.38] 1.84, 11.26]  [2.75, 7.81]
6 11.84 3.62, 9.58] .2-21» 12.75] [3.82,9.28]
7 13.15 4.42,10.77] 2.58,13.81]  [4.25, 10.30]
8 14.43 15:23; 11.95] 2.94,15.29] [5.30, 11.32]
9 15.71 _6.06, 13.11] 4.36, 16.77]  [6.33,12.79
10  16.96 6.89, 14.27] 4.75,17.82] [6.78, 13.81]




Comparison of Different Intervals

“Unified Approach” Bayes/Zech/CLS Classic Frequentist
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Coverage of Different Limits

Due to discrete nature of Poisson random variable the coverage is per construction

larger than quoted CI also for Frequentist methods for most true values

coverage

coverage

1.04
1.092

0.s8
D.86
0.s4
0.|2

G.8
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1.02

0.898
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.9

Bayes #r(s)=const.

1

S

105

coverage

1.04
1.02

0.88
0.88
0.84
0.82

0.8

5
,r| 21

1
v

L
- 5

1
total

— — upper

<1~ 1

1 ”,
s 0 W l/, v 11‘1




Comparison of Different Limits for Poisson Mean

Simple counting experiment with exactly known background expectation of 7 events

3 B T T ) 8 E T | T _\L""I T T | T | |

3 14— noBG |.7 —
© e

> subtractipn ]

g 12— |

= C -

10— ]

8 ]
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61— 16% Exclusion Power 7]

B ——— Feldman Cousins ]

4 | === e = J/ | @ -=--- CLs+b _]

B —— PCL _

2 [+ ? - CLs —

=== |  ..... Bayesian 7

0 B E i H i 44" I\ | I\ I\ | I\ | I\ | A | I\ | J 1 1 | 1 ]

0 2 6 8 10 12 14

Number of observed events

- CLg , Zech and Bayesian limit with flat prior in signal rate mathematically identical
in praxis also very similar results for test statistics used at LHC (Tevatron, LEP)

- PCL= power constrained limit: require that power = 16% (cut off at expected -10)



Conclusion of Lecture Series

In Limit of large event Samples and not close to a physical boundary

» Frequentist Cl and Bayesian CI from flat prior agree numerically

» but the interpetation is always different

» CIl = estimate x1 standard deviation is a good aproximation for Cl at 68%

Frequentist Limits

Coverage Probabilty of quoted CL is guiding principle

Neyman construction of confidence belt is cumbersome

For many cases Cl can be obtained from inversion of hypothesis test
,LEmpty CI“ not a problem in principle

,Empty“ Cl can be avoided by PCL, CLg and FC limits

Ad-hoc correction of PCL, CLg ,punish® outcomes with small power for
discrimination between u,,, and u,, but violate the coverage interpretation
Unified approach with FC limits circumvent the ,flip flop problem®

VVVVYVYVY

A\

Bayesian limits

» Simple calculation based on integration of posterior probabilty

» Likelihood principle is the main focus. Coverage in principle not interesting
» Choice of prior is as always a matter of taste and debate (flat, Jeffrey's,..)
» Numerically identical to CLg limits for Poisson and Gauss PDF



Conclusion of Lecture Series

In Limit of large event Samples and not close to a physical boundary

» Frequentist Cl and Bayesian CI from flat prior agree numerically
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» Likelihood principle is the main focus. Coverage in principle not interesting
» Choice of prior is as always a matter of taste and debate (flat, Jeffrey's,..)
» Numerically identical to CLg limits for Poisson and Gauss PDF



Final Words

Dr. John Watson: | wonder what desperate
circumstances could
occasion such an appeal.

Sherlock Holmes: | have devised seven
separate explanations,
each of which would
cover the facts as far
as we know them.

Dr. John Watson: Oh, and which one do
you favour, Holmes?

Sherlock Holmes: At the moment, | have
no favourites.

Data, data, data! | cannot o , |
make bricks without clay! ' 5%

Dr. John Watson: We cannot theorize without
data, I'm afraid.

(A. C. Doyle, The Copper Beeches)



