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und dass in einer konkrete Messung nobs Ereignisse beobachtet wurden. Der ML-Schätzer
für den Mittelwert der Verteilung ist

λ̂ = nobs (8.24)

Dieser Schätzer folgt also einer Poissonverteilung um den wahren Wert. Wenn wir nun
versuchen, das Konfidenzintervall zu konstruieren, so stellen wir zunächst fest, dass die
Gln. 8.2 nicht direkt angewendet werden können, denn λ̂ nimmt nur ganzzahlige Werte an
und somit ist für gegebenes α die Bedingung α = P (λ̂ ≥ uα(λ)) nur für ganz bestimmte
Werte von λ erfüllbar. Für die anderen Werte von λ fordert man (dies ist eine allgemein
akzeptierte Konvention), dass das Konfidenzband mindestens die durch das gewünsch-
te Konfidenzniveau gegebene Wahrscheinlichkeit beinhaltet. Wir modifizieren demnach
die obige Bedingung zu α ≥ P (λ̂ ≥ uα(λ)), wobei das minimale uα(λ) gewählt wird,
für das die Ungleichung erfüllt ist. Entsprechend für die andere Grenze des Intervalls:
β ≥ P (λ̂ ≤ lβ(λ)) mit maximalem lβ(λ). Die Folge ist, dass die Funktionen uα(λ) und
lβ(λ) nun Stufenfunktionen sind, die dem (hypothetischen) Konfidenzband zum exakten
Konfidenzniveau umschrieben sind und dieses mit den Spitzen der Stufen berühren. Für
(fast) alle wahren Werte von λ ist P (lβ(λ) < λ̂ < uα(λ) > 1 − α − β und folglich enthält
das für diese λ̂ berechnete Konfidenzintervall häufiger als mit einer Wahrscheinlichkeit
1 − α − β den wahren Wert:

P (a ≤ λ ≤ b) ≥ 1 − α − β (8.25)

Für diskrete Schätzer wird also mit der Neyman’schen Methode und der erwähnten Kon-
vention das Konfidenzintervall im Allgemeinen überschätzt. Dies wird in Kauf genommen
um sicherzustellen, dass das Intervall in keinem Fall unterschätzt wird. Gleiches gilt für
die ermittelten einseitigen Konfidenzintervalle

P (λ ≥ a) ≥ 1 − α (8.26)
P (λ ≤ b) ≥ 1 − β. (8.27)

Um das Konfidenzintervall zu berechnen get man am einfachsten von den Gln. 8.14 und
8.15 aus, die in diesem Zusammenhang lauten

α = P (λ̂ ≥ λ̂obs; a), (8.28)
β = P (λ̂ ≤ λ̂obs; b). (8.29)

Im Fall des poissonverteilten Schätzers ergibt sich damit

α =
∞∑

n=nobs

f(n; a) = 1 −
nobs−1∑

n=0

f(n; a) = 1 −
nobs−1∑

n=0

an

n!
e−a, (8.30)

β =
nobs∑

n=0

f(n; b) =
nobs∑

n=0

bn

n!
e−b. (8.31)

Falls in der Messung kein Ereignis beobachtet wurde (nobs = 0), dann kann keine untere
Schranke angegeben werden. Für die obere Schranke ergibt sich

β = e−b =⇒ b = − log β (8.32)

Es ist üblich, für eine obere Schranke ein Konfidenzniveau von 95% zu wählen. Dann ist
b = − log(0.05) = 2.996 ≈ 3.
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um den wahren Wert θ. Aufgrund der Symmetrie der Gaußverteilung liegt dann aber auch
für 68.3% der Schätzwerte θ̂ der wahre Wert θ in dem Intervall [θ̂ − σθ̂, θ̂ + σθ̂] um den
jeweiligen Schätzwert, welches also das gesuchte Konfidenzintervall ist. Man bekommt es
also einfach, indem man das zum gewünschten Konfidenzniveau gehörende Intervall der
Gaußverteilung um den aus der Messung ermittelten Schätzwert legt. Dies ist der Grund,
warum wir üblicherweise (die Gaußverteilung implizit annehmend) das Ergebnis einer
Messung als

θ = θ̂obs ± σ̂θ̂ (8.17)

angeben.

Etwas formaler wird der Fall gaußverteilter Schätzer wie folgt behandelt. Die kumulative
Verteilung ist

G(θ̂; θ,σθ̂) =
∫ θ̂

−∞

1√
2πσ2

θ̂

exp

(
−(θ̂′ − θ)2

2σ2
θ̂

)
dθ̂′ = Φ

(
θ̂ − θ

σθ̂

)
. (8.18)

Wieder unter der Annahme, dass die Standardabweichung σθ̂ bekannt ist und in einer
Messung der Schätzwert θ̂obs beobachtet wurde, bestimmt sich das Konfidenzintervall nach
Gln. 8.14 und 8.15 zu

α = 1 − G(θ̂obs; a,σθ̂) = 1 − Φ

(
θ̂obs − a

σθ̂

)
(8.19)

β = G(θ̂obs; b,σθ̂) = Φ

(
θ̂obs − b

σθ̂

)
, (8.20)

wobei Φ(x) die in Gl. 2.53 definierte kumulative Gaußverteilung ist. Somit ist (unter
Verwendung der Beziehung Φ−1(β) = −Φ−1(1 − β)

a = θ̂obs − σθ̂Φ
−1(1 − α) (8.21)

b = θ̂obs + σθ̂Φ
−1(1 − β). (8.22)

Φ−1(y) ist die Umkehrabbildung von Φ(x) und mithin das Quantil der Normalverteilung
zu y. Wie oben bereits gesagt wurde, ergibt sich das Konfidenzintervall also einfach da-
durch, dass man vom beobachteten Schätzwert θ̂obs aus soviele Standardabweichungen σθ̂
einschließt, wie es dem gewünschten Konfidenzintervall entspricht. Gleiches gilt für die
Bestimmung einer unteren oder oberen Schranke.

Da die Gaußverteilung so häufig vorkommt, werden Konfidenzintervalle oft für ganzzahlige
gauß’sche Standardabweichungen angegeben, z.B. das 1σ-Intervall mit Konfidenzniveau
68.3%. Die Tabellen 8.1 und 8.2 geben die wichtigsten Werte an. Abb. 8.2 illustriert deren
Bedeutung.

8.4 Spezialfall Poissonverteilter Schätzer

Ein weiterer wichtiger Spezialfall sind poissonverteilte Schätzer. Wir nehmen an, dass die
Ergebnisse n eines Zählexperiments poissonverteilt sind

f(n;λ) =
λn

n!
exp(−λ). (8.23)

Confidence Intervals for Poisson-PDF 

n = observed events = ML estimate for λ 
Target: confidence interval for λ 

Due to the discreteness  of n the  „confidence  
belt“ equations can not be fulfilled exactly. 
„Conservative“ modification of equations e.g:   

Inversion of test  
 
Solve numerically 
the equtions à 

Hence over-coverage per construction 
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1 − α − β den wahren Wert:

P (a ≤ λ ≤ b) ≥ 1 − α − β (8.25)

Für diskrete Schätzer wird also mit der Neyman’schen Methode und der erwähnten Kon-
vention das Konfidenzintervall im Allgemeinen überschätzt. Dies wird in Kauf genommen
um sicherzustellen, dass das Intervall in keinem Fall unterschätzt wird. Gleiches gilt für
die ermittelten einseitigen Konfidenzintervalle

P (λ ≥ a) ≥ 1 − α (8.26)
P (λ ≤ b) ≥ 1 − β. (8.27)

Um das Konfidenzintervall zu berechnen get man am einfachsten von den Gln. 8.14 und
8.15 aus, die in diesem Zusammenhang lauten

α = P (λ̂ ≥ λ̂obs; a), (8.28)
β = P (λ̂ ≤ λ̂obs; b). (8.29)

Im Fall des poissonverteilten Schätzers ergibt sich damit
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Falls in der Messung kein Ereignis beobachtet wurde (nobs = 0), dann kann keine untere
Schranke angegeben werden. Für die obere Schranke ergibt sich

β = e−b =⇒ b = − log β (8.32)

Es ist üblich, für eine obere Schranke ein Konfidenzniveau von 95% zu wählen. Dann ist
b = − log(0.05) = 2.996 ≈ 3.
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1 − α − β den wahren Wert:

P (a ≤ λ ≤ b) ≥ 1 − α − β (8.25)

Für diskrete Schätzer wird also mit der Neyman’schen Methode und der erwähnten Kon-
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Falls in der Messung kein Ereignis beobachtet wurde (nobs = 0), dann kann keine untere
Schranke angegeben werden. Für die obere Schranke ergibt sich

β = e−b =⇒ b = − log β (8.32)

Es ist üblich, für eine obere Schranke ein Konfidenzniveau von 95% zu wählen. Dann ist
b = − log(0.05) = 2.996 ≈ 3.
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Falls in der Messung kein Ereignis beobachtet wurde (nobs = 0), dann kann keine untere
Schranke angegeben werden. Für die obere Schranke ergibt sich

β = e−b =⇒ b = − log β (8.32)

Es ist üblich, für eine obere Schranke ein Konfidenzniveau von 95% zu wählen. Dann ist
b = − log(0.05) = 2.996 ≈ 3.
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um den wahren Wert θ. Aufgrund der Symmetrie der Gaußverteilung liegt dann aber auch
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warum wir üblicherweise (die Gaußverteilung implizit annehmend) das Ergebnis einer
Messung als

θ = θ̂obs ± σ̂θ̂ (8.17)

angeben.

Etwas formaler wird der Fall gaußverteilter Schätzer wie folgt behandelt. Die kumulative
Verteilung ist

G(θ̂; θ,σθ̂) =
∫ θ̂

−∞

1√
2πσ2

θ̂

exp

(
−(θ̂′ − θ)2

2σ2
θ̂

)
dθ̂′ = Φ

(
θ̂ − θ

σθ̂

)
. (8.18)

Wieder unter der Annahme, dass die Standardabweichung σθ̂ bekannt ist und in einer
Messung der Schätzwert θ̂obs beobachtet wurde, bestimmt sich das Konfidenzintervall nach
Gln. 8.14 und 8.15 zu

α = 1 − G(θ̂obs; a,σθ̂) = 1 − Φ

(
θ̂obs − a

σθ̂

)
(8.19)

β = G(θ̂obs; b,σθ̂) = Φ

(
θ̂obs − b

σθ̂

)
, (8.20)

wobei Φ(x) die in Gl. 2.53 definierte kumulative Gaußverteilung ist. Somit ist (unter
Verwendung der Beziehung Φ−1(β) = −Φ−1(1 − β)

a = θ̂obs − σθ̂Φ
−1(1 − α) (8.21)

b = θ̂obs + σθ̂Φ
−1(1 − β). (8.22)

Φ−1(y) ist die Umkehrabbildung von Φ(x) und mithin das Quantil der Normalverteilung
zu y. Wie oben bereits gesagt wurde, ergibt sich das Konfidenzintervall also einfach da-
durch, dass man vom beobachteten Schätzwert θ̂obs aus soviele Standardabweichungen σθ̂
einschließt, wie es dem gewünschten Konfidenzintervall entspricht. Gleiches gilt für die
Bestimmung einer unteren oder oberen Schranke.

Da die Gaußverteilung so häufig vorkommt, werden Konfidenzintervalle oft für ganzzahlige
gauß’sche Standardabweichungen angegeben, z.B. das 1σ-Intervall mit Konfidenzniveau
68.3%. Die Tabellen 8.1 und 8.2 geben die wichtigsten Werte an. Abb. 8.2 illustriert deren
Bedeutung.

8.4 Spezialfall Poissonverteilter Schätzer

Ein weiterer wichtiger Spezialfall sind poissonverteilte Schätzer. Wir nehmen an, dass die
Ergebnisse n eines Zählexperiments poissonverteilt sind

f(n;λ) =
λn

n!
exp(−λ). (8.23)

Poisson PDF 

n = nr. of observed events = ML estimate for λ 
Target: confidence interval for λ 
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und dass in einer konkrete Messung nobs Ereignisse beobachtet wurden. Der ML-Schätzer
für den Mittelwert der Verteilung ist

λ̂ = nobs (8.24)

Dieser Schätzer folgt also einer Poissonverteilung um den wahren Wert. Wenn wir nun
versuchen, das Konfidenzintervall zu konstruieren, so stellen wir zunächst fest, dass die
Gln. 8.2 nicht direkt angewendet werden können, denn λ̂ nimmt nur ganzzahlige Werte an
und somit ist für gegebenes α die Bedingung α = P (λ̂ ≥ uα(λ)) nur für ganz bestimmte
Werte von λ erfüllbar. Für die anderen Werte von λ fordert man (dies ist eine allgemein
akzeptierte Konvention), dass das Konfidenzband mindestens die durch das gewünsch-
te Konfidenzniveau gegebene Wahrscheinlichkeit beinhaltet. Wir modifizieren demnach
die obige Bedingung zu α ≥ P (λ̂ ≥ uα(λ)), wobei das minimale uα(λ) gewählt wird,
für das die Ungleichung erfüllt ist. Entsprechend für die andere Grenze des Intervalls:
β ≥ P (λ̂ ≤ lβ(λ)) mit maximalem lβ(λ). Die Folge ist, dass die Funktionen uα(λ) und
lβ(λ) nun Stufenfunktionen sind, die dem (hypothetischen) Konfidenzband zum exakten
Konfidenzniveau umschrieben sind und dieses mit den Spitzen der Stufen berühren. Für
(fast) alle wahren Werte von λ ist P (lβ(λ) < λ̂ < uα(λ) > 1 − α − β und folglich enthält
das für diese λ̂ berechnete Konfidenzintervall häufiger als mit einer Wahrscheinlichkeit
1 − α − β den wahren Wert:

P (a ≤ λ ≤ b) ≥ 1 − α − β (8.25)

Für diskrete Schätzer wird also mit der Neyman’schen Methode und der erwähnten Kon-
vention das Konfidenzintervall im Allgemeinen überschätzt. Dies wird in Kauf genommen
um sicherzustellen, dass das Intervall in keinem Fall unterschätzt wird. Gleiches gilt für
die ermittelten einseitigen Konfidenzintervalle

P (λ ≥ a) ≥ 1 − α (8.26)
P (λ ≤ b) ≥ 1 − β. (8.27)

Um das Konfidenzintervall zu berechnen get man am einfachsten von den Gln. 8.14 und
8.15 aus, die in diesem Zusammenhang lauten

α = P (λ̂ ≥ λ̂obs; a), (8.28)
β = P (λ̂ ≤ λ̂obs; b). (8.29)

Im Fall des poissonverteilten Schätzers ergibt sich damit

α =
∞∑

n=nobs

f(n; a) = 1 −
nobs−1∑

n=0

f(n; a) = 1 −
nobs−1∑

n=0

an

n!
e−a, (8.30)

β =
nobs∑

n=0

f(n; b) =
nobs∑

n=0

bn

n!
e−b. (8.31)

Falls in der Messung kein Ereignis beobachtet wurde (nobs = 0), dann kann keine untere
Schranke angegeben werden. Für die obere Schranke ergibt sich

β = e−b =⇒ b = − log β (8.32)

Es ist üblich, für eine obere Schranke ein Konfidenzniveau von 95% zu wählen. Dann ist
b = − log(0.05) = 2.996 ≈ 3.
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For general case use relation btw. Poisson-PDF and Chi2-PDF 
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untere Schranke a obere Schranke b

α = 0.1 α = 0.05 β = 0.1 β = 0.05
nobs CL = 90% CL = 95% CL = 90% CL = 95%
0 - - 2.30 3.00
1 0.105 0.051 3.89 4.74
2 0.532 0.355 5.32 6.30
3 1.10 0.818 6.68 7.75
4 1.74 1.37 7.99 9.15
5 2.43 1.97 9.27 10.51
6 3.15 2.61 10.53 11.84
7 3.89 3.29 11.77 13.15
8 4.66 3.98 12.99 14.43
9 5.43 4.70 14.21 15.71
10 6.22 5.43 15.41 16.96

Tabelle 8.3: Untere und obere Schranke für den Mittelwert einer Poissonverteilung bei nobs

beobachteten Ereignissen und dem angegebenen Konfidenzniveau.

Um obige Gleichungen allgemein für gegebene Werte von α und β sowie eine beobachtete
Anzahl nobs nach a und b aufzulösen, kann man den folgenden Zusammenhang zwischen
der Poisson- und der Chiquadratverteilung fχ2 verwenden:

nobs∑

n=0

λn

n!
e−λ =

∫ ∞

2λ
fχ2(z;ndof = 2(nobs + 1))dz (8.33)

= 1 − Fχ2(2λ;ndof = 2(nobs + 1)), (8.34)

ndof die Zahl der Freiheitsgrade und Fχ2 die kumulative Chiquadratverteilung ist. Damit
findet man das Konfidenzintervall

a =
1
2
F−1

χ2 (α;ndof = 2nobs), (8.35)

b =
1
2
F−1

χ2 (1 − β;ndof = 2(nobs + 1)). (8.36)

(8.37)

In Tabelle 8.3 findet man die Grenzen des Konfidenzintervalls für nobs = 0, 1, ..., 10.

8.5 Allgemeiner Fall eines ML-Schätzers

Eindimensionaler Fall

Für den allgemeinen Fall eines beliebigen ML-Schätzers hatten wir in Abschnitt 6.2 ge-
sehen, dass für großen Stichprobenumfang zum einen die Verteilung der ML-Schätzer
gaußförmig wird und zum anderen auch die Likelihood-Funktion selbst sich einer Gauß-
funktion annähert, deren Varianz gerade gleich der Varianz des ML-Schätzers ist. Dies
hatten wir in Abschnitt 6.3 verwendet, um aus der Form der Likelihood-Funktion die
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Application in OPAL LEP 1 Higgs Boson Searches  

Figure 11: Excluded and expected event yields for Higgs-boson production at LEP1 by ALEPH (top-
left) [157], DELPHI (top-right) [158], L3 (bottom-left) [159], and OPAL (bottom-right) [160].

(see Table 2). Hence an extension of data taking at LEP1 would not have significantly increased the
mass reach of the searches, which for the first time excluded a significant fraction of the allowed Higgs-
boson mass range in an unambiguous way.

5.2 The LEP2 era

Starting in summer 1995 at 130/136GeV, the CM energy of the LEP collider was continuously increased
over the next years up to 209GeV in 2000. The data taken at 130/136GeV were not used for SM Higgs-
boson searches. A summary of the data sets recorded at different CM energies used for SM Higgs-boson
searches during the LEP2 programme is given in Table 3. Approximately 0.5 (2.5) fb−1 at CM energies
in excess of 206 (189)GeV were collected in total by the four experiments ALEPH, DELPHI, L3, and
OPAL. At LEP2 CM energies the dominant production process is again Higgs-strahlung. But in contrast
to LEP1 the Z boson in the final state is dominantly produced on its mass shell. The difference in the
MH dependence of e+e− → Z → Z∗H at LEP1 and e+e− → Z∗ → ZH at LEP2 is shown in Figure 12
(left). Additional contributions from the vector-boson-fusion processes e+e− → e+e−Z∗Z∗ → e+e−H and

34

nobs = 0 à  s ≤ 3.0 at 95 %CL 
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Fig. 2. Recoil mass distributions for the background after all cuts. Since
hadronic Z0 decays have been removed completely, only the background
from four-fermion processes contributes to the distributions. The dot shows
the event in the µ+µ− channel, with 61.2± 1.0GeV mass, that passed the
cuts

Table 3. Efficiencies (%) and expected numbers of events for the missing
energy (νν̄) and charged lepton channels, and their sums

mh0 [GeV] ϵνν̄ (%) Nνν̄
exp ϵℓ

+ℓ− (%) Nℓ+ℓ−
exp Ntotal

exp

30 47.7 203.8 9.2 13.1 216.9
40 51.6 84.0 22.6 12.0 96.0
50 38.6 20.4 28.9 4.8 25.2
54 33.1 10.8 27.3 2.8 13.6
55 31.7 8.7 27.3 2.0 10.7
56 30.5 7.4 27.2 1.8 9.2
58 28.7 5.2 25.6 1.4 6.6
60 25.7 3.4 26.1 1.1 4.5
62 21.4 2.1 22.3 0.6 2.7
65 15.1 0.8 19.6 0.3 1.1
66 13.0 0.6 19.4 0.2 0.8

It is pertinent to ask if the leptonic channel still has the
required sensitivity to serve as a search channel for Higgs
bosons in the mass range close to 60GeV. To answer this
question one uses the Monte Carlo predictions for the sig-
nal and background, and compares the luminosity that is
required (using the prescription of [7]) with and without the
charged lepton channel, to exclude a signal at the 95% CL.
The comparison is done at a Higgs boson mass of 60.6GeV,
i.e. at the mass limit derived from the missing energy chan-
nel alone. The predicted signal is 3.0 events in the missing
energy channel and 0.9 events in the charged lepton chan-
nel. For the background one integrates the predicted number
over the range with mass larger than 50GeV, and obtains 0.6
events in the missing energy channel [16] and 0.4 events in
the charged lepton channel. Using these numbers, the com-
parison favours the inclusion of the charged lepton chan-
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Fig. 3. Distribution of δ ≡ ℓ/σℓ and of the dilepton mass spectra after all
cuts except those applied to the quantities displayed. The white histograms
show the four-fermion background and the shaded histograms the signal for
a Higgs boson with 60GeV mass. The solid dots represent the data. Events
to the right of the arrows are accepted

nel, although detailed predictions depend crucially on the
background estimation. We therefore consider the charged
lepton channel with its superior mass resolution to be a sen-
sitive search channel at Higgs boson masses in the vicinity
of 60GeV, and quote the value from the combined analysis,
59.6GeV, as our best estimate for the lower limit of the SM
Higgs boson mass, at the 95% CL.

5 Experimental limits in the MSSM parameter space

In this section we summarize the restrictions on the MSSM
parameter space which can be obtained from the searches
for the processes Z0→h0Z∗ and Z0→h0A0 and from other
experimental inputs.
The cross-sections for the two processes are related to

the SM Higgs boson production cross-section by Eqs. (1) and
(2). The SUSY factors sin2(β − α) and cos2(β − α) which
depend on the MSSM parameters are computed, together
with all Higgs boson masses and couplings, from the renor-
malization group equations at the two-loop level, which have
been incorporated into the Higgs boson generator HZHA
[30] following [31]. The following MSSM parameters serve
as input to the calculation:

– mA0 , the mass of the pseudoscalar Higgs boson A0;
– tanβ;
– M , the universal gaugino mass parameter;

M = M1 cos2 θW +M2 sin2 θW , where M1 and M2 are
the U(1) and SU(2) gaugino masses, respectively, at the
electroweak energy scale and θW is the weak mixing
angle. We remind the reader that M , together with µ

MH < 59.6 GeV excluded at 95% CL  
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Upper limit s at CL=1-γ
given by solving the  
equation from test inversion 

Upper limit for Poisson-PDF with Background 

Boundaries of CI slo, sup   
determined using  Chi2-PDF: 

n ≤ b  can yield sup <0  

same as for „b=0“ – b  
à called „background subtraction“ 



Frequentist Limit at  Physical Boundary 

increase CL to  0.95 yields                                   sup = 0.496 

„cheating“ with CL = 0.917923 yields                   sup = 10-4 ! 

naive argument:  for  b = 2.5 à variance is  √2.5 = 1.6.   how can limit be so small?  

MC simulation: 
determine median limit under 
„b-only“  hypothesis (s = 0)  
à expected limit 

distribution of  95% CL upper limits  
for b = 2.5, s = 0. 
 
à Median sup = 4.44 

e.g. for  b = 2.5 and nobs = 0 we find upper limit of  



Bayesian Upper Limit for Poisson-PDF   

Bayesian upper limit to CL = 1-α
to be derived from 
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or limit; one may choose, for example, first to communicate the result with a confidence
interval having certain frequentist properties, and then in addition to draw conclusions
about a parameter using Bayesian statistics. It is recommended, however, that there be a
clear separation between these two aspects of reporting a result. In the remainder of this
section, we assess the extent to which various types of intervals achieve the goals stated
here.

33.3.1. Bayesian intervals :
As described in Sec. 33.1.4, a Bayesian posterior probability may be used to determine

regions that will have a given probability of containing the true value of a parameter.
In the single parameter case, for example, an interval (called a Bayesian or credible
interval) [θlo, θup] can be determined which contains a given fraction 1−α of the posterior
probability, i.e.,

1 − α =
∫ θup

θlo

p(θ|x) dθ . (33.41)

Sometimes an upper or lower limit is desired, i.e., θlo can be set to zero or θup to infinity.
In other cases, one might choose θlo and θup such that p(θ|x) is higher everywhere inside
the interval than outside; these are called highest posterior density (HPD) intervals. Note
that HPD intervals are not invariant under a nonlinear transformation of the parameter.

If a parameter is constrained to be non-negative, then the prior p.d.f. can simply be
set to zero for negative values. An important example is the case of a Poisson variable n,
which counts signal events with unknown mean s, as well as background with mean b,
assumed known. For the signal mean s, one often uses the prior

π(s) =
{

0 s < 0
1 s ≥ 0 . (33.42)

This prior is regarded as providing an interval whose frequentist properties can be studied,
rather than as representing a degree of belief. In the absence of a clear discovery, (e.g., if
n = 0 or if in any case n is compatible with the expected background), one usually wishes
to place an upper limit on s (see, however, Sec. 33.3.2.6 on “flip-flopping” concerning
frequentist coverage). Using the likelihood function for Poisson distributed n,

L(n|s) =
(s + b)n

n!
e−(s+b) , (33.43)

along with the prior (33.42) in (33.24) gives the posterior density for s. An upper limit
sup at confidence level (or here, rather, credibility level) 1 − α can be obtained by
requiring

1 − α =
∫ sup

−∞
p(s|n)ds =

∫ sup
−∞ L(n|s) π(s) ds

∫ ∞
−∞ L(n|s) π(s) ds

, (33.44)

where the lower limit of integration is effectively zero because of the cut-off in π(s). By
relating the integrals in Eq. (33.44) to incomplete gamma functions, the equation reduces
to

α = e−sup

∑n
m=0(sup + b)m/m!∑n

m=0 bm/m!
. (33.45)
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m=0 bm/m!
. (33.45)
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with likelihood function  

Posterior probability: 
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m

∑
n=0

P(n|b) = 1−Fχ2(2b;ndof) (41)

with ndof = 2(m+ 1) to relate the sum of Poisson probabilities in Eq. (40) to the
cumulative chi-square distribution Fχ2 , which allows us write the p-value as

p0 = Fχ2(2b;2nobs) . (42)

For example, suppose b = 3.4 and we observe nobs = 16 events. Eq. (42) gives
p0 = 3.6×10−6 corresponding to a significance Z = 4.5. This would thus constitute
strong evidence in favour of a nonzero value of s, but is still below the traditional
threshold of Z = 5.
To construct the frequentist upper limit we should test all hypothetical values of

s against to the alternative of s = 0, so the critical region consists of low values of
n. This means we take the p-value of a hypothesized s to be the probability to find n
as small as observed or smaller, i.e.,

ps =
n

∑
m=0

(s+ b)m

m!
e−(s+b) . (43)

The upper limit at CL= 1−α is found from the value of s such that the p-value is
equal to α , i.e.,

α =
n

∑
m=0

(sup+ b)m

m!
e−(sup+b) = 1−Fχ2

[

2(sup+ b),2(n+ 1)
]

, (44)

where in the second equality we again used the identity (41) to relate the sum of
Poisson probabilities to the cumulative chi-square distribution. This allows us to
solve for the upper limit

sup =
1
2
F−1
χ2 [1−α,2(n+ 1)]− b , (45)

where F−1
χ2

is the chi-square quantile (inverse of the cumulative distribution). The
upper limit sup is shown in Fig. 7(a) for 1−α = 95% as a function of b for different
numbers of observed events n.
To find the corresponding upper limit in the Bayesian approach we need to as-

sume a prior pdf for s. If we use the flat prior of Eq. (37), then by using Bayes’
theorem we find the posterior pdf

p(s|n) ∝
(s+ b)n

n!
e−(s+b) (46)

for s≥ 0 and p(µ |n)= 0 otherwise. This can be normalized to unit area, which gives

p(s|n) =
(s+ b)ne−(s+b)

Γ (b,n+ 1)
, (47)

and uniform prior in physical region 
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Fig. 7 Upper limits on the mean number of signal events s at 95% confidence level as a function
of the expected background b for (a) the frequentist method and (b) Bayesian method with a flat
prior.

where Γ (b,n+ 1) =
∫ ∞
b xne−x dx is the upper incomplete gamma function.

Since in the Bayesian approach we are assigning a probability to s, we can ex-
press an upper limit simply by integrating the posterior pdf from the minimum value
s= 0 up to an upper limit sup such that this contains a fixed probability, say, 1−α .
That is, we require

1−α =
∫ sup

0
p(s|n)ds . (48)

To solve for sup we can use the integral
∫ a

0
xne−x dx= Γ (n+ 1)Fχ2(2a,2(n+ 1)) , (49)

where again Fχ2 is the cumulative chi-square distribution for 2(n+ 1) degrees of
freedom. Using this we find for the upper limit

sup =
1
2
F−1
χ2

[p,2(n+ 1)]− b , (50)

where

p= 1−α
(

1−Fχ2 [2b,2(n+ 1)]
)

. (51)

This is shown in Fig. 7(b). Interestingly, the upper limits for the case of b= 0 happen
to coincide exactly with the values we found for the frequentist upper limit, and for
nonzero b the Bayesian limits are everywhere higher. This means that the probability
for the Bayesian interval to include the true value of s is higher than 1−α , so in this
sense one can say that the Bayesian limit is conservative. The corresponding unified
interval from the procedure of Feldman-Cousins is described in Ref. [28].
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where Γ (b,n+ 1) =
∫ ∞
b xne−x dx is the upper incomplete gamma function.

Since in the Bayesian approach we are assigning a probability to s, we can ex-
press an upper limit simply by integrating the posterior pdf from the minimum value
s= 0 up to an upper limit sup such that this contains a fixed probability, say, 1−α .
That is, we require

1−α =
∫ sup

0
p(s|n)ds . (48)

To solve for sup we can use the integral
∫ a

0
xne−x dx= Γ (n+ 1)Fχ2(2a,2(n+ 1)) , (49)

where again Fχ2 is the cumulative chi-square distribution for 2(n+ 1) degrees of
freedom. Using this we find for the upper limit

sup =
1
2
F−1
χ2

[p,2(n+ 1)]− b , (50)

where

p= 1−α
(

1−Fχ2 [2b,2(n+ 1)]
)

. (51)

This is shown in Fig. 7(b). Interestingly, the upper limits for the case of b= 0 happen
to coincide exactly with the values we found for the frequentist upper limit, and for
nonzero b the Bayesian limits are everywhere higher. This means that the probability
for the Bayesian interval to include the true value of s is higher than 1−α , so in this
sense one can say that the Bayesian limit is conservative. The corresponding unified
interval from the procedure of Feldman-Cousins is described in Ref. [28].
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where Γ (b,n+ 1) =
∫ ∞
b xne−x dx is the upper incomplete gamma function.

Since in the Bayesian approach we are assigning a probability to s, we can ex-
press an upper limit simply by integrating the posterior pdf from the minimum value
s= 0 up to an upper limit sup such that this contains a fixed probability, say, 1−α .
That is, we require

1−α =
∫ sup

0
p(s|n)ds . (48)

To solve for sup we can use the integral
∫ a

0
xne−x dx= Γ (n+ 1)Fχ2(2a,2(n+ 1)) , (49)

where again Fχ2 is the cumulative chi-square distribution for 2(n+ 1) degrees of
freedom. Using this we find for the upper limit

sup =
1
2
F−1
χ2

[p,2(n+ 1)]− b , (50)

where

p= 1−α
(

1−Fχ2 [2b,2(n+ 1)]
)

. (51)

This is shown in Fig. 7(b). Interestingly, the upper limits for the case of b= 0 happen
to coincide exactly with the values we found for the frequentist upper limit, and for
nonzero b the Bayesian limits are everywhere higher. This means that the probability
for the Bayesian interval to include the true value of s is higher than 1−α , so in this
sense one can say that the Bayesian limit is conservative. The corresponding unified
interval from the procedure of Feldman-Cousins is described in Ref. [28].
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where Γ (b,n+ 1) =
∫ ∞
b xne−x dx is the upper incomplete gamma function.

Since in the Bayesian approach we are assigning a probability to s, we can ex-
press an upper limit simply by integrating the posterior pdf from the minimum value
s= 0 up to an upper limit sup such that this contains a fixed probability, say, 1−α .
That is, we require

1−α =
∫ sup

0
p(s|n)ds . (48)

To solve for sup we can use the integral
∫ a

0
xne−x dx= Γ (n+ 1)Fχ2(2a,2(n+ 1)) , (49)

where again Fχ2 is the cumulative chi-square distribution for 2(n+ 1) degrees of
freedom. Using this we find for the upper limit

sup =
1
2
F−1
χ2

[p,2(n+ 1)]− b , (50)

where

p= 1−α
(

1−Fχ2 [2b,2(n+ 1)]
)

. (51)

This is shown in Fig. 7(b). Interestingly, the upper limits for the case of b= 0 happen
to coincide exactly with the values we found for the frequentist upper limit, and for
nonzero b the Bayesian limits are everywhere higher. This means that the probability
for the Bayesian interval to include the true value of s is higher than 1−α , so in this
sense one can say that the Bayesian limit is conservative. The corresponding unified
interval from the procedure of Feldman-Cousins is described in Ref. [28].
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where Γ (b,n+ 1) =
∫ ∞
b xne−x dx is the upper incomplete gamma function.

Since in the Bayesian approach we are assigning a probability to s, we can ex-
press an upper limit simply by integrating the posterior pdf from the minimum value
s= 0 up to an upper limit sup such that this contains a fixed probability, say, 1−α .
That is, we require

1−α =
∫ sup

0
p(s|n)ds . (48)

To solve for sup we can use the integral
∫ a

0
xne−x dx= Γ (n+ 1)Fχ2(2a,2(n+ 1)) , (49)

where again Fχ2 is the cumulative chi-square distribution for 2(n+ 1) degrees of
freedom. Using this we find for the upper limit

sup =
1
2
F−1
χ2

[p,2(n+ 1)]− b , (50)

where

p= 1−α
(

1−Fχ2 [2b,2(n+ 1)]
)

. (51)

This is shown in Fig. 7(b). Interestingly, the upper limits for the case of b= 0 happen
to coincide exactly with the values we found for the frequentist upper limit, and for
nonzero b the Bayesian limits are everywhere higher. This means that the probability
for the Bayesian interval to include the true value of s is higher than 1−α , so in this
sense one can say that the Bayesian limit is conservative. The corresponding unified
interval from the procedure of Feldman-Cousins is described in Ref. [28].

Need so solve: 

Upper limit given by  

Frequentist formula modified  
by replacing (1-α ) by p  

33. Statistics 17

or limit; one may choose, for example, first to communicate the result with a confidence
interval having certain frequentist properties, and then in addition to draw conclusions
about a parameter using Bayesian statistics. It is recommended, however, that there be a
clear separation between these two aspects of reporting a result. In the remainder of this
section, we assess the extent to which various types of intervals achieve the goals stated
here.

33.3.1. Bayesian intervals :
As described in Sec. 33.1.4, a Bayesian posterior probability may be used to determine

regions that will have a given probability of containing the true value of a parameter.
In the single parameter case, for example, an interval (called a Bayesian or credible
interval) [θlo, θup] can be determined which contains a given fraction 1−α of the posterior
probability, i.e.,

1 − α =
∫ θup

θlo

p(θ|x) dθ . (33.41)

Sometimes an upper or lower limit is desired, i.e., θlo can be set to zero or θup to infinity.
In other cases, one might choose θlo and θup such that p(θ|x) is higher everywhere inside
the interval than outside; these are called highest posterior density (HPD) intervals. Note
that HPD intervals are not invariant under a nonlinear transformation of the parameter.

If a parameter is constrained to be non-negative, then the prior p.d.f. can simply be
set to zero for negative values. An important example is the case of a Poisson variable n,
which counts signal events with unknown mean s, as well as background with mean b,
assumed known. For the signal mean s, one often uses the prior

π(s) =
{

0 s < 0
1 s ≥ 0 . (33.42)

This prior is regarded as providing an interval whose frequentist properties can be studied,
rather than as representing a degree of belief. In the absence of a clear discovery, (e.g., if
n = 0 or if in any case n is compatible with the expected background), one usually wishes
to place an upper limit on s (see, however, Sec. 33.3.2.6 on “flip-flopping” concerning
frequentist coverage). Using the likelihood function for Poisson distributed n,

L(n|s) =
(s + b)n

n!
e−(s+b) , (33.43)

along with the prior (33.42) in (33.24) gives the posterior density for s. An upper limit
sup at confidence level (or here, rather, credibility level) 1 − α can be obtained by
requiring

1 − α =
∫ sup

−∞
p(s|n)ds =

∫ sup
−∞ L(n|s) π(s) ds

∫ ∞
−∞ L(n|s) π(s) ds

, (33.44)

where the lower limit of integration is effectively zero because of the cut-off in π(s). By
relating the integrals in Eq. (33.44) to incomplete gamma functions, the equation reduces
to

α = e−sup

∑n
m=0(sup + b)m/m!∑n

m=0 bm/m!
. (33.45)
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Upper limit always ≥ 3 Upper limit can be „0“ 

Classical and Bayesian Limits at 95% CL 
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Fig. 7 Upper limits on the mean number of signal events s at 95% confidence level as a function
of the expected background b for (a) the frequentist method and (b) Bayesian method with a flat
prior.

where Γ (b,n+ 1) =
∫ ∞
b xne−x dx is the upper incomplete gamma function.

Since in the Bayesian approach we are assigning a probability to s, we can ex-
press an upper limit simply by integrating the posterior pdf from the minimum value
s= 0 up to an upper limit sup such that this contains a fixed probability, say, 1−α .
That is, we require

1−α =
∫ sup

0
p(s|n)ds . (48)

To solve for sup we can use the integral
∫ a

0
xne−x dx= Γ (n+ 1)Fχ2(2a,2(n+ 1)) , (49)

where again Fχ2 is the cumulative chi-square distribution for 2(n+ 1) degrees of
freedom. Using this we find for the upper limit

sup =
1
2
F−1
χ2

[p,2(n+ 1)]− b , (50)

where

p= 1−α
(

1−Fχ2 [2b,2(n+ 1)]
)

. (51)

This is shown in Fig. 7(b). Interestingly, the upper limits for the case of b= 0 happen
to coincide exactly with the values we found for the frequentist upper limit, and for
nonzero b the Bayesian limits are everywhere higher. This means that the probability
for the Bayesian interval to include the true value of s is higher than 1−α , so in this
sense one can say that the Bayesian limit is conservative. The corresponding unified
interval from the procedure of Feldman-Cousins is described in Ref. [28].
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where Γ (b,n+ 1) =
∫ ∞
b xne−x dx is the upper incomplete gamma function.

Since in the Bayesian approach we are assigning a probability to s, we can ex-
press an upper limit simply by integrating the posterior pdf from the minimum value
s= 0 up to an upper limit sup such that this contains a fixed probability, say, 1−α .
That is, we require

1−α =
∫ sup

0
p(s|n)ds . (48)

To solve for sup we can use the integral
∫ a

0
xne−x dx= Γ (n+ 1)Fχ2(2a,2(n+ 1)) , (49)

where again Fχ2 is the cumulative chi-square distribution for 2(n+ 1) degrees of
freedom. Using this we find for the upper limit

sup =
1
2
F−1
χ2

[p,2(n+ 1)]− b , (50)

where

p= 1−α
(

1−Fχ2 [2b,2(n+ 1)]
)

. (51)

This is shown in Fig. 7(b). Interestingly, the upper limits for the case of b= 0 happen
to coincide exactly with the values we found for the frequentist upper limit, and for
nonzero b the Bayesian limits are everywhere higher. This means that the probability
for the Bayesian interval to include the true value of s is higher than 1−α , so in this
sense one can say that the Bayesian limit is conservative. The corresponding unified
interval from the procedure of Feldman-Cousins is described in Ref. [28].

for b= 0 identical                                     for n>>b also identical 
other b values Bayesian> classical limit à“conservative”  coverage  > CL 
Bayesian Limit independent on b for n= 0 

Frequentist Limit  at CL=95% Bayesian  Limit at CL=95%  
with uniform prior 



Best test:  for given significance level α, maximize power M=1-β  

Questions: Which test statistic t?   
Which choice of critical region? 
 
Simple hypothesis H0 and H1  

P = probability to observe sample x 
(≤ c outside critical region) 
c is a constant depending on α

Equivalent statement: the optimal test statistics  
                            is given by the likelihood ratio 
(or any monotonic function 1/t(, t/(1+t), ln t) 

Challenge in praxis: determination of PDFs for t under different hypothesis 

Neyman-Person-Lemma: a test of a simple null hypothesis H0 w.r.t. to the simple 
alternative hypothesis H1 is a best test, if the critical region is chosen such that  
inside it holds: 

Neyman Pearson Lemma 
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The  Likelihood to observe n  given H0 (s=0,b) is: 

à Neyman-Pearson-Lemma: best test given by  

G. Cowan  Statistical methods for HEP / Freiburg 27-29 June 2011 / Lecture 2 9 

Likelihood ratio for full experiment 
We can define a test statistic Q monotonic in the likelihood ratio as 

To compute p-values for the b and s+b hypotheses given an  
observed value of Q we need  the distributions f(Q|b) and f(Q|s+b). 

     Note that the term –s in front is a constant and can be dropped. 

The rest is a sum of contributions for each event, and each term 
in the sum has the same distribution. 

Can exploit this to relate distribution of Q to that of single 
event terms using (Fast) Fourier Transforms (Hu and Nielsen,  
physics/9906010). 

G. Cowan  Statistical methods for HEP / Freiburg 27-29 June 2011 / Lecture 2 10 

Distribution of Q 

Take e.g. b = 100, s = 20. 

f (Q|b) 
f (Q|s+b) 

p-value of b only p-value of s+b 

Suppose in real experiment 
Q is observed here. 

G. Cowan  Statistical methods for HEP / Freiburg 27-29 June 2011 / Lecture 2 8 

Likelihoods for full experiment 
We observe n events, and thus measure n instances of x = (x1, x2).  

The likelihood function for the entire experiment assuming 
the background-only hypothesis (H0) is 

and for the “signal plus background” hypothesis (H1) it is 

where πs and πb are the (prior) probabilities for an event to 
be signal or background, respectively. G. Cowan  Statistical methods for HEP / Freiburg 27-29 June 2011 / Lecture 2 8 

Likelihoods for full experiment 
We observe n events, and thus measure n instances of x = (x1, x2).  

The likelihood function for the entire experiment assuming 
the background-only hypothesis (H0) is 

and for the “signal plus background” hypothesis (H1) it is 

where πs and πb are the (prior) probabilities for an event to 
be signal or background, respectively. 

The Likelihood to observe  n given H1 (s,b) is: 

G. Cowan  Statistical methods for HEP / Freiburg 27-29 June 2011 / Lecture 2 9 

Likelihood ratio for full experiment 
We can define a test statistic Q monotonic in the likelihood ratio as 

To compute p-values for the b and s+b hypotheses given an  
observed value of Q we need  the distributions f(Q|b) and f(Q|s+b). 

     Note that the term –s in front is a constant and can be dropped. 

The rest is a sum of contributions for each event, and each term 
in the sum has the same distribution. 

Can exploit this to relate distribution of Q to that of single 
event terms using (Fast) Fourier Transforms (Hu and Nielsen,  
physics/9906010). 

G. Cowan  Statistical methods for HEP / Freiburg 27-29 June 2011 / Lecture 2 15 

L(s)/L(s) for counting experiment ˆ 
Consider an experiment where we only count n events with 
n ~ Poisson(s + b).  Then                 . 

To establish discovery of signal we test the hypothesis s = 0 using 

whereas previously we had used 

which is monotonic in n and thus equivalent to using  n as 
the test statistic. 

or monotonic function 

Likelihood ratio is monotonic function of n. 
PDF for optimal test statistic is also Poisson distribution 
  
à Counting rate n is optimal test statistic 

Often used 
at LEP : 

Optimal use of distributions/ combination of channels  
à product of likelihoods per bin/channel 
     or sum of ln lik. per channel/bin 

Neyman Pearson Test Statistic for Exclusion 



Nullhypothesis H0 simple,   Alternative hypothesis H1 composite  

Profile Likelihood Test Statistic  
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L(n|ŝ, b

Ø  not mathematically proof that this the best, but in praxis no better found  

Ø  allows easy incorporating of syst. uncertainties via profiled nuisance parameters 

Ø  PDF for  q= – 2 ln t PL   is Chi2-PDF with 1 degree of freedom fChi2(q; ν=1) 

    for NSP not too small (Wilks theorem)  

 

two sided critical region / test recommended from application to particular problem 

   

  



So far:  signal rate fixed (known) under alternative hypothesis  
Now:     find best number of signal events under H1  via maximum likelihood fit 
             i.e. H1 is composite hypothesis with signal count as free parameter  

ln λ  in  [0, -infinity]:  
0 good agreement  with H0  
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Using the likelihood ratio L(s)/L(s) ˆ 

Instead of the likelihood ratio Ls+b/Lb, suppose we use as a test 
statistic  

Intuitively this is a measure of the level of agreement between  
the data and the hypothesized value of s. 

 low λ:  poor agreement 
 high λ : better agreement 
 0 ≤ λ ≤ 1 

maximizes L(s) 

Test statistic: 

Enumerator (zähler):      likelihood for H0    (s fixed, for 
discovery s=0) 
Denominator:   likelihood  for H1   (s estimated from data) 

Test statistics for discovery  (s=0 in enumerator): 

Maximum likelihood estimate for signal counts: 

Kapitel 6 Statistische Methoden

Abbildung 6.4: Graphische Darstellung des p-Wertes p
0

des Medians der Teststatistik q
0

einer
s+b-Hypothese [9].

6.3 s/
p
b als Maß für die Signifikanz

Nehmen wir an, dass die Ereigniszahl n einer Poisson-Wahrscheinlichkeitsverteilung entspricht.
Für sehr große Erwartungswerte s+ b geht die Poisson-Verteilung annähernd in eine Gaußsche
Wahrscheinlichkeitsverteilung über mit dem Erwartungswert s+ b und der Standardabweichungp
s+ b. Der p-Wert ergibt sich dann für s = 0 und eine beobachtete Anzahl n zu:

p
0

= 1� �

✓
n� bp

b

◆
(6.4)

Mit Gl. 6.1 berechnet sich die Entdeckungs-Signifikanz dann zu

Z =
n� bp

b
(6.5)

Die Median-Signifikanz für ein bestimmtes Signal s ist gegeben durch

med[Z|s+ b] =
sp
b

(6.6)

6.4 Poisson-Prozess

Wir wollen nun eine Likelihood-Teststatistik für ein Zählexperiment aufstellen. Die Likelihood-
Funktion folgt dann einer einfachen Poisson-Verteilung

L(n; s, b) =
(s+ b)n

n!
e�(s+b). (6.7)

Hieraus kann mit Hilfe von Gl. 6.2 die Teststatistik in Gl. 6.3 berechnet werden. Nehmen wir
an, der Untergrund b sei bekannt, dann ergibt sich für den Schätzer

ŝ = n� b (6.8)

und somit

q
0

=

(
2
�
n ln n

b + b� n
�

ŝ � 0

0 ŝ < 0 .
(6.9)
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ŝ = n� b (6.8)

und somit

q
0

=

(
2
�
n ln n

b + b� n
�
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Likelihood function 

λ  in  [0, 1]:  
1 good agreement  with H0  
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Profile Likelihood Test Statistic for Exclusion 



From Neyman-Pearson-Lemma  
(simple hypothesis): 
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L(s)/L(s) for counting experiment ˆ 
Consider an experiment where we only count n events with 
n ~ Poisson(s + b).  Then                 . 

To establish discovery of signal we test the hypothesis s = 0 using 

whereas previously we had used 

which is monotonic in n and thus equivalent to using  n as 
the test statistic. 

From profile likelihood ratio 
(composite alternative hypothesis H1) 

If we consider a deviation from 
background only hypothesis  
only for  n>b (e.g. set ln λ(0) = 0 for n<b) 
 
then both are monotonic and  
as optimal as using n  
(for counting experiment neglecting 
systematic uncertainties) 

ln λ(s)   preferred for multiple channels /  distributions  
             add values of ln λ (s) for each/bin channel  
PDF     for -2 ln λ(s) for „s+b“ /”b-only) given by Wilks’ (Wald’s)theorem 

b=16 s=8  
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Comparison of Test Statistic for Exclusion 



H0: signal+background à µ=1  , b        H1: background only  µ = 0 , b  
µ parametrises strength w.r.t. “standard prediction”  µ = sobs/sSM 

Test statistic qµ = - 2 ln (µ ) 

One sided test, only signal strength  < µ considered as inconsistent with H0 

large values H1-like  
 
small values H0-like  

µ
q

critical region
)µ|
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|0)
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Figure 1: Illustration of statistical tests of parameter values µ for the cases of (a) little sensitivity
and (b) substantial sensitivity (see text).

of µ′ = 0 leads to a substantially greater probability to reject µ, i.e., to find qµ in the critical
region.

The sensitivity of a test of µ can be quantified using the power of the test with respect
to a stated alternative µ′, which we will take here to be the no-signal hypothesis, µ′ = 0. In
the case where the pdfs f(qµ|µ) and f(qµ|0) coincide, the probability to reject µ assuming
the alternative µ′ = 0 approaches the significance level of the test, α.

In the context of a search for a new phenomenon, this means that with probability not
less than α one will exclude hypotheses to which one has little or no sensitivity, which we
refer to here as spurious exclusion. The hypothesis might indeed be false, but if it is excluded,
this is more naturally interpreted as a data fluctuation away from the region favoured under
assumption of µ. This could result, for example, in a search for a hypothetical particle with
a mass far above the range where it would have a noticeable impact on the data. Particle
Physics experiments often carry out many searches covering a broad parameter range for
many signal models, and so spurious exclusion is in fact a problem that can arise often.

4 Previous methods that address spurious exclusion

The problem of spurious exclusion, or equivalently, having a “lucky” statistical fluctuation
lead to an anomalously strong limit, has been known in the particle physics community for
many years. The note by Highland [3] reviews the problem and proposes several possible
solutions; further discussion can be found in the review on statistics by the Particle Data
Group [4].

The problem received particular focus during searches for the Higgs Boson at the LEP
Collider in the 1990s, and led to a procedure called “CLs” [1]. Here one forms the ratio

CLs =
pµ

1− p0
, (5)

where pµ and p0 are the p-values of the hypothesized strength parameter values µ and 0,
respectively. In the CLs procedure, µ is deemed to be excluded if one finds CLs < α.
Because CLs is aways greater than pµ, the probability of exclusion assuming µ is necessarily
less than α. Thus the quoted upper limit from the CLs procedure will be greater than the

4

decrease tested µ until  
P-value = α = 1- CL    

~

~
~

Figure 1: Test statistic distributions for ensembles of pseudo-data generated for sig-
nal+background and background-only hypotheses. See the text for definitions of the test
statistic and methodology of generating pseudo-data.
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1� pb = P ( q̃µ � q̃obsµ | background-only) =

Z 1

qobs
0

f(q̃µ|0, ✓̂obs
0

) dq̃µ , (7)

and calculate CL
s

(µ) as a ratio of these two probabilities 1

109

CLs(µ) =
pµ

1� pb
(8)

7. If, for µ = 1, CL
s

 ↵, we would state that the SM Higgs boson is excluded110

with (1 � ↵) CL
s

confidence level (C.L.). It is known that the CL
s

method gives111

conservative limits, i.e. the actual confidence level is higher than (1 � ↵). See112

Appendix A for more details.113

8. To quote the 95% Confidence Level upper limit on µ, to be further denoted as114

µ95%CL, we adjust µ until we reach CL
s

= 0.05.115

2.2 Expected limits116

The most straightforward way for defining the expected median upper-limit and ±1� and117

±2� bands for the background-only hypothesis is to generate a large set of background-118

1Note that we define p
b

as p
b

= P ( q̃
µ

< q̃obs
µ

| background-only), excluding the point q̃
µ

= q̃obs
µ

. With
these definitions one can identify p

µ

with CL
s+b

and p
b

with 1� CL
b

.
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Profile Likelihood Test statistic for Exclusion 
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of µ′ = 0 leads to a substantially greater probability to reject µ, i.e., to find qµ in the critical
region.

The sensitivity of a test of µ can be quantified using the power of the test with respect
to a stated alternative µ′, which we will take here to be the no-signal hypothesis, µ′ = 0. In
the case where the pdfs f(qµ|µ) and f(qµ|0) coincide, the probability to reject µ assuming
the alternative µ′ = 0 approaches the significance level of the test, α.

In the context of a search for a new phenomenon, this means that with probability not
less than α one will exclude hypotheses to which one has little or no sensitivity, which we
refer to here as spurious exclusion. The hypothesis might indeed be false, but if it is excluded,
this is more naturally interpreted as a data fluctuation away from the region favoured under
assumption of µ. This could result, for example, in a search for a hypothetical particle with
a mass far above the range where it would have a noticeable impact on the data. Particle
Physics experiments often carry out many searches covering a broad parameter range for
many signal models, and so spurious exclusion is in fact a problem that can arise often.

4 Previous methods that address spurious exclusion

The problem of spurious exclusion, or equivalently, having a “lucky” statistical fluctuation
lead to an anomalously strong limit, has been known in the particle physics community for
many years. The note by Highland [3] reviews the problem and proposes several possible
solutions; further discussion can be found in the review on statistics by the Particle Data
Group [4].

The problem received particular focus during searches for the Higgs Boson at the LEP
Collider in the 1990s, and led to a procedure called “CLs” [1]. Here one forms the ratio

CLs =
pµ

1− p0
, (5)

where pµ and p0 are the p-values of the hypothesized strength parameter values µ and 0,
respectively. In the CLs procedure, µ is deemed to be excluded if one finds CLs < α.
Because CLs is aways greater than pµ, the probability of exclusion assuming µ is necessarily
less than α. Thus the quoted upper limit from the CLs procedure will be greater than the

4

Pure frequentist would stop and say: „signal + background“ hypothesis is 
excluded with a confidence level CLS+B of 1- pµ

In the latter equation, fs(x) and fb(x) are pdfs of signal and background of some73

observable(s) x, while S and B are total event rates expected for signal and back-74

grounds.75

2. To compare the compatibility of the data with the background-only and signal+background76

hypotheses, where the signal is allowed to be scaled by some factor µ, we construct77

the test statistic q̃µ [11] based on the profile likelihood ratio:78

q̃µ = �2 ln
L(data|µ, ✓̂µ)
L(data|µ̂, ✓̂) , with a constraint 0  µ̂  µ (5)

where ✓̂µ refers to the conditional maximum likelihood estimators of ✓, given the79

signal strength parameter µ and “data” that, as before, may refer to the actual80

experimental observation or pseudo-data (toys). The pair of parameter estimators81

µ̂ and ✓̂ correspond to the global maximum of the likelihood.82

The lower constraint 0  µ̂ is dictated by physics (signal rate is positive), while83

the upper constraint µ̂  µ is imposed by hand in order to guarantee a one-sided84

(not detached from zero) confidence interval. Physics-wise, this means that upward85

fluctuations of the data such that µ̂ > µ are not considered as evidence against the86

signal hypothesis, namely a signal with strength µ.87

Note that this definition of the test statistic di↵ers from what has been used at88

LEP (where “profiling” of systematic errors was not used) and at Tevatron (where89

systematic errors were profiled, but µ in the denominator was fixed at zero). See90

Appendix A for details.91

3. Find the observed value of the test statistic q̃obsµ for the given signal strength modifier92

µ under test.93

4. Find values of the nuisance parameters ✓̂obs
0

and ✓̂obsµ best describing the experi-94

mentally observed data (i.e. maximising the likelihood as given in Eq. 2), for the95

background-only and signal+background hypotheses, respectively.96

5. Generate toy Monte Carlo pseudo-data to construct pdf s f(q̃µ|µ, ✓̂obsµ ) and f(q̃µ|0, ✓̂obs
0

)97

assuming a signal with strength µ in the signal+background hypothesis and for the98

background-only hypothesis (µ = 0). These distributions are shown in Fig. 1. Note,99

that for the purposes of generating a pseudo-dataset, the nuisance parameters are100

fixed to the values ✓̂obsµ or ✓̂obs
0

obtained by fitting the observed data, but are allowed101

to float in fits needed to evaluate the test statistic. This way, in which the nuisance102

parameters are fixed to their maximum likelihood estimates, has good coverage103

properties [12].104

6. Having constructed f(q̃µ|µ, ✓̂obsµ ) and f(q̃µ|0, ✓̂obs
0

) distributions, we define two p-105

values to be associated with the actual observation for the signal+background and106

background-only hypotheses, pµ and pb:107

pµ = P ( q̃µ � q̃obsµ | signal+background) =

Z 1

q̃obsµ

f(q̃µ|µ, ✓̂obsµ ) dq̃µ , (6)
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„Problem“: Spurious exclusion of signals with no sensitivity (s<<b) 

By construction: probability to reject µ if µ is true is α       
                           for s<<b  probability to reject very small µ if µ=0 is true ~ α + epsilon   
à  probability to exclude hypotheses with zero signal  
     (due to downwards fluctuation) ~ α    „spurious exclusion w/o sensitivity“ 

s<<b 
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Figure 1: Illustration of statistical tests of parameter values µ for the cases of (a) little sensitivity
and (b) substantial sensitivity (see text).

of µ′ = 0 leads to a substantially greater probability to reject µ, i.e., to find qµ in the critical
region.

The sensitivity of a test of µ can be quantified using the power of the test with respect
to a stated alternative µ′, which we will take here to be the no-signal hypothesis, µ′ = 0. In
the case where the pdfs f(qµ|µ) and f(qµ|0) coincide, the probability to reject µ assuming
the alternative µ′ = 0 approaches the significance level of the test, α.

In the context of a search for a new phenomenon, this means that with probability not
less than α one will exclude hypotheses to which one has little or no sensitivity, which we
refer to here as spurious exclusion. The hypothesis might indeed be false, but if it is excluded,
this is more naturally interpreted as a data fluctuation away from the region favoured under
assumption of µ. This could result, for example, in a search for a hypothetical particle with
a mass far above the range where it would have a noticeable impact on the data. Particle
Physics experiments often carry out many searches covering a broad parameter range for
many signal models, and so spurious exclusion is in fact a problem that can arise often.

4 Previous methods that address spurious exclusion

The problem of spurious exclusion, or equivalently, having a “lucky” statistical fluctuation
lead to an anomalously strong limit, has been known in the particle physics community for
many years. The note by Highland [3] reviews the problem and proposes several possible
solutions; further discussion can be found in the review on statistics by the Particle Data
Group [4].

The problem received particular focus during searches for the Higgs Boson at the LEP
Collider in the 1990s, and led to a procedure called “CLs” [1]. Here one forms the ratio

CLs =
pµ

1− p0
, (5)

where pµ and p0 are the p-values of the hypothesized strength parameter values µ and 0,
respectively. In the CLs procedure, µ is deemed to be excluded if one finds CLs < α.
Because CLs is aways greater than pµ, the probability of exclusion assuming µ is necessarily
less than α. Thus the quoted upper limit from the CLs procedure will be greater than the

4

power M= 1-ß  
large w.r.t. 
significance 
level α

„ „Spurious Exclusion“ with Frequentist Limit 



Pseudo-Frequentist or Zech‘s Interpretation 

33. Statistics 17

or limit; one may choose, for example, first to communicate the result with a confidence
interval having certain frequentist properties, and then in addition to draw conclusions
about a parameter using Bayesian statistics. It is recommended, however, that there be a
clear separation between these two aspects of reporting a result. In the remainder of this
section, we assess the extent to which various types of intervals achieve the goals stated
here.

33.3.1. Bayesian intervals :
As described in Sec. 33.1.4, a Bayesian posterior probability may be used to determine

regions that will have a given probability of containing the true value of a parameter.
In the single parameter case, for example, an interval (called a Bayesian or credible
interval) [θlo, θup] can be determined which contains a given fraction 1−α of the posterior
probability, i.e.,

1 − α =
∫ θup

θlo

p(θ|x) dθ . (33.41)

Sometimes an upper or lower limit is desired, i.e., θlo can be set to zero or θup to infinity.
In other cases, one might choose θlo and θup such that p(θ|x) is higher everywhere inside
the interval than outside; these are called highest posterior density (HPD) intervals. Note
that HPD intervals are not invariant under a nonlinear transformation of the parameter.

If a parameter is constrained to be non-negative, then the prior p.d.f. can simply be
set to zero for negative values. An important example is the case of a Poisson variable n,
which counts signal events with unknown mean s, as well as background with mean b,
assumed known. For the signal mean s, one often uses the prior

π(s) =
{

0 s < 0
1 s ≥ 0 . (33.42)

This prior is regarded as providing an interval whose frequentist properties can be studied,
rather than as representing a degree of belief. In the absence of a clear discovery, (e.g., if
n = 0 or if in any case n is compatible with the expected background), one usually wishes
to place an upper limit on s (see, however, Sec. 33.3.2.6 on “flip-flopping” concerning
frequentist coverage). Using the likelihood function for Poisson distributed n,

L(n|s) =
(s + b)n

n!
e−(s+b) , (33.43)

along with the prior (33.42) in (33.24) gives the posterior density for s. An upper limit
sup at confidence level (or here, rather, credibility level) 1 − α can be obtained by
requiring

1 − α =
∫ sup

−∞
p(s|n)ds =

∫ sup
−∞ L(n|s) π(s) ds

∫ ∞
−∞ L(n|s) π(s) ds

, (33.44)

where the lower limit of integration is effectively zero because of the cut-off in π(s). By
relating the integrals in Eq. (33.44) to incomplete gamma functions, the equation reduces
to

α = e−sup

∑n
m=0(sup + b)m/m!∑n

m=0 bm/m!
. (33.45)
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Bayesian limit with uniform prior first 
proposed by O. Helene (1983) 
Condition can be rewritten as 

Numerical identical result derived by G. Zech (1988) in different context 
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It is shown that upper limits can be calculated in classical statistics for measurements contaminated by background or distorted 
owing to the finite resolution of the apparatus. The a posteriori probability distributions, as fixed by the experimental results, are 
used for the background and the measurement errors, respectively. Contrary to the Bayesian approach, assumptions on prior 
distributions of unknown parameters are avoided. 

1. Introduction 

The search for rare processes often leads to the 
observation of a few events that can be explained by 
background. If the expected background can be calcu- 
lated with high precision, an upper limit for the physical 
process can be derived [1-3] using Bayes' theorem. For 
a confidence level c = 1 - c, N observed events, and an 
expected number of background events b, the limit for 
the signal s is given by: 

fs ~ s' + b ) ds' P(n; 
(1) 

f0 ' 
c= ~P(n; s '+b) ds" 

where P(n; ~) is the Poisson distribution with the ex- 
pectation value ~. 

The confidence limit is interpreted as the probability 
that the true signal has a value smaller than s. The 
derivation of eq. (1) assumes a uniform a priori distribu- 
tion for s. Both the assumption and the interpretation 
of the result are questionable and are unacceptable to 
many physicists [3,4]. In order to avoid the problems 
related to the Bayesian approach, upper limits are usu- 
ally defined through the frequency of obtaining a result 
smaller than or equal to the observed one, if the experi- 
ment were repeated many times with a signal of mean s 
[5]. The result (1) remains correct with the modified 
definition, but the coincidence is accidental. Below we 
will demonstrate the validity of eq. (1) in classical 
statistics and discuss its interpretation. A similar ap- 
proach to that for discrete variables can be used in the 
analogous case of a continuous variable distorted by 
measurement errors. We indicate, for a simple example, 
how an upper limit can be computed without using 
Bayes' theorem. 

0168-9002/89/$03.50 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 

The arguments and results presented in this paper 
are certainly not new to everybody and have been 
applied in the past. But it is also true that doubtful 
limits have been published and a variety of methods 
have been used in different experiments [6]. 

2. Poisson distributed signals with background 

For given average values of the signal s and the 
background b, the probability of observing n events is 
given by the Poisson distribution 

P ( n ; s + b ) =  e-(*+b)(s+b)" ,!  (2) 

This formula is the product of the Poisson probabilities 
for the signal and the background numbers for all 
possible combinations that give a total of n: 

n n - - n  b 

P ( n ; s + b ) =  ~, ~_~ P(nb;b)P(ns;S ). 
r ib=0 n s = O  

The relation (2) cannot be used directly to compute an 
upper limit on s. This can be seen easily by considering 
the special case with large b and no observed event, 
where a negative unphysical limit would be obtained. 

In an experiment where b background events are 
expected and N events have been found, P(nb; b) no 
longer corresponds to our improved knowledge of the 
background distributions. Since n b can only take the 
numbers n b < N, it has to be renormalized to the new 
range of rib: 

N 

P ' ( n b ;  b) = P ( n b ;  b) /  E P(nb; b). 
t lb=0 
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It is shown that upper limits can be calculated in classical statistics for measurements contaminated by background or distorted 
owing to the finite resolution of the apparatus. The a posteriori probability distributions, as fixed by the experimental results, are 
used for the background and the measurement errors, respectively. Contrary to the Bayesian approach, assumptions on prior 
distributions of unknown parameters are avoided. 

1. Introduction 

The search for rare processes often leads to the 
observation of a few events that can be explained by 
background. If the expected background can be calcu- 
lated with high precision, an upper limit for the physical 
process can be derived [1-3] using Bayes' theorem. For 
a confidence level c = 1 - c, N observed events, and an 
expected number of background events b, the limit for 
the signal s is given by: 

fs ~ s' + b ) ds' P(n; 
(1) 

f0 ' 
c= ~P(n; s '+b) ds" 

where P(n; ~) is the Poisson distribution with the ex- 
pectation value ~. 

The confidence limit is interpreted as the probability 
that the true signal has a value smaller than s. The 
derivation of eq. (1) assumes a uniform a priori distribu- 
tion for s. Both the assumption and the interpretation 
of the result are questionable and are unacceptable to 
many physicists [3,4]. In order to avoid the problems 
related to the Bayesian approach, upper limits are usu- 
ally defined through the frequency of obtaining a result 
smaller than or equal to the observed one, if the experi- 
ment were repeated many times with a signal of mean s 
[5]. The result (1) remains correct with the modified 
definition, but the coincidence is accidental. Below we 
will demonstrate the validity of eq. (1) in classical 
statistics and discuss its interpretation. A similar ap- 
proach to that for discrete variables can be used in the 
analogous case of a continuous variable distorted by 
measurement errors. We indicate, for a simple example, 
how an upper limit can be computed without using 
Bayes' theorem. 
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The arguments and results presented in this paper 
are certainly not new to everybody and have been 
applied in the past. But it is also true that doubtful 
limits have been published and a variety of methods 
have been used in different experiments [6]. 

2. Poisson distributed signals with background 

For given average values of the signal s and the 
background b, the probability of observing n events is 
given by the Poisson distribution 

P ( n ; s + b ) =  e-(*+b)(s+b)" ,!  (2) 

This formula is the product of the Poisson probabilities 
for the signal and the background numbers for all 
possible combinations that give a total of n: 

n n - - n  b 

P ( n ; s + b ) =  ~, ~_~ P(nb;b)P(ns;S ). 
r ib=0 n s = O  

The relation (2) cannot be used directly to compute an 
upper limit on s. This can be seen easily by considering 
the special case with large b and no observed event, 
where a negative unphysical limit would be obtained. 

In an experiment where b background events are 
expected and N events have been found, P(nb; b) no 
longer corresponds to our improved knowledge of the 
background distributions. Since n b can only take the 
numbers n b < N, it has to be renormalized to the new 
range of rib: 

N 

P ' ( n b ;  b) = P ( n b ;  b) /  E P(nb; b). 
t lb=0 
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t lb=0 

If  N< b  we know background in data < b 
à  renormalilze background PDF  
and replace it in compound PDF 
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Therefore the combined distribution (2) is changed into 
N 

W ( n ) = P ( n ; s + b ) /  E P(nb;b)" 
rib=0 

The probability ~ of observing N events or less, know- 
ing that the background is N events or less for a signal 
s, is then given by the sum 

N 

' =  E w(,), 
n=O 

n=0 ] nb=0 

Relation (3) can be used to compute an upper limit s 
with confidence level c = 1 -  c. Eqs. (1) and (3) are 
mathematically identical, but the interpretations are 
different. The limit in the "frequency interpretation" 
can be stated as follows: for an infinitely large number 
of experiments, looking for a signal with expectation s 
and Poisson distributed background with mean b, where 
the background is restricted to values of less than or 
equal to N, the frequency of observing N or less events 
is c. 

Uncertainties on the mean b can be included easily 
in eq. (3). For a given probability distribution g(b) we 
obtain: 

N 

E fg(b)P(n; s+b) db 
n = 0  

c = m (4)  

E fg(b)P(nb; b) db 
nb~0  

3. Continuous variables with measurement errors 

The frequency definition can also be applied to 
continuous variables distorted by measurement errors. 
A general treatment of the problem leads to clumsy 
formulae which obscure the essential arguments. We 
prefer to present a simple example, leaving the generali- 
zation to the reader. 

We propose to calculate an upper limit on a particle 
lifetime r = l /A ,  from the observation of a single decay 
at time T. The measurement error is assumed to follow 
a Gaussian G with variance o 2 independent of the true 
decay time t. The a priori distribution f(t ';  A) of ob- 
served times t '  is given by the convolution 

f ( t ' ;  A) = fo~G(t ' -  t; o)h e-Xt dt ,  

and the probability c of observing t '  smaller than T is 
the integral 

c= fT f ( t ' ; h )  dt'. (5) . ,_~ 

Eq. (5) cannot be used naively to calculate an upper 
limit on h, because, once T has been found, the mea- 
surement fluctuations are restricted to values smaller 
than T, and the error distribution has to be renormal- 
ized to this range: 

f f  f ( t ' ;  X) d l '  
(6) c fr_ G(x; o) dx 

Relation (6) gives the correct upper limit for h with 
confidence 1 - ¢. 

The same problem would lead to a different result in 
the Bayesian philosophy and would depend on the 
choice of the parameter. The upper limit for r would be 
different from l /A ,  the inverse of the upper limit of the 
decay width A. 

4. Conclusion 

The calculation of confidence limits is very unsatis- 
factory in methods where a priori probabilities for 
unknown constants are needed. This difficulty is avoided 
in classical statistics. However, a naive application to 
experiments with background or measurement errors 
can result in unphysical values for the parameters, such 
as negative rates or lifetimes. Experiments suffering 
from background or large measurement errors would on 
the average produce limits as good as those of clean and 
precise experiments. This problem is avoided by using a 
posteriori distributions for the background and the 
measurement errors. These are obtained using the re- 
strictions given by the experimental data. The method is 
well defined and gives reasonable limits. We propose to 
adopt it as a standard and to include it in the definition 
of an upper limit in classical statistics. 
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classical statistical analysis (the introduction of ) is used to avoid excluding or discovering signals
which the search is in fact not sensitive to. Experimental (systematic) errors are taken into account. At the
time of this workshop the Higgs boson searches at LEP have been combined assuming that the systematic
uncertainties are uncorrelated, but part of the focus of the current combination effort is precisely to take
into account the most important correlations in the uncertainties.

The use of is a conscious decision not to insist on the frequentist concept of full coverage (to
guarantee that the confidence interval doesn’t include the true value of the parameter in a fixed fraction
of experiments). The Higgs working group has also not insisted on an automatic procedure for the
transition between one and two-sided confidence intervals. On the other hand, it will be shown that the
non-frequentist confidence interval which results does not suffer seriously from the flip-flop effect that
the unified approach [2] is designed to address.

It has not been an explicit goal of the Higgs working group to choose a frequentist(-like) analysis
rather than a Bayesian analysis on philosophical grounds. Our attitude is rather practical, we want to do
the best we can with the data we have, where the best we can means excluding the Higgs as strongly
as possibly in its absence (in a mass region where a direct search can be sensitive) and confirming its
existence as strongly as possible in its presence (again, in a mass region where a direct search can be
sensitive).

The goal of a search is to either exclude as strongly as possible the existence of a signal in its
absence or to confirm the existence of a true signal as strongly as possible while holding the probabilities
of falsely excluding a true signal or falsely discovering a non-existent signal at or below specified levels.

3. SEARCH RULES
The analysis of search results can be formulated in terms of a hypothesis test. The null hypothesis is that
the signal is absent and the alternate hypothesis is that it exists. An analysis of search results is simply
a formal definition of the procedure which quantifies the degree to which the hypotheses are favored or
excluded by an experimental observation.

The first step in defining an analysis of search results is to identify the observables in the experi-
ment which comprise the search results. The simplest observable is the number of candidates satisfying
a certain set of criteria. More advanced observables may be some feature of the candidates such as re-
constructed invariant mass, b-quark tagging probability, or even composite properties such as the output
of a multi-dimensional discriminant or artificial neural-network analysis. The next step is to define a
test-statistic or function of the observables and the model parameters (particle mass, production rate,
etc.) of the known background and hypothetical signal which ranks experiments from the least to most
signal-like (most to least background-like). The last step is to define rules for exclusion and discovery
i.e. specify ranges of values of the test-statistic in which observations will lead to one conclusion or the
other. In practice one often wishes to specify the significance of the exclusion or discovery, and not
simply give a true or false answer. In other words a confidence level for the exclusion will be quoted. A
confidence limit for exclusion is defined as the value of a population parameter (such as a particle mass
or a production rate) which is excluded at a specified confidence level. A confidence limit is a lower
(upper) limit if the exclusion confidence is greater (less) than the specified confidence level for all values
of the population parameter below (above) the confidence limit. Note that confidence intervals obtained
in this manner do not have the same interpretation as traditional frequentist confidence intervals nor as
Bayesian credible intervals.

For convenience the test-statistic is constructed to increase monotonically for increasingly
signal-like (decreasingly background-like) experiments so that the confidence in the signal
hypothesis is given by the probability that the test-statistic is less than or equal to the value observed in
the experiment, :

(1)
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where
(2)

and where is the probability distribution function (p.d.f.) of the test-statistic for signal+
background experiments. Small values of indicate poor compatibility with the signal+background
hypothesis and favor the background hypothesis. Similarly, the confidence in the background hypoth-
esis is given by the probability that the test-statistic is less than or equal to the value observed in the
experiment, :

(3)

where
(4)

and where is the p.d.f. of the test-statistic for background-only experiments. Values of very
close to 1 indicate poor compatibility with the background hypothesis and favor the signal+background
hypothesis.

3.1 Introducing
Taking into account the presence of background in the data may result in a value of the estimator of a
model parameter which is “unphysical”, e.g. observing less than the mean expected number of back-
ground events could be accommodated better if the signal cross-section was negative. It is important to
make the distinction between the estimator, which may be expected to be “unphysical” with a probability
of up to 50% for negligible or absent signals, from the parameter itself which may well be physically
bounded. When an experimental result appears consistent with little or no signal together with a down-
ward fluctuation of the background, the exclusion may be so strong that even zero signal is excluded at
confidence levels higher than 95%. Although a perfectly valid result from a statistical point of view, it
tends to say more about the probability of observing a similar or stronger exclusion in future experiments
with the same expected signal and background than about the non-existence of the signal itself, and it is
the latter which is of more interest to the physicist. Presumably a great deal of effort has already gone
into verifying the correctness of the background model, so there is little point in obtaining a result which
is more sensitive to fluctuations of the known background than to the hypothetical signal.

One of the reasons that there is no consensus on how to treat these situations is that the result is
ambiguous. There is simply not enough information available to distinguish clearly between the signal
and the signal+background hypotheses - we just don’t know what the result means. This will be clearly
illustrated when we look at distributions of the test-statistic and evaluate search potentials.

One possible technique for dealing with this situation is to normalize the confidence level observed
for the signal+background hypothesis, , to the confidence level observed for the background-only
hypothesis, . This is a generalization of the modified classical calculation of confidence limits for
single channel counting experiments presented in [3]. This also makes it possible to obtain sensible
exclusion limits on the signal even when the observed rate is so low that the background hypothesis is
called into question. Of course, the experimentalist should be aware that a low background confidence
may also indicate underestimated or forgotten systematic errors. It may be said that this modified fre-
quentist or procedure (as it will be called here) is performed in order to obtain conservative limits
on the signal hypothesis. That this procedure is conservative is undeniable, but I prefer to add that it
gives an approximation to the confidence in the signal hypothesis, , one might have obtained if the
experiment had been performed in the complete absence of background, or in other words, if it had been
possible to discard with absolute certainty the selected events due to background processes.

The modified frequentist re-normalization described above is simply

(5)
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Although is not, strictly speaking, a confidence (it is a ratio of confidences), the signal hypothesis
will be considered excluded at the confidence level when

(6)

The consequence of not being a true confidence is that the hypothetical false exclusion rate is
generally less than the nominal rate of . The difference between and the actual false exclusion
rate will in fact increase as the p.d.f.’s of the signal+background and background hypotheses become
more and more similar. Thus the use of increases the “coverage” of the analysis, i.e. the range of
model parameters for which an exclusion result is possible is reduced, but it also avoids the undesirable
property of that of two experiments with the same (small) expected signal rate but different
backgrounds, the experiment with the larger background may have a better expected performance.

3.2 Other definitions of
Three of the four LEP experiments use the above definition of , while ALEPH [4] uses

There is some skepticism on the part of the other LEP experiments to adopt this alternate definition. One
of the objections is that the appearance of the global parameter , the total expected signal rate, opens
the way for absurd optimizations. Adding a new channel with a moderate signal rate and a completely
overwhelming background to an existing search will give an improvement to the search sensitivity out of
proportion to the signal-to-noise ratio in the additional channel (a microscopic S/N should indicate that
the new channel contains practically no information about the signal). Another objection, which is more
of a philosophical nature, is that this definition of can not be applied to searches which consist of
looking for small deviations of parameters measured with normal-distributed errors.

4. THE LIKELIHOOD RATIO TEST-STATISTIC
The likelihood ratio, , is the ratio of the probability densities for a given experimental result for
two alternate hypotheses. In searches for new particles an appropriate likelihood ratio is

, that is the ratio of probability density for the signal+background hypothesis to the signal-free
or background hypothesis.

The likelihood ratio for an experiment with independent channels is simply a product of the likeli-
hood ratios of the individual channels, so that the combination of additional histogram bins, independent
search channels, experiments or center-of-mass energies is straightforward and unambiguous.

The likelihood ratio can be thought of as a generalization of the change in for a fit to a dis-
tribution including signal plus background relative to a fit to a pure background distribution. In the
high-statistics limit the distributions of are in fact expected to converge to distributions.

The likelihood ratio for experiments with independent search channels and measurements
of a discriminating variable (for multidimensional discriminants replace with ) for each candidate,
and where the absolute signal and background rates are known, can be written as

(7)

which can be simplified to

(8)
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A hypothesis is exlcuded at confidence level CL if  

Applied to Poisson case yields Zech’s formula: 
Remark: denominator is not  
1-p-value for the b-only hyp. 
The sum would only run  
from 0 up to nobs-1. 
Calling it the power is  
correct (I think)  

   

where is the number of observed candidates in each channel, is the value of the discriminating
variable measured for each of the candidates, and are the integrated signal and background rates per
channel, is the total signal rate for all channels, and and are the probability distribution
functions of the discriminating variable for the signal and background of channel respectively.

If the p.d.f.’s of the discriminating variable are identical for the signal and background, if none is
measured or if the distributions are expressed as binned histograms, the likelihood ratio simplifies further
to

(9)

Note that in the complete absence of background ( ) and the observation of one or more
candidates, an alternate null-hypothesis must be chosen, such as that the signal is the one that maximizes
the likelihood function . In such a situation the existence of the signal is undeniable and the setting
of confidence limits is firmly in the realm of measurement.

A simple derivation shows that the likelihood ratio method is effectively based on counting weighted
events. Since and we can write

(10)

where is the total number of events observed in all channels and the weight for each candidate is
given by

(11)

where the index also assigns the candidate to the search channel in which it was observed. Since
the constant appears on both sides of the expression , the method consists ba-
sically of comparing the observed number of weighted events with the distributions expected for the
signal+background and the background hypotheses.

4.1 Single channel counting experiment
For a counting experiment with a single channel all the candidate events have the same weight,

, so that Eqn. (5) takes the form

(12)

where and come from the Poisson distributions of the number of events for the background and
signal+background hypotheses respectively, and is the number of candidates observed in the exper-
iment. Thus the modified frequentist signal exclusion confidence becomes

(13)

An identical result is obtained by computing the Bayesian credible interval (with uniform prior proba-
bility density for the signal )

(14)

Without going into detail, let’s just say that this interesting coincidence is responsible for a lot of confu-
sion.
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 Classical and CLS Limit compared for Poisson PDF 
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Figure 1: Left: The distribution of expected numbers of events in a Poisson distribution of mean
three, in solid black, and six, representing three signal plus three background in dotted red. Right:
The integrated versions of the left hand plots, i.e. the CL-values, plus in green the ratio, CLs.
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Figure 2: The 95% upper limit on µ which will be extracted as a function of the observed number of
events. Dashed red is the CLsb approach while colid green is the CLb
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Classical 1- and 2-sided CL=90% intervals for Poisson 

Known background =3 

One-sided CI at CL=90%                        Two-sided CI at CL=90% 

Flip-Flop-Problem for Poisson-Parameter s=µ

    For „Flip-Flop“  again to small coverage  

 

performing the experiment that a central confidence interval will be published. However, it
may be deemed more sensible to decide, based on the results of the experiment, whether to
publish an upper limit or a central confidence interval.

Let us suppose, for example, that Physicist X takes the following attitude in an experi-
ment designed to measure a small quantity: “If the result x is less then 3σ, I will state an
upper limit from the standard tables. If the result is greater than 3σ, I will state a central
confidence interval from the standard tables.” We call this policy “flip-flopping” based on
the data. Furthermore, Physicist X may say, “If my measured value of a physically positive
quantity is negative, I will pretend that I measured zero when quoting a confidence interval”,
which introduces some conservatism.

We can examine the effect of such a flip-flopping policy by displaying it in confidence-
belt form as shown in Fig. 4. For each value of measured x, we draw at that x the vertical
segment [µ1, µ2] that Physicist X will quote as a confidence interval. Then we can examine
this collection of vertical confidence intervals to see what horizontal acceptance intervals it
implies. For example, for µ = 2.0, the acceptance interval has x1 = 2−1.28 and x2 = 2+1.64.
This interval only contains 85% of the probability P (x|µ). Thus Eq. (2.4) is not satisfied.
Physicists X’s intervals undercover for a significant range of µ: they are not confidence
intervals or conservative confidence intervals.

Both Figs. 2 and 3 are confidence intervals when used appropriately, i.e., without flip-
flopping. However, the result is unsatisfying when one measures, for example, x = −1.8.
In that case, one draws the vertical line as directed and finds that the confidence interval
is the empty set! (An alternative way of expressing this situation is to allow non-physical
µ’s when constructing the confidence belt, and then to say that the confidence interval is
entirely in the non-physical region. This requires knowing P (x|µ) for non-physical µ, which
can raise conceptual difficulties.) When this situation arises, one knows that one is in the
“wrong” 10% of the ensemble quoting 90% C.L. intervals. One can go ahead and quote the
wrong result, and the ensemble of intervals will have the proper coverage. But this is not
very comforting.

Both problems of the previous two paragraphs are solved by the ordering principle which
we give in Sec. IV.

B. Poisson with Background

Figures 5 and 6 show standard [13,14] confidence belts for a Poisson process when the
observable x is the total number of observed events n, consisting of signal events with mean
µ and background events with known mean b. I.e.,

P (n|µ) = (µ + b)n exp(−(µ + b))/n! (3.2)

In these figures, we use for illustration the case where b = 3.0.
Since n is an integer, Eq. (2.3) can only be approximately satisfied. By convention dating

to the 1930’s, one strictly avoids undercoverage and replaces the equality in Eq. (2.3) with
“≥”. Thus the intervals overcover, and are conservative.

Although the word “conservative” in this context may be viewed by some as desirable,
in fact it is an undesirable property of a set of confidence intervals. Ideal intervals cover
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„Unified Approach“: Poisson-CI at 90% CL 

Construction of confidence belt   
for µ=0.5, b=3 

max(0, n − b), and is given in the third column of Table I. We then compute P (n|µbest),
which is given in the fourth column. The fifth column contains the ratio,

R = P (n|µ)/P (n|µbest), (4.1)

and is the quantity on which our ordering principle is based. R is a ratio of two likelihoods:
the likelihood of obtaining n given the actual mean µ, and the likelihood of obtaining n
given the best-fit physically allowed mean. Values of n are added to the acceptance region
for a given µ in decreasing order of R, until the sum of P (n|µ) meets or exceeds the desired
C.L. This ordering, for values of n necessary to obtain total probability of 90%, is shown
in the column labeled “rank”. Thus, the acceptance region for µ = 0.5 (analogous to a
horizontal line segment in Figure 1), is the interval n = [0, 6]. Due to the discreteness of n,
the acceptance region contains more summed probability than 90%; this is unavoidable no
matter what the ordering principle, and leads to confidence intervals which are conservative.

For comparison, in the column of Table I labeled “U.L.”, we place check marks at the
values of n which are in the acceptance region of standard 90% C.L. upper limits for this
example; and in the column labeled “central”, we place check marks at the values of n which
are in the acceptance region of standard 90% C.L central confidence intervals.

The construction proceeds by finding the acceptance region for all values of µ, for the
given value of b. With a computer, we perform the construction on a grid of discrete values
of µ, in the interval [0, 50] in steps of 0.005. This suffices for the precision desired (0.01) in
endpoints of confidence intervals. We find that a mild pathology arises as a result of the
fact that the observable n is discrete. When the vertical dashed line is drawn at some n0 (in
analogy with in Fig. 1), it can happen that the set of intersected horizontal line segments is
not simply connected. When this occurs we naturally take the confidence interval to have
µ1 corresponding to the bottom-most segment intersected, and to have µ2 corresponding to
the top-most segment intersected.

We then repeat the construction for a selection of fixed values of b. We find an additional
mild pathology, again caused by the discreteness in n: when we compare the results for
different values of b for fixed n0, the upper endpoint µ2 is not always a decreasing function
of b, as would be expected. When this happens, we force the function to be non-increasing,
by lengthening selected confidence intervals as necessary. We have investigated this behavior,
and compensated for it, over a fine grid of b in the range [0, 25] in increments of 0.001 (with
some additional searching to even finer precision).

Our compensation for the two pathologies mentioned in the previous paragraphs adds
slightly to our intervals’ conservatism, which however remains dominated by the unavoidable
effects due to the discreteness in n.

The confidence belts resulting from our construction are shown in Fig. 7, which may
be compared with Figs. 5 and 6. At large n, Fig. 7 is similar to Fig. 6; the background
is effectively subtracted without constraint, and our ordering principle produces two-sided
intervals which are approximately central intervals. At small n, the confidence intervals from
Fig. 7 automatically become upper limits on µ; i.e., the lower endpoint µ1 is 0 for n ≤ 4
in this case. Thus, flip-flopping between Figs. 5 and 6 is replaced by one coherent set of
confidence intervals, (and no interval is the empty set).

Tables II-IX give our confidence intervals [µ1, µ2] for the signal mean µ for the most
commonly used confidence levels, namely 68.27% (sometimes called 1-σ intervals by analogy

8

Standard 

Gary Feldman 8 Journeys

The Solution

For both the upper limit and central limit, x = 0 excludes
the whole plane.  But consider the problem from the point
of view of the data.  If one measures no events, then clearly
the most likely value of µ is zero.  Why should one rule out
the most likely scenario?

Therefore, we propose a new ordering principle based on
the ratio of a given µ to the most likely µ, ˆ µ :

R =
P(x | µ)
P(x | ˆ µ )

Example for µ = 0.5 and b = 3:

x P(x|µ) ˆ µ P(x| ˆ µ ) R rank U.L. C.L.
0 0.030 0.0 0.050 0.607 6 •
1 0.106 0.0 0.149 0.708 5 • • •
2 0.185 0.0 0.224 0.826 3 • • •
3 0.216 0.0 0.224 0.963 2 • • •
4 0.189 1.0 0.195 0.966 1 • • •
5 0.132 2.0 0.175 0.753 4 • • •
6 0.077 3.0 0.161 0.480 7 • • •
7 0.039 4.0 0.149 0.259 • •
8 0.017 5.0 0.140 0.121 •

Gary Feldman 9 Journeys

The Poisson Limits

90% C.L. unified limits for Poisson µ with background = 3

Excerpt from Table IV of the paper (90% C.L.):
x/b 0.0 1.0 2.0 3.0
0 0.00-  2.44 0.00-  1.61 0.00-  1.26 0.00-  1.08
1 0.11-  4.36 0.00-  3.36 0.00-  2.53 0.00-  1.88
2 0.53-  5.91 0.00-  4.91 0.00-  3.91 0.00-  3.04
3 1.10-  7.42 0.10-  6.42 0.00-  5.42 0.00-  4.42
4 1.47-  8.60 0.74-  7.60 0.00-  6.60 0.00-  5.60
5 1.84-  9.99 1.25-  8.99 0.43-  7.99 0.00-  6.99
6 2.21-11.47 1.61-10.47 1.08-  9.47 0.15-  8.47
7 3.56-12.53 2.56-11.53 1.59-10.53 0.89-  9.53
8 3.96-13.99 2.96-12.99 2.14-11.99 1.51-10.99
9 4.36-15.30 3.36-14.30 2.53-13.30 1.88-12.30

confidence belt  for b=3 



„Unified Approach“: Poisson-CI at 90% CL 
Confidence belt at CL=90% for Poisson from Unified 

Approach 



Classical and Feldman Cousins Intervals  
Confidence belt at CL=90% for Poisson from Unified 

Approach Classic Frequentist 



Comparison of Different Intervals  

“Unified Approach”                  Bayes/Zech/CLS              Classic Frequentist 



Due to discrete nature of Poisson random variable the coverage is per construction 
larger than quoted CI also for Frequentist methods for most true values  

Coverage of CI for Poisson-PDF Coverage of Different Limits  



Simple counting experiment with exactly known background expectation of 7 events  

- CLS , Zech and Bayesian limit with flat prior in signal rate mathematically identical  
   in praxis also very similar results for test statistics used at LHC (Tevatron, LEP) 
- PCL= power constrained limit: require that power  ≥ 16% (cut off at expected -1σ) 
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Conclusion of Lecture Series 
In Limit of  large  event Samples and not close to a physical boundary 
Ø  Frequentist CI and Bayesian CI from flat prior agree numerically 
Ø  but the interpetation is always different  
Ø  CI =  estimate ±1 standard deviation is a  good aproximation for CI at 68%  
 
Frequentist Limits  
Ø  Coverage Probabilty of quoted CL is  guiding principle  
Ø  Neyman construction of confidence belt is cumbersome 
Ø  For many cases CI can be obtained from inversion of hypothesis test 
Ø  „Empty CI“  not a problem in principle  
Ø  „Empty“ CI can be avoided by PCL, CLS and FC limits 
Ø  Ad-hoc correction of PCL, CLS „punish“ outcomes with small power for 

discrimination between µup and µ0, but violate the coverage interpretation  
Ø  Unified approach with FC limits circumvent the „flip flop problem“ 
  
 Bayesian limits  
Ø  Simple calculation based on integration of posterior probabilty  
Ø  Likelihood principle is the main focus. Coverage in principle not interesting 
Ø  Choice of prior is as always a matter of taste and debate (flat, Jeffrey‘s,..) 
Ø  Numerically identical to CLS limits for Poisson and Gauss PDF    
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Final Words 

Dr. John Watson: I wonder what desperate  
                             circumstances could  
                             occasion such an appeal. 
Sherlock Holmes: I have devised seven  
                             separate explanations,  
                             each of which would  
                             cover the facts as far  
                             as we know them.  
Dr. John Watson:  Oh, and which one do  
                              you favour, Holmes?  
Sherlock Holmes:  At the moment, I have  
                              no favourites. 
                              Data, data, data! I cannot  
                              make bricks without clay!  
 
Dr. John Watson:  We cannot theorize without  
                              data, I'm afraid.  
                                                                                          (A. C. Doyle, The Copper Beeches) 
 
 
 
 
  


