

February 2016

- HL-LHC program
- Detector configurations
 - Pileup mitigation and performance
- Higgs boson measurements
 - Precision coupling measurements
 - Rare processes
 - Higgs boson pair production
- Beyond the Standard Model
 - In the Higgs sector
 - Dark matter
 - SUSY
 - Exotica
- Conclusions

LHC / HL-LHC Plan

Run 1Magnet
spliceRun 2 at
~full designPhase I
upgradesRun 3 →
originalPhase II
upgradesHL-LHC:
ten timesupdateenergy(injectors)design lumi(final focus)design lumi

Full exploitation of LHC is top priority in Europe & US for high energy physics Operate HL-LHC with 5 (nominal) to 7.5 (ultimate) x10³⁴cm⁻²s⁻¹ to collect 3000/fb in order ten years.

Pippa Wells, CERN

Detector upgrades

Detector upgrades

- Luminosity of 5 (7.5) x10³⁴ cm⁻²s⁻¹ corresponds to *average* pileup, μ, of 140 (200) events (interactions in the same bunch crossing)
 - Higher occupancy, larger integrated radiation dose
 - Need to distinguish particles from hard scatter vertex
- ATLAS and CMS will fully replace their inner trackers
 - All silicon trackers, with higher granularity
 - Pixel detectors extended to $|\eta| = 4.0$ (ATLAS), 3.8 (CMS)
- Calorimeter upgrades including precise timing
 - CMS will fully replace the end cap calorimeter (1.5 < |ŋ| < 3.0), with precise timing information from each layer, plus improved timing information in the barrel region
 - ATLAS propose a high granularity timing detector between the barrel and endcap LAr calorimeter cryostats (2.4 < $|\eta|$ < 4.3)
 - For both experiments, the timing aspects are not yet fully integrated in simulation and/or reconstruction algorithms
 - ATLAS may also replace the forward calorimeter (3.2 < $|\eta|$ < 4.9)
- Additional improvements to improve triggers and increase bandwidth

Pippa Wells, CERN

References

- Scoping documents prepared in 2015 to compare detector options: ATLAS [CERN-LHCC-2015-020] CMS [CERN-LHCC-2015-019]
- ATLAS Phase II Letter of Intent [CERN-LHCC-2012-022], CMS Technical Proposal [CERN-LHCC-2015-010]
- Collections of public results:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/UpgradePhysicsStudies

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFP

• ECFA HL-LHC workshop 2014: <u>https://indico.cern.ch/event/315626/</u>

• Next steps: Technical Design Reports (TDRs)

Pippa Wells, CERN

Pippa Wells, CERN

Track and vertex reconstruction

- Pion tracking efficiency in ttbar events for ATLAS full and reduced scenarios, PU of 200
- ttbar events reconstructed with the CMS Phase II detector

- For both experiments, fake rates are well under control
- Muon tracking efficiency is uniformly high (about 99%)
- Efficiency for picking the right primary vertex depends on process

B-tagging performance

- Example from the ATLAS Scoping Document
 - Use a Run 1 b-tagging algorithm out-of-the box
 - With mu=140, better performance than Run 1
 - With mu=200, similar performance to Run 1 (for Reference scenario)
 - Useful b-tagging capability in large η region in Reference scenario

Pippa Wells, CERN

Jets and pileup

- Particles from pileup events make a significant contribution to the jet energy of true low $p_{\rm T}$ jets
- Pileup events can also produce additional QCD-like jets (usually at low p_T), and jets from random combinations of particles from several pileup events
- Plot shows additional energy from pileup overlaid on low energy QCD jets with radius 0.4 in η-φ space
- Reconstructed jet energy depends on detector specific algorithms which reject/correct pileup
- Jet energy scale correction is applied to estimate true jet energy

Pile-up jet rejection

 Rate of pileup jets/true jets for Particle Flow algorithm (PF) Plus rejecting charged hadrons from pileup vertices (CHS) Using Puppi algorithm Pileup Per Particle Identification arXiv:1407.6013 [hep-ph]

- Impact on E_T^{miss} of using extended tracking information to reject pile-up jets
 - (resolution as a function of ΣE_T in ttbar events)

Higgs boson measurements

ATLAS-CONF-2015-044; CMS-PAS-HIG-15-002

Combined ATLAS & CMS Run 1 Higgs boson

- J^P consistent with 0⁺. Other hypotheses excluded at >99% CL
- Model dependent constraint on width from off-shell $H \rightarrow ZZ$: $\Gamma_{H} < 22 \text{ MeV}$

Pippa Wells, CERN

HL-LHC a Higgs boson factory with 3000 fb⁻¹

- Over 100 million SM Higgs bosons in total
 - Over 1 million for each of the main production mechanisms (→ production cross sections)

- Spread over many decay modes (→ branching ratios)
 - 20k H→ZZ→IIII
 - 400k H→γγ
 - 40k H→μμ
 - Only 50 leptonic H→J/ψγ (a very rare mode)

Pippa Wells, CERN

Prospects for the Higgs boson

- Compare prospects with "LHC" 300 fb⁻¹ and "HL-LHC" 3000 fb⁻¹
 - Results are always given for 1 experiment, not 2 combined
- ATLAS uses detector response functions based on full simulation for
 - Phase I detector with new pixel layer for Run 2, pile-up of 50
 - Phase II detector with pile-up of 140
 - Results are shown with and without theory uncertainty
- CMS extrapolated from the present 7-8 TeV analyses, assuming that the upgrades maintain the detector performance.
 - Scenario 1 Experimental systematic and theoretical uncertainties unchanged. Statistical uncertainties scale with 1/JL
 - Scenario 2 Statistical and experimental systematic uncertainties scale with 1/JL, theoretical uncertainties reduced by a factor 2.
 - (Newer analyses use other techniques)
- Systematic uncertainties are therefore always included, but with different assumptions on possible detector/algorithm/theoretical improvements.

Signal strength precision

- All production modes can be observed for ZZ and $\gamma\gamma$ final states
- Combine production modes for best information on branching ratios

Signal strength precision

Scenario 1 (present errors). Scenario 2 (scaled errors).

CMS Projection

CMS Projection

Summary of precision (%): 4~5% for main channels, 10~20% on rare modes ATLAS without/with theory uncertainty, CMS Scenario 1 and Scenario 2

L(fb ⁻¹)	Exp.	γγ	WW	ZZ	bb	ττ	Zγ	μμ
300	ATLAS	[9, 13]	[8, 13]	[7, 11]	[26 , 26]	[18, 21]	[44, 46]	[38,39]
	CMS	[6, 12]	[6, 11]	[7, 11]	[11, 14]	[8, 14]	[62, 62]	[40,42]
3000	ATLAS	[4, 9]	[5, 11]	[4, 9]	[12, 14]	[15, 19]	[27, 30]	[12,16]
	CMS	[4, 8]	[4, 7]	[4, 7]	[5, 7]	[5, 8]	[20, 24]	[14,20]

Pippa Wells, CERN

Example – $H \rightarrow ZZ \rightarrow 4$ leptons

• High purity signal. Measure all 5 main production modes with 3000 fb⁻¹

Signal events	ggH	VBF	ttH	WH	ZH
3000 fb ⁻¹	3800	97	35	67	5.7

• WH, ZH events have extra leptons

Pippa Wells, CERN

HL-LHC Physics

¹∕₩,Z

W.Z

q

<u>CMS H→4I</u>

- 20% more 4µ events by extending acceptance to $|\eta| < 3.0$
 - Important for differential/fiducial measurements
- Improved mass resolution resolution (from e and µ)

ATLAS new result for VBF H→ZZ→4I

- Old result, PU = 140, cut on m_{ii} > 350 GeV
 - $\Delta\mu/\mu$ (stat + experimental) = 0.293
- New result, PU = 200, use a BDT to distinguish ggF and VBF. Also improved pileup jet rejection from forward tracking.
 - $\Delta \mu / \mu$ (stat + experimental) = 0.134

 Just one example more sophisticated techniques not yet propagated through HL-LHC projections

Rare processes

- $H \rightarrow \mu \mu$ second generation
 - ATLAS and CMS expect >7σ significance with 3000 fb⁻¹
 - → coupling measured to 5-10%
- ttH, H→µµ (ATLAS)
 - ~30 signal events in 3000 fb⁻¹ but good signal:background
- H→Zγ
 - Tests the loop structure of the decay (compare with H→ZZ and H→γγ)
 H→VY
 W,b,t

L·····-γ

 ~4o significance possible with 3000 fb⁻¹ despite the challenging background

from 8% to 5% with Phase II upgrade

Interpretation as coupling scale factors

- Experiments measure cross section times branching ratio
- Interpretation with coupling scale factors, κ, is model dependent

gluon-gluon fusion

Coupling fits - the small print...

• The cross section times branching ratio for initial state *i* and final state *f* is given by

$$\sigma \cdot Br(i \to H \to f) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$$

- The total width Γ_H is too narrow to measure directly
 - Assume it is the sum of the visible partial widths no additional invisible modes
 - (Charm coupling is assumed to scale with top coupling)
- Cross sections and branching ratios scale with κ^2 ($\rightarrow \Delta \kappa \sim 0.5 \Delta \mu$)
- Gluon and photon couplings can be assumed to depend on other SM couplings, or to be independent to allow for new particles in the loop

Pippa Wells, CERN

General coupling fit

• Photon, gluon, heavy fermions each have have their own scale factor

• ATLAS and CMS general coupling fits compared (%)

L(fb ⁻¹)	Exp.	κγ	ĸw	ĸZ	кд	к _b	к _t	Kτ	ĸZγ	κμμ
300	ATLAS	[9, 9]	[9, 9]	[8, 8]	[11, 14]	[22, 23]	[20, 22]	[13, 14]	[24, 24]	[21, 21]
	CMS	[5, 7]	[4, 6]	[4, 6]	[6, 8]	[10, 13]	[14, 15]	[6, 8]	[41, 41]	[23, 23]
3000	ATLAS	[4, 5]	[4, 5]	[4, 4]	[5, 9]	[10, 12]	[8, 11]	[9, 10]	[14, 14]	[7, 8]
	CMS	[2, 5]	[2, 5]	[2, 4]	[3, 5]	[4, 7]	[7, 10]	[2, 5]	[10, 12]	[8, 8]

Coupling ratios

- Systematic uncertainties partly cancel
- Ratios are almost model independent

L(fb ⁻¹)	Exp.	$\frac{K_g \cdot K_Z}{K_H}$	$\frac{\kappa_{\gamma}}{\kappa_{Z}}$	$\frac{K_W}{K_Z}$	$\frac{K_b}{K_Z}$	$\frac{K_{\tau}}{K_Z}$	$\frac{\kappa_Z}{\kappa_g}$	$\frac{\kappa_t}{\kappa_g}$	$\frac{\kappa_{\mu}}{\kappa_{Z}}$	$\frac{\kappa_{Z\gamma}}{\kappa_Z}$
300	ATLAS	[4,6]	[5,6]	[5,5]	[17,18]	[11,12]	[10,13]	[15,17]	[20,20]	[23,23]
	CMS	[4,6]	[5,8]	[4,7]	[8,11]	[6,9]	[6,9]	[13,14]	[22,23]	[40,42]
3000	ATLAS	[2,6]	[2,3]	[2,3]	[7,10]	[8,9]	[5,9]	[5,9]	[6,6]	[14,14]
	CMS	[2,5]	[2,5]	[2,3]	[3,5]	[2,4]	[3,5]	[6,8]	[7,8]	[12,12]

- This results in better agreement between the two experiments
 - Can achieve 2~3% precision in main channels if systematic uncertainties are controlled
- HL-LHC yields a factor 2~3 improvement in coupling ratio determination

Mass scaled couplings

• Coupling factors plotted as a function of particle mass

Theoretical uncertainties

- ATLAS: Deduced size of theory uncertainty to increase total uncertainty by <10% of the experimental uncertainty
 - (MHOU missing higher order uncertainty)

Scenario	Status	Status Deduced size of uncertainty to increase total uncertainty							
	2014	by ≲	10% for	300 fb^{-1}	by $\leq 10\%$ for 3000 fb ⁻¹				
Theory uncertainty (%)	[10–12]	κ _{gZ}	λ_{gZ}	$\lambda_{\gamma Z}$	κ _{gZ}	$\lambda_{\gamma Z}$	λ_{gZ}	$\lambda_{ au Z}$	λ_{tg}
$gg \rightarrow H$									
PDF	8	2	-	-	1.3	-	-	-	-
incl. QCD scale (MHOU)	7	2	-	-	1.1	-	-	-	-
p_T shape and $0j \rightarrow 1j$ mig.	10–20	-	3.5–7	-	-	1.5–3	-	-	-
$1j \rightarrow 2j$ mig.	13–28	-	-	6.5–14	-	3.3–7	-	-	-
$1j \rightarrow VBF 2j mig.$	18–58	-	-	-	-	-	6–19	-	-
VBF $2j \rightarrow VBF 3j$ mig.	12–38	-	-	-	-	-	-	6–19	-
VBF									
PDF	3.3	-	-	-	-	-	2.8	-	-
tīH									
PDF	9	-	-	-	-	-	-	-	3
incl. QCD scale (MHOU)	8	-	-	-	-	-	-	-	2

[10-12] LHC Higgs Cross Section Working Group

Pippa Wells, CERN

Higgs boson pair production

• ~factor 2 increase in cross section if $\lambda \rightarrow 0$

NNLO σ^{SM} =40.8 fb

Number o	of events
bbWW	30000
bb $ au au$	9000
WWWW	6000
γγ bb	320
γγγγ	1

<u>HH</u>→bbγγ

- Parametrised object performances
 - CMS 2d fit of m(bb) and m(γγ) distributions (control background from data)
 - ATLAS cut based analysis
 - bb mass peak is broad. $\gamma\gamma$ shows narrow resonance

ATL-PHYS-PUB-2014-019 CMS CERN-LHCC-2015-010

bbyy results

- Numbers of events in 3000 fb⁻¹ in signal mass windows
 - CMS preferred result uses a likelihood fit in a larger mass range, which gives 67% relative uncertainty on the signal
 - Differences understood due to assumptions in b/γ performance

process	ATLAS		CMS
SM HH- → bbγγ	8.4± 0.1		9.0
bbyy	9.7 ± 1.5	γγ+jets	13.0
ccyy, bbyj, bbjj, jjyy	24.1 ± 2.2	γ+jets, jets	7.4
top background	3.4 ± 2.2		1.2
ttH(yy)	6.1 ± 0.5		1.6
Z(bb)H(yy)	2.7 ± 0.1		3.4
bbH(yy)	1.2 ± 0.1		0.8
Total background	47.1 ± 3.5		27.4
S/√B (barrel+endcap)	1.2		
S/ \sqrt{B} (split barrel and endcap)	1.3		
Pippa Wells, CERN	HL-LHC Physics		30

<u>CMS HH→bbττ</u>

- Major background from ttbar, with $t \rightarrow \tau vb$
 - Kinematic variables to distinguish signal from background

- Combining $\tau_h \tau_h$ and $\tau_h \tau_\mu$ gives 105% signal uncertainty
- Combining $bb\gamma\gamma$ and $bb\tau\tau$: 1.9 σ significance, 54% signal uncertainty
- HH→bbWW, 37.1 signal events with 3875 background (ttbar) → 200% uncertainty on signal strength

Beyond the Standard Model

Vector Boson Scattering

ATLAS CERN-LHCC-2015-020 CMS-PAS-FTR-13-006 CMS CERN-LHCC-2015-010

- Explore electroweak symmetry breaking through VBS
 - Distinguish electroweak and QCD induced processes
 - Same sign WW pair production and WZ final states
 - CMS: interpretation as limits on dimension-eight operators f_X/Λ^4 [arXiv:hep-ph/0606118].

Coeff.	Channel	Limit [TeV ⁻⁴]
T1	WZ (3σ)	0.45
S0	WW (95% CL)	1.07
S1	WW (95% CL)	3.55
T1	WW (95% CL)	0.033

BSM Higgs direct/indirect searches

- Models such as supersymmetry require more Higgs bosons
 - Neutral: h,H,A ; Charged: H⁺, H⁻ ("2 Higgs doublet model")
- Direct searches complemented by constraints from coupling fits
 - If the 125 GeV Higgs boson (which is "h" in this model) looks very like the SM Higgs, it rules out some other possibilities

Higgs portal to Dark Matter

- BR of Higgs decays to invisible final states
 - ATLAS: BR_{inv}< 0.13 (0.09 w/out theory uncertainties) at 3000fb⁻¹
 - CMS: BR_{inv}< 0.11 (0.07 in Scenario 2) at 3000fb⁻¹
- The coupling of WIMP to SM Higgs is taken as the free parameter
- Translate limit on BR to the coupling of Higgs to WIMP
- LHC complements direct DM search experiments in the lower mass range

Mono-X searches for dark matter

- DM pair production with eg. initial $W \rightarrow Iv$
- Shape discrimination in transverse mass distribution
 - Also probes contact interactions in $qq \rightarrow lv$ and W' production
 - Significant separation between a DM model and Standard Model only achieved at HL-LHC

Supersymmetry

Pippa Wells, CERN

Motivated by naturalness, dark matter...

Stop, sbottom, gluino and higgsino tend to be light in natural models.

Consider simplified and full-spectrum models

HL-LHC Physics

Electroweak processes eg $\chi_1^+ \chi_2^0$ production

• Weak process - benefit from high luminosity

Chargino mass 5 o dis	scovery, simplified model	300 fb ⁻¹	3000 fb ⁻¹
WZ (31 analysis) [ATL	_AS]	Up to 560 GeV	Up to 820 GeV
WZ (31 analysis) [CM	S]	Up to 600 GeV	Up to 900 GeV
WH (31 analysis) [ATL	LAS]	(<5 o reach)	Up to 650 GeV
WH (bb analysis) [AT	LAS] (new in 2015)	(<5 o reach)	Up to 800 GeV
WH (bb analysis) [CM	/IS]	350-460 GeV	Up to 950 GeV

Pippa Wells, CERN

ATLAS CERN-LHCC-2015-020

 $\tilde{\chi}_1^{\pm}$

 $\tilde{\chi}_2^0$

Example of scoping exercise, WH(bb)

- Lepton and 2 b-jets with E_T^{miss}
- Main backgrounds ttbar, single top, W+jets, ttW, ttZ
 - Sensitive to modelling of leptons, b-tagging, E_T^{miss} resolution
 - Three scenarios, Reference, Middle, Low

• Need 6000 (12000)/fb in Mid. (Low) to match the reach of Ref.

Stop and sbottom

- Naturalness motivates stop/sbottom searches where the third family squarks are lightest
 - ATLAS stop & sbottom pair production

- CMS gluino pair production with decay via stop to \mbox{tt}_{χ}

5σ discovery, simplified model	300 fb ⁻¹	3000 fb ⁻¹
stop mass from direct production [ATLAS]	Up to 1.0 TeV	Up to 1.2 TeV
gluino mass with decay to stop [CMS]	Up to 1.9 TeV	Up to 2.2 TeV
sbottom mass from direct production [ATLAS]	Up to 1.1 TeV	Up to 1.3 TeV
Pippa Wells, CERN HL-LHC Ph	ysics	40

ATLAS stop/sbottom

• Results in m(LSP)-m(squark) plane from simplified models

ATL-PHYS-PUB-2013-011

ATL-PHYS-PUB-2014-010

Summary of simplified models

ATLAS projection	gluino mass	squark mass	stop mass	sbottom mass	χ ₁ ⁺ mass WZ mode	χ ₁ ⁺ mass WH mode
300 fb ⁻¹	2.0 TeV	2.6 TeV	1.0 TeV	1.1 TeV	560 GeV	None
3000 fb ⁻¹	2.4 TeV	3.1 TeV	1.2 TeV	1.3 TeV	820 GeV	650 GeV

- HL-LHC increases discovery reach by
 - ~20% for gluino, squark, stop
 - ~50 to 100% for electroweak production of $\chi_1^+ \chi_2^0$

Pippa Wells, CERN

Full spectrum SUSY models

• 5 different full-spectrum SUSY models which respect DM relic density

spac

Exploring experimental signature

- 3 pMSSM models motivated by naturalness, different LSPs: NM1(2): bino-like with low(high) slepton mass; NM3: higgsino-like
- 2 p(C)MSSM models with χ_1^0 coannihilation with different nearly massdegenerate particle: STC = stau ; STOC = stop

HL-LHC Physics

- Explored 9 different experimental signatures
- Different models lead to different patterns of discoveries in different final states after different amounts of data

Analysis	Luminosity			Model		
	$({\rm fb}^{-1})$	NM1	NM2	NM3	STC	STOC
all-hadronic ($H_{\rm T}$ - $H_{\rm T}^{\rm miss}$) search	300					
	3000					
all-hadronic (M_{T2}) search	300					
	3000					
all-hadronic \widetilde{b}_1 search	300					
	3000					
1-lepton \tilde{t}_1 search	300					
	3000					
monojet \tilde{t}_1 search	300					
	3000					
$m_{\ell^+\ell^-}$ kinematic edge	300					
	3000					
multilepton + b-tag search	300					
	3000					
multilepton search	300					
	3000					
ewkino WH search	300					
	3000					

Exploring SUSY model space

 $< 3\sigma$ $3-5\sigma$ $> 5\sigma$

Exotica - dilepton resonances

ATL-PHYS-PUB-2013-003 CMS arXiv:1307.7135

- Many extensions of the SM predict new resonances
 - Heavy gauge bosons W' and Z'
 - KK excitations of vector bosons
- Clean decay channels, eg $Z' \rightarrow e^+e^-$ or $\mu^+\mu^-$

Mass reach for exotic signatures

ATLAS @14 TeV	Z' → ee SSM 95% CL limit	g _{κκ} → t t RS 95% CL limit	Dark matter M* 5σ discovery	
300 fb ⁻¹	6.5 TeV	4.3 TeV	2.2 TeV	
3000 fb ⁻¹	7.8 TeV	6.7 TeV	2.6 TeV	
Pippa Wells, CERN		HL-LHC Physics		45

Model discrimination after a discovery

- Ability to discriminate improves dramatically with HL-LHC
 - Separation between spin-1 (Z') and spin-2 (G_{KK}) interpretation or other interpretations ranges from ~2 to 5 σ
 - Use 2d likelihood with dilepton angular and rapidity distributions or forward-backward asymmetry

Conclusion and outlook

- Excellent progress with evaluating the HL-LHC physics case
- The main Higgs couplings can be measured to a few percent precision
 - Also sensitivity to rare processes
- HL-LHC extends discovery reach in strongly motivated areas
 - If discoveries or hints observed in Runs 2 & 3, HL-LHC will be crucial to unravel what is seen

Additional material

Two examples of full spectrum SUSY models

(a) NM3

(b) STC

Figure 10.19: Examples of SUSY full-spectrum models: (a) the natural SUSY model NM3 and (b) the stau coannihilation model STC, which are among the five full-spectrum scenarios used in the studies presented here. In NM3, the masses of the \tilde{g} , \tilde{t}_1 , \tilde{t}_2 , and \tilde{b}_1 are all below 2 TeV. The $\tilde{\chi}_1^0$ is higgsino-like. In the STC model, the gluino is much heavier than the top squarks, and the slepton sector is light, with the $\tilde{\tau}$ nearly degenerate with the $\tilde{\chi}_1^0$. The lines between different states indicate transitions with branching fractions greater than 5%.