

Use of Gas Detectors in Modern HEP Experiments

A view biased towards CMS

SEMINAR

at

Albert-Ludwigs-Universität Freiburg
Physikalisches Institut
Hermann-Herder-Straße 3
79104 Freiburg
Deutschland

Archana Sharma CERN Geneva

11.11.2015

Multipurpose detector

Coordinate convention:

θ: Polar angle

φ: Azimuthal angle

x: radially inward toward the

LHC center

y: vertically upward

z: along the beam line, from

LHC Point 5 toward the Jura

Mountains

Table of Muon Technologies

Muon Chamber Technology	Deployment	Comments
Drift Tubes with field shaper electrodes	Barrel Tracking & Triggering Cell resol'n (rφ) < 250 μm	CMS
MDT (Monitored Drift Tubes) 3 cm dia.	Barrel Tracking Tube resol'n (rθ) ~ 150 μm resolution	ATLAS
Small Diameter MDT 1.5 cm dia.	Tracking in some special regions of barrel	ATLAS
Cathode Strip Chambers (CSC)	Endcaps Tracking & CMS Triggering ATLAS: η strip pitch 5.5 mm, φ strip pitch 13 - 21 mm	CMS and ATLAS (2< η <2.7)
Micromegas	Endcaps Tracking & Triggering Readout pitch ~ 0.4 mm	ATLAS Phase I Upgrade New Small Wheel
Thin Gap Chambers (TGC)	Endcaps Triggering & Tracking 2nd coordinate	ATLAS 1st and 2nd stations Endcap
Small-strip Thin Gap Chambers (sTGC)	Endcaps Triggering & Tracking Fast enough for BC tagging 95% τ < 25 ns; 3 mm strip-pitch	ATLAS Phase I Upgrade New Small Wheel
Resistive Plate Chambers (RPC)	Barrel and Endcaps Triggering Fast τ ~ 3ns ATLAS: η strip pitch ~ 30 mm, φ strip pitch ~ 30 mm	ATLAS and CMS
Low Resistivity RPC	Higher rate capability $10^{10}\Omega$ cm	R&D
Multi-gap Resistive Plate Chamber	Very fast τ ~ 50 ps	ALICE and R&D
GEMs (3 layer)	Endcaps Rate ~ 10 ⁵ Hz/cm ² Fast τ ~ 4-5 ns	CMS Phase I Test & Phase II

John Sealy Townsend Circa 1900

Muon System Design Goals

Exploit full potential of LHC physics with muons

Higgs decays (4μ, 2μ), SUSY (multi-lepton), top, Z', B physics

Quarkonia in Heavy Ion collisions

Requires reliable offline muon identification for $\eta < 2.4$

Muon trigger capability for η < 2.1, with p_T thresholds from a few GeV to 100 GeV

Precision $\Delta p_T / p_T$ measurements for muons with $p_T < 100$ GeV :

- ~2% resolution in combination with the central tracker
- ~10% standalone resolution

Muon sign determination with 99% confidence level up to the LHC kinematic limit (p < 7 TeV)

Gas Detector technologies

Drift Tubes (DT)

- Central coverage: |η | < 1.2
- Measurement and triggering
- 12 layers each chamber: 8 in φ, 4 in z

Cathode Strip Chambers (CSC)

- Forward coverage: $0.9 < |\eta| < 2.4$
- Measurement and triggering
- 6 layers each chamber: each with φ, z

Resistive Plate Chambers (RPC)

- Central and Forward coverage:
 |η | < 2.1
- Redundancy in triggering
- 2 gaps each chamber, 1 sensitive layer

Gas Electron Multiplier (GEM)

- Fast triggering and precise tracking
- Endcap coverage : 1.6 $< |\eta| < 2.4$

How do "typical" gaseous detectors work?

Fig. 26. With a radius of 1.5 cm, a gas mixture of Ar/CO₂ at 3 bar pressure, the space time relationship and results of resolution measurement for the ATLAS MDTs.

In **Proportional counters** the output current pulse generated is proportional to the energy deposited by the radiation. The Multiwire chamber is an example of proportional counter used as a research tool.

Pros:

- Can measure energy of radiation and provide spectrographic information
- Can discriminate between alpha and beta particles
- Large area detectors can be constructed

Cons:

- Anode wires delicate
- Time resolution limited by distance between the wires
- Aging

Ionization chambers operate at a low voltage, → no gas multiplication takes place.

<u>Pros</u>:

- Good uniform response to gamma radiation
- Accurate overall dose reading
- Sustains very high radiation rates

Cons:

Very low electronic output

chana Sharma – Seminar Freiburg

Advantages and limitations of "typical" gaseous detectors

Pros

- Large area at low price
- Flexible geometries
- Good spatial, energy & time resolution

Cons

- Slow ion motion → fast gain drop at high fluxes:
 - Space charge accumulation, distortion of electric field...
- Limited multi-track separation: minimum wire distance ~1mm
- Aging

DT Barrel Muon System: MDT

4 stations in radius 5 wheels in z 250 drift chambers

DT Chamber – XY View

CSC Endcap Muon System

- Up to 3.4 m long, 1.5 m wide
- 6 planes per chamber
- 9.5 mm gas gap (per plane)
- 50 μm wires spaced by 3.2 mm
- 60 ns maximum drift-time per plane
- 5 to 16 wires ganged in groups
- Wires measure r

- 6.7 to 16.0 mm strip width
- Strips run radially to measure φ
- 150 μm resolution for chambers (75 μ m in station 1)
- Gas: Ar(40%)+CO2 (50%)+CF4 (10%)
- HV ~3.6 kV
- B-field up to 3 T in station 1

Seminar Freiburg

Archana Sharma –

CSC Endcap Muon System

2 endcaps
4 stations (disks) in z
2 or 3 rings in radius
540 chambers
6000 m² active area
2.5 million wires
0.5 million channels

Chambers overlap in ϕ and η

Resistive Plate Chambers

Endcap RPCs contain trapezoidal shaped HPL gas gaps, that are organized in a double-layer configuration with a copper strip readout panel placed in between

Each CMS RPC endcap station consists of three concentric rings, called REx/1-3 (station x=1,2,3)

CMS RPC requirements.

Parameters	Allowable ranges
Efficiency	>95%
Time resolution	≤ 1 ns
Average cluster size	$\leq 2 \text{ strips}$
Rate capability	2 kHz/cm ²
Mean avalanche charge	2.5–5 pC

Limitations

RPC rate capability which is limited by space charge

Problem of Aging

Fig. 53. Surface quality of (top left) Beijing phenol/melamine plastic laminate and (top right) Italian LHC like phenol/melamine plastic laminate. Comparison of the three photos (bottom) demonstrate the successive surface improvement due to the deposition of a uniform linseed oil layer; the scale is in μm.