GAS ELECTRON MULTIPLIERS

FOR min IBF

Electron microscope photograph of a GEM foil

- Micro-patterned gas detector for electron multiplication
- Proven to work reliably in high-rate applications

In a TPC with continuous readout: back-drifting ions into drift space

 Ion backflow (IBF): fraction of effective number of ions produced during gas amplification

$$IBF = I_{cathode}/I_{anode}$$

 ε-parameter: number of back-drifting ions per primary electron:

$$\varepsilon = IBF \times gas gain(=2000)$$

→ IBF can be minimized by optimization of GEM geometry and field configuration

- 2015: Full-size 4-GEM OROC
- School of ROC (March 8 April 17, 2015):
 Physicists and technicians from institutions involved in ROC production participated in GEM framing and assembly for OROC at TU Munich and CERN
 - → hands-on experience
 - → optimization of tooling and testing
 - define common standards and procedures
- → big step towards readiness for start of series production

CMS: The GE1/1 design

