The Standard Model Effective Field Theory in a nutshell

Ilaria Brivio

Institut für Theoretische Physik, Universität Heidelberg

Motivation

direct searches

produce new particles at a collider

→ leads to actual **discoveries**

indirect searches

look for **the effect** of new particles without necessarily producing them

direct searches

produce new particles at a collider

→ leads to actual **discoveries**

indirect searches

look for **the effect** of new particles without necessarily producing them

direct searches

produce new particles at a collider

→ leads to actual **discoveries**

indirect searches

look for **the effect** of new particles without necessarily producing them

CHarold Edgerton Archive, MIT

direct searches

produce new particles at a collider

→ leads to actual **discoveries**

we **need to know** beforehand what the new particle looks like

only works if new particles are within the energy reach of the collider

requires high energy

indirect searches

look for **the effect** of new particles without necessarily producing them

we **don't need to specify** in detail what we are looking for

gives valuable information even if the new particles are **out of the energy reach**

requires precise measurements

Direct searches of new physics at the LHC

Indirect searches of new physics at the LHC

Theory tools

Standard Model recap

symmetries		color $SU(3)$ $T^{a} = \lambda^{a}/2$ $a = 18$	isospin $SU(2)$ $t^i = \sigma^i/2$ i = 1, 2, 3	hypercharge $U(1)$
fields	G_{μ}^{a}	8	-	-
	W^i_μ	-	3	-
	B_{μ}	-	-	0
$\alpha = 1, 2, 3$	I_{lpha}	-	$2 = egin{pmatrix} u_{L} \ e_{L} \end{pmatrix}$	1/2
	e_{α}	-	-	-1
	$oxed{q_lpha}$	3	$2 = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$	1/6
	u_{α}	3	-	2/3
	$ d_lpha $	3	-	-1/3
	Н	-	$2 = \begin{pmatrix} H^+ \\ H^0 \end{pmatrix}$	1/2

Standard Model recap

SM Lagrangian

all terms

- made of SM fields
- invariant under symmetries (+ Lorentz!)
- up to canonical dimension 4

$$\begin{split} \mathcal{L}_{SM} &= -\frac{1}{4} G^a_{\mu\nu} G^{a\mu\nu} - \frac{1}{4} W^i_{\mu\nu} W^{i\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \frac{\theta}{16\pi^2} G^a_{\mu\nu} \tilde{G}^{a\mu\nu} \\ &+ \sum_{\psi = \{I,e,u,d,q\}} \bar{\psi} i \not \! D \psi - \left[\bar{I} H Y_I e + \bar{q} H Y_d d + \bar{q} \tilde{H} Y_u u + \text{hc.} \right] \\ &+ D_\mu H^\dagger D^\mu H + \frac{m_h^2}{2} (H^\dagger H) - \lambda (H^\dagger H)^2 \\ D_\mu &\sim \partial_\mu + i g_s G^a_\mu T^a + i g \ W^i_\mu t^i + i g' B_\mu \end{split}$$

- redundant terms were removed ($(D_{\mu}\bar{\psi})i\gamma^{\mu}\psi$, $H^{\dagger}D_{\mu}D^{\mu}H...$)
- ▶ 19 free parameters, fixed by measurements

The SM Effective Field Theory

symmetries & fields as in SM

Lagrangian includes invariant terms up to d > 4 \rightarrow weighted by Λ^{4-d}

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \frac{1}{\Lambda^3} \mathcal{L}_7 + \frac{1}{\Lambda^4} \mathcal{L}_8 + \dots$$
$$\mathcal{L}_n = \sum_k C_k O_k^{(d=n)}$$

The SM Effective Field Theory

symmetries & fields as in SM

Lagrangian includes invariant terms up to d > 4 \rightarrow weighted by Λ^{4-d}

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \frac{1}{\Lambda^3} \mathcal{L}_7 + \frac{1}{\Lambda^4} \mathcal{L}_8 + \dots$$
$$\mathcal{L}_n = \sum_k C_k O_k^{(d=n)}$$

The SMEFT describes

the effects of new physics with scale $\Lambda\gg v$ onto processes that happen at the LHC or at lower energies

The effects of Φ at $E \ll M$ are described by

The SMEFT: a closer look

in practice: a Taylor expansion in $\left(\frac{E, v}{\Lambda}\right)$

$$\begin{split} \mathcal{L}_{\mathrm{SMEFT}} &= \mathcal{L}_{\mathrm{SM}} + \frac{1}{\Lambda}\mathcal{L}_5 + \frac{1}{\Lambda^2}\mathcal{L}_6 + \frac{1}{\Lambda^3}\mathcal{L}_7 + \frac{1}{\Lambda^4}\mathcal{L}_8 + \dots \\ \mathcal{L}_n &= \sum_k C_k \, O_k^{(d=n)} \end{split}$$

at each order d: $\{O_k\}$ form a complete, non redundant set = a basis

 O_k : operators

 C_k : Wilson coefficients. encode all the UV information

The SMEFT: a closer look

in practice: a Taylor expansion in $\left(\frac{E, v}{\Lambda}\right)$

$$\begin{split} \mathcal{L}_{\mathrm{SMEFT}} &= \mathcal{L}_{\mathrm{SM}} + \frac{1}{\Lambda}\mathcal{L}_5 + \frac{1}{\Lambda^2}\mathcal{L}_6 + \frac{1}{\Lambda^3}\mathcal{L}_7 + \frac{1}{\Lambda^4}\mathcal{L}_8 + \dots \\ \mathcal{L}_n &= \sum_k C_k \; O_k^{(d=n)} \end{split}$$

at each order d: $\{O_k\}$ form a complete, non redundant set = a basis

 O_k : operators

C_k: Wilson coefficients. encode all the UV information

- \mathcal{L}_5 contains only 1 operator (Weinberg) ightarrow Majorana neutrino masses.
- \mathcal{L}_6 leading deviations from SM \rightarrow interesting for LHC, flavor ...

Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$	
Q_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	Q_{arphi}	$(arphi^\daggerarphi)^3$	Q_{earphi}	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	$Q_{\varphi \square}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	Q_{uarphi}	$(arphi^{\dagger}arphi)(ar{q}_{p}u_{r}\widetilde{arphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	Q_{darphi}	$(arphi^\daggerarphi)(ar q_p d_rarphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$				
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{arphi\widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{arphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\overline{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{arphi\widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{arphi\widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$arphi^\dagger au^I arphi W^I_{\mu u} B^{\mu u}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$arphi^\dagger au^I arphi \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$		
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$		
$Q_{qq}^{(1)}$	$(\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$		
$Q_{qq}^{(3)}$	$(\bar{q}_p\gamma_\mu\tau^Iq_r)(\bar{q}_s\gamma^\mu\tau^Iq_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p\gamma_\mu l_r)(ar{d}_s\gamma^\mu d_t)$		
$Q_{lq}^{(1)}$	$(\bar{l}_p\gamma_\mu l_r)(\bar{q}_s\gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p\gamma_\mu q_r)(\bar{e}_s\gamma^\mu e_t)$		
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$		
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t)$		
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r)(\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar{q}_p\gamma_\mu q_r)(ar{d}_s\gamma^\mu d_t)$		
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{d}_s \gamma^\mu T^A d_t)$		
$(\bar{L}R)$	$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-violating				
Q_{ledq}	$(ar{l}_p^j e_r) (ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma} \varepsilon_{jk} \left[(d_p^{\alpha})^T C u_r^{\beta} \right] \left[(q_s^{\gamma j})^T C l_t^k \right]$				
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$Q_{qqu} \left[\varepsilon^{\alpha\beta\gamma} \varepsilon_{jk} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \left[(u_s^{\gamma})^T C e_t \right] \right]$				
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}					
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) arepsilon_{jk} (\bar{q}_s^k u_t)$	Q_{duu} $\varepsilon^{\alpha\beta\gamma} \left[(d_p^{\alpha})^T \right]$		$\left[Cu_r^{eta}\right]\left[(u_s^{\gamma})^TCe_t\right]$			
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j\sigma_{\mu\nu}e_r)\varepsilon_{jk}(\bar{q}_s^k\sigma^{\mu\nu}u_t)$						

counting - real and imaginary parts

- **→ 2499**
- all flavor combinations
- B-conserving only

independent of the basis!

Henning, Lu, Melia, Murayama 1512.03433

all flavor combinations

counting - real and imaginary parts \longrightarrow 2499

independent of the basis!

Henning, Lu. Melia, Murayama 1512, 03433

- B-conserving only

2200+ come from 4-fermion operators. 279 from 2-fermion operators.

eg.
$$O_{He,pr} = (H^{\dagger}i\stackrel{\leftrightarrow}{D_{\mu}}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$$
 has $3 + (3 \times 2) = \mathbf{9}$ independent par. $O_{ledq,prst} = (\bar{l}_{p}^{i}e_{r})(\bar{d}_{s}q_{t}^{i})$ has $3 \times 3 \times 3 \times 3 \times 2 = \mathbf{162}$

counting - real and imaginary parts \longrightarrow 2499

independent of the basis!

Henning, Lu. Melia, Murayama 1512, 03433

- all flavor combinations - B-conserving only
- 2200+ come from 4-fermion operators. 279 from 2-fermion operators.

eg.
$$O_{He,pr} = (H^{\dagger}i\stackrel{\leftrightarrow}{D_{\mu}}H)(\bar{e}_p\gamma^{\mu}e_r)$$
 has $3 + (3 \times 2) = \mathbf{9}$ independent par. $O_{ledq,prst} = (\bar{l}_p^ie_r)(\bar{d}_sq_t^i)$ has $3 \times 3 \times 3 \times 3 \times 2 = \mathbf{162}$

Flavor symmetries reduce the freedom → much fewer parameters

simplest:
$$U(3)^5 = U(3)_I \times U(3)_e \times U(3)_q \times U(3)_u \times U(3)_d$$

- → only invariant contractions of the flavor indices are allowed.
 - e.g $O_{He\ pr} \times \delta_{pr} \to \mathbf{1}$ parameter $O_{ledg,prst} \times (Y_l)_{pr}(Y_d)_{st} \rightarrow \mathbf{2}$ parameters

counting - real and imaginary parts \longrightarrow 2499 all flavor combinations

- independent of the basis! Henning, Lu. Melia, Murayama 1512, 03433

- B-conserving only
- 2200+ come from 4-fermion operators. 279 from 2-fermion operators.

eg.
$$O_{He,pr} = (H^{\dagger}i \stackrel{\leftrightarrow}{D_{\mu}} H) (\bar{e}_p \gamma^{\mu} e_r)$$
 has $3 + (3 \times 2) = \mathbf{9}$ independent par. $O_{ledg,prst} = (\bar{l}_p^i e_r) (\bar{d}_s q_t^i)$ has $3 \times 3 \times 3 \times 3 \times 2 = \mathbf{162}$

Flavor symmetries reduce the freedom → much fewer parameters

simplest:
$$U(3)^5 = U(3)_I \times U(3)_e \times U(3)_q \times U(3)_u \times U(3)_d$$

→ only invariant contractions of the flavor indices are allowed.

e.g
$$O_{He,pr} \times \delta_{pr} \rightarrow \mathbf{1}$$
 parameter $O_{leda,prst} \times (Y_l)_{pr} (Y_d)_{st} \rightarrow \mathbf{2}$ parameters

tot \mathcal{L}_6 with $U(3)^{5}$: **81** param.

- full QFTs with their own regularization/renormalization schemes not just anomalous couplings!
- calculations are done **order by order in** δ \rightarrow rationale for expected size of contributions: power counting
 - → systematically improvable

- full QFTs with their own regularization/renormalization schemes not just anomalous couplings!
- calculations are done **order by order in** δ \rightarrow rationale for expected size of contributions: power counting
 - → systematically improvable
- allow compute matrix elements without knowing the UV and work even if the UV is non-perturbative

- full QFTs with their own regularization/renormalization schemes not just anomalous couplings!
- calculations are done **order by order in** δ \rightarrow rationale for expected size of contributions: power counting
 - → systematically improvable
- allow compute matrix elements without knowing the UV and work even if the UV is non-perturbative
- a universal language for interpretation of measurements

- full QFTs with their own regularization/renormalization schemes not just anomalous couplings!
- calculations are done **order by order in** δ
 - → rationale for expected size of contributions: power counting
 - → systematically improvable
- allow compute matrix elements without knowing the UV and work even if the UV is non-perturbative
- a universal language for interpretation of measurements
- systematic classification of all effects compatible with low-E assumptions

- full QFTs with their own regularization/renormalization schemes not just anomalous couplings!
- calculations are done **order by order in** δ
 - → rationale for expected size of contributions: power counting
 - → systematically improvable
- allow compute matrix elements without knowing the UV and work even if the UV is non-perturbative
- a universal language for interpretation of measurements
- systematic classification of all effects compatible with low-E assumptions
- model independent, within low-energy assumption

the UV theory is \boldsymbol{known}

the EFT reproduces the full theory at $E \ll \Lambda$ makes the calculation easier

the UV theory is known

the UV theory is **unknown**but its properties can be
inferred from measurements

the EFT reproduces the full theory at $E \ll \Lambda$ makes the calculation easier

the EFT is built knowing <u>only</u> fields and symmetries at *E*

the same EFT can match many models!

the UV theory is known

the UV theory is ${\bf unknown}$

but its properties can be inferred from measurements

the EFT reproduces the full theory at $E \ll \Lambda$ makes the calculation

easier

the EFT is built knowing <u>only</u> fields and symmetries at *E*

Top-down

Example: Z' model

SM + a neutral, massive vector boson.

$$\mathcal{L}_{Z'} = -rac{1}{4}Z'_{\mu
u}Z'^{\mu
u} + rac{M_{Z'}^2}{2}Z'_{\mu}Z'^{\mu} + Z'_{\mu}J^{\mu}$$

$$J^{\mu} = \kappa_q \, \bar{q}_L \gamma^{\mu} q_L + \kappa_u \, \bar{u}_R \gamma^{\mu} u_R + \kappa_d \, \bar{d}_R \gamma^{\mu} d_R + \kappa_I \, \bar{l}_L \gamma^{\mu} l_L + \kappa_e \, \bar{e}_R \gamma^{\mu} e_R$$

and we assume a U(3) symmetry for each fermion field and $\kappa_q = 0 = \kappa_I$.

Example: Z' model

SM + a neutral, massive vector boson.

$$\mathcal{L}_{Z'} = -rac{1}{4}Z'_{\mu
u}Z'^{\mu
u} + rac{M_{Z'}^2}{2}Z'_{\mu}Z'^{\mu} + Z'_{\mu}J^{\mu}$$

$$J^{\mu} = \kappa_q \, \bar{q}_L \gamma^{\mu} q_L + \kappa_u \, \bar{u}_R \gamma^{\mu} u_R + \kappa_d \, \bar{d}_R \gamma^{\mu} d_R + \kappa_I \, \bar{l}_L \gamma^{\mu} l_L + \kappa_e \, \bar{e}_R \gamma^{\mu} e_R$$

and we assume a U(3) symmetry for each fermion field and $\kappa_q = 0 = \kappa_l$.

at the LHC, for instance dilepton signal

Dilepton with a heavy Z'

Let's assume $m_{Z'}=2$ TeV

at $m_{II} \ll m_{Z'}$ the SMEFT description applies

From Z' to SMEFT

We can integrate out the Z'

matching to the Warsaw basis:

$$C_{ij} = -\frac{(2 - \delta_{ij})}{2m_{Z'}^2} \kappa_i \kappa_j, i, j = \{l, e, q, u, d\}$$

Dilepton with a heavy Z' - matrix elements

$$A_{SM} = \begin{array}{c} \bar{q} \\ Z \\ q \end{array} \begin{array}{c} I^{+} & \bar{q} \\ + \\ I^{-} & q \end{array} \begin{array}{c} I^{+} \\ I^{-} \end{array}$$

$$A_{Z'} = \begin{array}{c} \bar{q} \\ Z' \\ I^{-} \end{array} \begin{array}{c} I^{+} \\ I^{-} \end{array} \begin{array}{c} \bar{q} \\ I^{-} \end{array} \begin{array}{c} I^{+} \\ I^{-} \end{array} \begin{array}{c} \bar{q} \\ I^{-} \end{array} \begin{array}{c} I^{+} \\ I^{-} \end{array} \begin{array}{c} \bar{q} \\ I^{-} \end{array} \begin{array}{c} I^{+} \\ I$$

in the SMEFT:
$$|\mathcal{A}|^2 = |\mathcal{A}_{SM}|^2 + 2\mathrm{Re}\mathcal{A}_{SM}\mathcal{A}_{Z',SMEFT}^{\dagger} + |\mathcal{A}_{Z',SMEFT}|^2$$

$$\propto C_{ie} = -\kappa_i \kappa_e / m_{Z'}^2 \qquad \propto C_{ie}^2 = \kappa_i^2 \kappa_e^2 / m_{Z'}^4$$

Let's assume $m_{Z'}=2$ TeV

Let's assume $m_{Z'} = 2 \text{ TeV}$

Let's assume $m_{Z'} = 2 \text{ TeV}$

Let's assume $m_{Z'} = 2 \text{ TeV}$

Bottom-up

Fermi formulated a theory of β -decays in 1933, well before electroweak interactions were understood. Neutrinos were only an hypothesis at that time.

$$G_F(\bar{p}\gamma_\mu n)(\bar{e}\gamma_\mu \nu)$$

Fermi formulated a theory of β -decays in 1933, well before electroweak interactions were understood. Neutrinos were only an hypothesis at that time.

$$\mathit{G}_{\mathit{F}}(\bar{\mathit{p}}\gamma_{\mu}\mathit{n})(\bar{\mathit{e}}\gamma_{\mu}\nu)$$

- $ightharpoonup G_F$ could be measured eg. fitting the energy spectra of the e^-
- \rightarrow $G_F \simeq (290 \, {\rm GeV})^{-2} \sim ({\rm typical \ scale \ of \ the \ underlying \ physics})^{-2} \sim v^{-2}!$

Fermi formulated a theory of β -decays in 1933, well before electroweak interactions were understood. Neutrinos were only an hypothesis at that time.

$$\mathit{G}_{\mathit{F}}(\bar{\mathit{p}}\gamma_{\mu}\mathit{n})(\bar{\mathit{e}}\gamma_{\mu}\nu)$$

- $ightharpoonup G_F$ could be measured eg. fitting the energy spectra of the e^-
- \rightarrow $G_F \simeq (290 \, {\rm GeV})^{-2} \sim ({\rm typical \ scale \ of \ the \ underlying \ physics})^{-2} \sim v^{-2}!$
- ▶ all β -decays have the same universal G_F !

Fermi formulated a theory of β -decays in 1933, well before electroweak interactions were understood. Neutrinos were only an hypothesis at that time.

$$\mathit{G}_{\mathit{F}}(\bar{\mathit{p}}\gamma_{\mu}\mathit{n})(\bar{\mathit{e}}\gamma_{\mu}\nu)$$

- G_F could be measured eg. fitting the energy spectra of the e^-
- \rightarrow $G_F \simeq (290 \, {\rm GeV})^{-2} \sim ({\rm typical \ scale \ of \ the \ underlying \ physics})^{-2} \sim v^{-2}!$
- ▶ all β -decays have the same universal G_F !
- ▶ fitting angular distributions → the currents have *left-handed* chirality

Fermi formulated a theory of β -decays in 1933, well before electroweak interactions were understood. Neutrinos were only an hypothesis at that time.

$$\mathit{G}_{\mathit{F}}(\bar{\mathit{p}}\gamma_{\mu}\mathit{n})(\bar{\mathit{e}}\gamma_{\mu}\nu)$$

- $ightharpoonup G_F$ could be measured eg. fitting the energy spectra of the e^-
- \rightarrow $G_F \simeq (290 \, {\rm GeV})^{-2} \sim ({\rm typical \ scale \ of \ the \ underlying \ physics})^{-2} \sim v^{-2}!$
- ▶ all β -decays have the same universal G_F !
- ▶ fitting angular distributions → the currents have *left-handed* chirality
 - → very strong hints at the nature of EW interactions

Bardon et al. PRL 14 (1965) 449

$$G_F(\bar{p}\gamma_\mu n)(\bar{e}\gamma_\mu
u)$$

today we know

$$G_F = rac{g^2}{4\sqrt{2}m_W^2} = rac{1}{\sqrt{2}v^2}$$

from integrating out the W

▶ the EFT worked very well as $\left(\frac{m_n}{m_W}\right)^2 \simeq 10^{-4}$, $\left(\frac{m_\mu}{m_W}\right)^2 \simeq 10^{-6}$

The SM is the new Fermi theory

... so what is the new SM?

An ambitious plan:

- compute processes in the SMEFT including *all* the relevant Wilson coefficients in \mathcal{L}_6
- make a fit to determine their values → who's not zero?
- infer hints about the possible UV sector

Aebischer, Altmannshofer, Guadagnoli, Reboud, Stangl, Straub 1903.10434

Global SMEFT analyses

- ▶ individual processes necessarily have blind directions
- combination of different processes / sectors required

- $U(2)_q \times U(2)_u \times U(2)_d$
- top interactions only for now
- ▶ up to NLO QCD, quadratic SMEFT

Brivio,Bruggisser,Maltoni,Moutafis,Plehn, Vryonidou,Westhoff,Zhang 1910.03606

22 relevant operators

also: Hartland, Maltoni, Nocera, Rojo, Slade, Vryonidou, Zhang 1901.05965

34

tΖ tīZ, tīW $Q_{tB} = (\bar{Q}\tilde{H}\sigma^{\mu\nu}t)B_{\mu\nu}$ $Q_{Ht} = (iH^{\dagger} \overleftarrow{D}_{\mu} H)(\overline{t} \gamma^{\mu} t)$ single t $Q_{bW} = (\bar{Q}H\sigma^{\mu\nu}\sigma^k b)W_{\mu\nu}^k$ t̄τ $Q_{tG} = (\bar{Q}\tilde{H}\sigma^{\mu\nu}T^At)G^A_{\mu\nu}$ $Q_{Htb} = (i\tilde{H}^{\dagger}D_{\mu}H)(\bar{t}\gamma^{\mu}b)$ $Q_{HO}^{3} = (iH^{\dagger} \overleftarrow{D}_{\mu}^{i} H)(\overline{Q} \sigma^{i} \gamma^{\mu} Q)$ $Q_{Ou}^8 = (\bar{Q}\gamma_\mu T^A Q)(\bar{u}\gamma^\mu T^A u)$ $Q_{Qu}^1 = (\bar{Q}\gamma_{\mu}Q)(\bar{u}\gamma^{\mu}u)$ $Q_{Od}^1 = (\bar{Q}\gamma_\mu Q)(\bar{d}\gamma^\mu d)$ $Q_{Od}^8 = (\bar{Q}\gamma_\mu T^A Q)(d\gamma^\mu T^A d)$ $Q_{HO}^1 = (iH^{\dagger} \overrightarrow{D}_{\mu} H)(\overline{Q} \gamma^{\mu} Q)$ $Q_{tu}^8 = (\overline{t}\gamma_\mu T^A t)(\overline{u}\gamma^\mu T^A u)$ $Q_{tu}^1 = (\overline{t}\gamma_{\mu}t)(\overline{u}\gamma^{\mu}u)$ $Q_{tW} = (\bar{Q}\tilde{H}\sigma^{\mu\nu}\sigma^k t)W_{\mu\nu}^k$ $Q_{td}^{8} = (\overline{t}\gamma_{\mu}T^{A}t)(\overline{d}\gamma^{\mu}T^{A}d)$ $Q_{td}^1 = (\overline{t}\gamma_\mu t)(\overline{d}\gamma^\mu d)$ $Q_{Qq}^{3,8} = (\bar{Q}\gamma_{\mu}\sigma^{k}T^{A}Q)(\bar{q}\gamma^{\mu}\sigma^{k}T^{A}q)$ $\mathcal{Q}_{Qg}^{1,1} = (\bar{Q}\gamma_{\mu}Q)(\bar{q}\gamma^{\mu}q)$ $\mathcal{Q}_{Qg}^{1,8} = (\bar{Q}\gamma_{\mu}T^{A}Q)(\bar{q}\gamma^{\mu}T^{A}q)$ $Q_{Qq}^{3,1} = (\bar{Q}\gamma_{\mu}\sigma^{k}T^{A}Q)(\bar{q}\gamma^{\mu}\sigma^{k}T^{A}q)$ $Q_{tq}^{8} = (\bar{t}\gamma_{\mu}T^{A}t)(\bar{q}\gamma^{\mu}T^{A}q)$ $Q_{tq}^{1} = (\overline{t}\gamma_{\mu}t)(\overline{q}\gamma^{\mu}q)$

e.g. $q\bar{q} \rightarrow t\bar{t}$ at tree-level:

restricting to those with non-zero interference:

4-fermion operators (5 / initial state)

 $\begin{array}{l} \mathsf{LL:}\ \ C_{Qq}^{(1,8)},\ C_{Qq}^{(3,8)} \\ \mathsf{LR:}\ \ C_{tq}^{8} \\ \mathsf{RL:}\ \ C_{Qu}^{8},\ C_{Qd}^{8} \\ \mathsf{RR:}\ \ C_{tu}^{8},\ C_{td}^{8} \end{array}$

e.g. $q\bar{q} \rightarrow t\bar{t}$ at tree-level:

notation:

 $C_{\chi_q\chi_t}^{color} \ eta_t^2 = 1 - 4 m_t^2/s \ c_t = \cos heta(ec{
ho}_t, ec{
ho}_q)$ in c.m. frame

$$\Delta\sigma_{t\bar{t}}^{int} \propto \left[\begin{array}{c|c} \textit{C}_{\textit{LL}}^{8} + \textit{C}_{\textit{RR}}^{8} \end{array} + \begin{array}{c|c} \textit{C}_{\textit{LR}}^{8} + \textit{C}_{\textit{RL}}^{8} \end{array}\right] \left(1 + \beta_{t}^{2}\textit{c}_{t}^{2} + \frac{2m_{t}^{2}}{s}\right) + \left[\begin{array}{c|c} \textit{C}_{\textit{LL}}^{8} + \textit{C}_{\textit{RR}}^{8} \end{array} - \begin{array}{c|c} \textit{C}_{\textit{LR}}^{8} - \textit{C}_{\textit{RL}}^{8} \end{array}\right] 2\beta_{t}\textit{c}_{t}$$

e.g. $q\bar{q} \rightarrow t\bar{t}$ at tree-level:

notation:

$$C_{\chi_q\chi_t}^{color} \ eta_t^2 = 1 - 4 m_t^2/s \ c_t = \cos heta(ec{
ho}_t, ec{
ho}_q)$$
 in c.m. frame

$$\Delta\sigma_{t\bar{t}}^{int} \propto \left[\begin{array}{c|c} \textit{C}_{\textit{LL}}^{8} + \textit{C}_{\textit{RR}}^{8} \end{array} + \begin{array}{c|c} \textit{C}_{\textit{LR}}^{8} + \textit{C}_{\textit{RL}}^{8} \end{array} \right] \left(1 + \beta_{t}^{2} c_{t}^{2} + \frac{2m_{t}^{2}}{s} \right) + \left[\begin{array}{c|c} \textit{C}_{\textit{LL}}^{8} + \textit{C}_{\textit{RR}}^{8} \end{array} - \begin{array}{c|c} \textit{C}_{\textit{LR}}^{8} - \textit{C}_{\textit{RL}}^{8} \end{array} \right] 2\beta_{t} c_{t}$$

LO, interference only can *never* distinguish $LL \leftrightarrow RR$ or $LR \leftrightarrow RL$

$$\rightarrow$$
 breaking: NLO QCD (C_iC_j) terms other processes in the fit (e.g. single-top)

e.g. $q\bar{q} \rightarrow t\bar{t}$ at tree-level:

notation:

$$C_{\chi_q\chi_t}^{color}$$
 $eta_t^2=1-4m_t^2/s$ $c_t=\cos heta(ec{p_t},ec{p_q})$ in c.m. frame

$$\Delta\sigma_{t\bar{t}}^{int} \propto \left[\begin{array}{c|c} \textit{C}_{\textit{LL}}^{8} + \textit{C}_{\textit{RR}}^{8} \end{array} + \begin{array}{c|c} \textit{C}_{\textit{LR}}^{8} + \textit{C}_{\textit{RL}}^{8} \end{array} \right] \left(1 + \beta_{t}^{2}\textit{c}_{t}^{2} + \frac{2m_{t}^{2}}{s} \right) + \left[\begin{array}{c|c} \textit{C}_{\textit{LL}}^{8} + \textit{C}_{\textit{RR}}^{8} \end{array} - \begin{array}{c|c} \textit{C}_{\textit{LR}}^{8} - \textit{C}_{\textit{RL}}^{8} \end{array} \right] 2\beta_{t}\textit{c}_{t}$$

LO, interference only can *never* distinguish $LL \leftrightarrow RR$ or $LR \leftrightarrow RL$

- \rightarrow breaking: NLO QCD (C_iC_j) terms other processes in the fit (e.g. single-top)
- LO, interference only can distinguish $(LL + RR) \leftrightarrow (LR + RL)$

Same vs. different chiralities in $t\bar{t}$

$$\Delta \sigma_{t\bar{t}}^{int} \propto \left[C_{LL}^8 + C_{RR}^8 + C_{LR}^8 + C_{RL}^8 \right] \left(1 + \beta_t^2 c_t^2 + \frac{2m_t^2}{s} \right) + \left[C_{LL}^8 + C_{RR}^8 - C_{LR}^8 - C_{RL}^8 \right] 2\beta_t c_t$$

likelihood contours: $\ln L_{\rm max} - \ln L = 1/2 \frac{1}{2} \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac$

Same vs. different chiralities in $t\bar{t}$

$$\Delta\sigma_{t\bar{t}}^{int} \propto \left[C_{LL}^8 + C_{RR}^8 + C_{LR}^8 + C_{RL}^8\right] \left[1 + \beta_t^2 c_t^2 + \frac{2m_t^2}{s}\right] + \left[C_{LL}^8 + C_{RR}^8 - C_{LR}^8 - C_{RL}^8\right] 2\beta_t c_t$$

likelihood contours:

$$\ln L_{\rm max} - \ln L = 1/2 \frac{1}{2} \frac{1}$$

Same vs. different chiralities in $t\bar{t}$

$$\Delta \sigma_{t\bar{t}}^{int} \propto \left[C_{LL}^{8} + C_{RR}^{8} + C_{LR}^{8} + C_{RL}^{8} \right] \left[1 + \beta_{t}^{2} c_{t}^{2} + \frac{2m_{t}^{2}}{s} \right] + \left[C_{LL}^{8} + C_{RR}^{8} - C_{LR}^{8} - C_{RL}^{8} \right] 2\beta_{t} c_{t}$$

Global fit to top processes: results

fit to $t\bar{t}$, $t\bar{t}Z$, $t\bar{t}W$, single-t, W helicity in t decays

Brivio,Bruggisser,Maltoni,Moutafis,Plehn, Vryonidou,Westhoff,Zhang 1910.03606

Run II, ATLAS+CMS, 68% and 95% C.L.

Top fit vs EW+Higgs fit results

Next step: top + EW + Higgs

Recap & take-home

- Indirect searches of BSM physics @LHC will become more and more significant in the next runs
- ► The **SMEFT** is a well-defined and general theory framework to do this systematically
- ▶ It describes possible effects from *nearly-decoupled* new physics
 - → complement direct searches
 - → minimal model dependence
- Added value:
 - a full-fledged QFT
 - a universal language: allows combination with other experiments
 - ▶ allows an agnostic bottom-up approach
 - → requires **global fits**

Backup slides

Top fit – observables

$$pp \rightarrow t\bar{t}$$

- ▶ 5 $\sigma_{t\bar{t}}$ measurements at 8 and 13 TeV
- ▶ 5 A_C measurements at 8 and 13 TeV
- 2 $d\sigma/dm_{t\bar{t}}$ dist. at 8 and 13 TeV (15 bins tot)
- 4 $d\sigma/dp_T^t(p_T^1, p_T^h)$ dist. at 8 and 13 TeV (30 bins tot)
- 1 $d^2\sigma/dm_{t\bar{t}}dt_{t\bar{t}}$ dist at 8 TeV (16 bins)
- ▶ 2 dist in high- p_T region $(p_T^t, m_{t\bar{t}})$ at 8 and 13 TeV (13 bins tot)

$$pp \to t\bar{t}Z, pp \to t\bar{t}W$$

• 2 $\sigma_{t\bar{t}V}$ measurements for each V at 8 and 13 TeV

Single-top

- 6 $\sigma_{tq,\bar{t}q}$ measurements in t-channel at 7, 8, 13 TeV
- 3 $\sigma_{t\bar{b},\bar{t}b}$ measurements in s-channel at 7, 8 TeV
- 6 $\sigma_{tW,\bar{t}W}$ measurements in tW channel at 7, 8, 13 TeV
- ▶ 1 σ_{tZq} measurement in tZq at 13 TeV

Top decays

▶ 4 measurements of W helicity at 7, 8, 13 TeV