One SMASH to Rule Them All

A Minimal Model for Particle Physics and Cosmology

Andreas Ringwald GRK 2044 Seminar Albert-Ludwigs-Universität, Freiburg, Germany 17 June 2020

[Ballesteros, Redondo, AR, Tamarit, arXiv:1608.05414; arXiv:1610.01639; AR, Saikawa, Tamarit, in preparation] [Ballesteros, AR, Tamarit, Welling, in preparation]

The Standard Model of Particle Physics

 Standard Model (SM) describes interactions of all known particles with remarkable accuracy

Standard Model Total Production Cross Section Measurements Status: March 2018

[twiki.cern.ch]

 Big fundamental problems in particle physics and cosmology seem to require physics beyond SM

- Big fundamental problems in particle physics and cosmology seem to require physics beyond SM
 - 1. Neutrino masses and mixing

- Big fundamental problems in particle physics and cosmology seem to require physics beyond SM
 - 1. Neutrino masses and mixing
 - 2. Strong CP problem

Most general gauge invariant Lagrangian of QCD contains topological theta-term:

[Belavin et al. `75;'t Hooft 76;Callan et al. `76;Jackiw,Rebbi `76]

$$\mathcal{L}_{\mathrm{QCD}} \supset -\frac{\alpha_s}{8\pi} \, \theta \, G^a_{\mu\nu} \tilde{G}^{a\,\mu\nu}$$

- Theta-term $\propto G^a_{\mu\nu} \tilde{G}^{a,\mu\nu} \propto {f E}^a \cdot {f B}^a$ violates P and T, and thus CP
- Most sensitive probe of P and T violation in flavor conserving interactions: electric dipole moment of neutron
 - Prediction: [Crewther,Di Vecchia,Veneziano,Witten 79;...; Pospelov,Ritz 00] $d_n(\overline{\theta}) = 2.4(1.0)\times 10^{-16}\,\overline{\theta}\,e\,\mathrm{cm}$
 - Experiment: [Abel et al. 20] $[\overline{\theta} \equiv \theta + \arg\det\left(\mathcal{M}_u\mathcal{M}_d\right)]$ $|d_n| < 1.8 \times 10^{-26} \ e \ \mathrm{cm}$
- Strong CP problem: $|\overline{ heta}| < 10^{-10}$

- Big fundamental problems in particle physics and cosmology seem to require physics beyond SM
 - 1. Neutrino masses and mixing
 - 2. Strong CP problem
 - 3. Dark matter

[Mario De Leo, Wikipedia]

[NASA, Wikipedia]

- Big fundamental problems in particle physics and cosmology seem to require physics beyond SM
 - 1. Neutrino masses and mixing
 - 2. Strong CP problem
 - 3. Dark matter
 - 4. Baryon asymmetry

[APS]

- Big fundamental problems in particle physics and cosmology seem to require physics beyond SM
 - Neutrino masses and mixing
 - 2. Strong CP problem
 - 3. Dark matter
 - 4. Baryon asymmetry
 - 5. Inflation

- Big fundamental problems in particle physics and cosmology seem to require physics beyond SM
 - 1. Neutrino masses and mixing
 - 2. Strong CP problem
 - 3. Dark matter
 - 4. Baryon asymmetry
 - 5. Inflation
- These problems may be solved in one smash in a minimal extension of the SM by
 - 3 right-handed SM singlet neutrinos $\,N_i\,$
 - 1 SM singlet complex scalar $\sigma(x) = \frac{1}{\sqrt{2}} (v_{\sigma} + \rho(x)) e^{iA(x)/v_{\sigma}}$
 - 1 vector-like extra quark Q

dubbed SM*A*S*H

Ballesteros, Redondo, AR, Tamarit, arXiv:1608.05414; 1610.01639]

Minimal Solution of Neutrino Masses and Mixing Problem

Seesaw mechanism

• Extend SM by three right-handed SM singlet neutrinos N_i ($L=(\ell,\nu_\ell)^T$)

$$\mathcal{L} \supset -\left[F_{ij}L_i\epsilon HN_j + \frac{1}{2}M_{ij}N_iN_j + h.c.\right]$$

- In see-saw limit, $M\gg m_D\equiv Fv/\sqrt{2}$, with $v=246~{\rm GeV}$, the neutrino mass eigenstates split into
 - a heavy set with masses M_i constituted by the N_i
 - a light set with masses

$$m_{\nu} = \frac{1}{2} F \frac{v^2}{M} F^T = 0.03 \text{ eV } F \frac{10^{15} \text{ GeV}}{M} F^T$$

constituted by mixtures of $\
u_{\ell}$

[Minkowski 77; Gell-Mann, Ramond, Slansky 79; Yanagida 79]

Minimal Solution of Baryogenesis Problem

Baryogenesis via leptogenesis

• Extend SM by three right-handed SM singlet neutrinos N_i ($L = (\ell, \nu_\ell)^T$)

$$\mathcal{L} \supset -\left[F_{ij}L_i\epsilon HN_j + \frac{1}{2}M_{ij}N_iN_j + h.c.\right]$$

- For large $M_i \gg v = 246~{\rm GeV}$, baryon asymmetry generated via leptogenesis [Fukugita, Yanagida 80]
 - At $T \sim M_i$, out-of-equilibrium CP and L violating decays of N_i generate lepton number

[Sheng Fong et al. 12]

- At $T \sim v$, electroweak B+L violating, but B-L conserving sphaleron processes turn lepton number into baryon number

Minimal Solution of Strong CP Problem

Peccei-Quinn mechanism

- Extend particle content further by vector-like exotic quark [Kim 79;Shifman,Vainshtein,Zakharov 80]
- Introduce global U(1) symmetry which is broken by VEV $\langle \sigma \rangle = v_{\sigma}/\sqrt{2}$ of SM-singlet complex scalar;
 - Excitation of modulus: $m_
 ho \propto v_\sigma$
 - Excitation of argument: $m_A \ll v_\sigma$

$$\sigma(x) = \frac{1}{\sqrt{2}} \left(v_{\sigma} + \rho(x) \right) e^{iA(x)/v_{\sigma}}$$

Minimal Solution of Strong CP Problem

Peccei-Quinn mechanism

- Extend particle content further by vector-like exotic quark [Kim 79;Shifman,Vainshtein,Zakharov 80]
- Introduce global U(1) symmetry which is broken by VEV $\langle \sigma \rangle = v_{\sigma}/\sqrt{2}$ of SM-singlet complex scalar;
 - Excitation of modulus: $m_{\rho} \propto v_{\sigma}$
 - Excitation of argument: $m_A \ll v_\sigma$

$$\sigma(x) = \frac{1}{\sqrt{2}} \left(v_{\sigma} + \rho(x) \right) e^{iA(x)/v_{\sigma}}$$

Charges of exotic quark such that U(1) broken by gluonic triangle anomaly: A axion [Weinberg 79; Wilczek 79]

q	u	d	L	N	E	Q	$ ilde{Q}$	σ
1/2	-1/2	-1/2	1/2	-1/2	-1/2	-1/2	-1/2	1

[Shin 88; Dias et al. 14; Ballesteros et al. 16]
$$\mathcal{L}\supset -\left[Y_{uij}q_i\epsilon Hu_j+Y_{dij}q_iH^\dagger d_j+G_{ij}L_iH^\dagger E_j+F_{ij}L_i\epsilon HN_j+\frac{1}{2}Y_{ij}\sigma N_iN_j+y\,\tilde{Q}\sigma Q+\,y_{Qd\,i}\sigma Qd_i+h.c.\right]$$
 • No strong CP problem, since axion field acts as space-time dependent theta parameter:

QCD dynamics: $\langle A(x) \rangle = 0$ [Peccei,Quinn 78]; $m_A = 57.0(7) \left(\frac{10^{11} {\rm GeV}}{f_A} \right) \mu {\rm eV}$

Axion as DM candidate

Axion born after PQ phase transition,

$$T \lesssim T_c^{\rm PQ} \sim v_{\rm PQ} = N f_A$$

- Axion takes random initial values in causally connected domains
- Frozen as long as Hubble expansion rate exceeds mass, $H(T)>m_{\cal A}(T)$

Unbroken Symmetry Broken Symmetry

[Peking University]

V(a)

Axion as DM candidate

Axion born after PQ phase transition,

$$T \lesssim T_c^{\rm PQ} \sim v_{\rm PQ} = N f_A$$

- Axion takes random initial values in causally connected domains
- Frozen as long as Hubble expansion rate exceeds mass, $H(T) > m_A(T)$
- When $H(T) \sim m_A(T)$, axion field starts to oscillate around minimum of potential; behaves like cold dark matter: $w_A = p_A/\rho_A \simeq 0$

[Preskill, Wise, Wilczek 83; Abbott, Sikivie 83; Dine, Fischler 83,....]

Axion as DM candidate

Axion born after PQ phase transition,

$$T \lesssim T_c^{\rm PQ} \sim v_{\rm PQ} = N f_A$$

- Axion takes random initial values in causally connected domains
- Frozen as long as Hubble expansion rate exceeds mass, $H(T) > m_A(T)$
- When $H(T) \sim m_A(T)$, axion field starts to oscillate around minimum of potential; behaves like cold dark matter: $w_A = p_A/\rho_A \simeq 0$

[Preskill, Wise, Wilczek 83; Abbott, Sikivie 83; Dine, Fischler 83,....]

- QCD input from lattice:
 - Equation of state $\Rightarrow H(T)$

[Borsanyi et al., Nature `16 [1606.0794]]

Axion as DM candidate

Axion born after PQ phase transition,

$$T \lesssim T_c^{\rm PQ} \sim v_{\rm PQ} = N f_A$$

- Axion takes random initial values in causally connected domains
- Frozen as long as Hubble expansion rate exceeds mass, $H(T)>m_A(T)$
- When $H(T) \sim m_A(T)$, axion field starts to oscillate around minimum of potential; behaves like cold dark matter: $w_A = p_A/\rho_A \simeq 0$

[Preskill, Wise, Wilczek 83; Abbott, Sikivie 83; Dine, Fischler 83,....]

- QCD input from lattice:
 - Equation of state $\Rightarrow H(T)$
 - Topological susceptibility $\Rightarrow m_A(T) = \sqrt{\chi(T)}/f_A$

[Borsanyi et al., Nature `16 [1606.0794]]

Axion as DM candidate

- If PQ symmetry broken before or during inflation $(f_A > H_I/(2\pi))$ and not restored afterwards
 - Axion CDM density depends on single initial value in patch which becomes observable universe and f_A

Pre-inflationary scenarios

Axion as DM candidate

- If PQ symmetry broken before or during inflation $(f_A>H_I/(2\pi))$ and not restored afterwards
 - Axion CDM density depends on single initial value in patch which becomes observable universe and f_A

$$\Omega_A^{\text{vr}} h^2 \approx 0.12 \left(\frac{f_A}{9 \times 10^{11} \text{ GeV}} \right)^{1.165} \theta_i^2$$

$$\approx 0.12 \left(\frac{6 \mu \text{eV}}{m_A} \right)^{1.165} \theta_i^2,$$

[Borsanyi et al., Nature `16]

Axion as DM candidate

Averaging over random initial axion field values

$$\Omega_A^{\rm vr} h^2 \approx 0.12 \left(\frac{30 \ \mu eV}{m_A} \right)^{1.165}$$

Does not exceed observed CDM abundance for

$$m_A > 28(2)\,\mu{
m eV}$$
 [Borsanyi et al., Nature `16]

Post-inflationary scenarios

Axion as DM candidate

Averaging over random initial axion field values

$$\Omega_A^{\rm vr} h^2 \approx 0.12 \left(\frac{30 \ \mu eV}{m_A} \right)^{1.165}$$

Does not exceed observed CDM abundance for

$$m_A > 28(2)\,\mu\mathrm{eV}$$
 [Borsanyi et al., Nature `16 [1606.0794]]

- Axions also produced by collapse of network of topological defects – strings and domain-walls –
- Axion can be 100% of DM for

$$m_A \approx 26 \ \mu \text{eV} - 4.4 \ \text{meV}$$

$$f_A \approx 1.3 \times 10^9 \, \text{GeV} - 2.2 \times 10^{11} \, \text{GeV}$$

[Hiramatsu et al. 11,12,13; Kawasaki,Saikawa,Segikuchi 15; Ballesteros et al. 16; AR,Saikawa `16; Klaer,Moore `17; Gorghetto,Hardy,Villadoro `18; Buschmann et al. 19; Hindmarsh 19]

[Hiramatsu et al.]

One SM*A*S*H to Rule Them All

Field content suffices to solve all five big problems in one stroke:

SM * Axion * See-saw * Higgs portal inflation

1. Neutrino masses and mixing

$$m_{\nu} = 0.04 \,\text{eV} \left(\frac{10^{11} \,\text{GeV}}{v_{\sigma}}\right) \left(\frac{-F \, Y^{-1} \, F^{T}}{10^{-4}}\right)$$

2. Axionic solution of the strong CP problem

$$m_A = 57.0(7) \left(\frac{10^{11} \text{GeV}}{f_A}\right) \mu \text{eV}$$
$$f_A = v_\sigma$$

- Axion dark matter
- 4. Baryogenesis via leptogenesis
- 5. Inflation

[Ballesteros, Redondo, AR, Tamarit, 1608.05414; 1610.01639]

Inflation in SM*A*S*H

Non-minimal chaotic (Higgs) Hidden Scalar inflation

· Take into account unavoidable non-minimal coupling of Higgs and HS field to gravity,

$$S \supset -\int d^4x \sqrt{-g} \left[\frac{M^2}{2} + \xi_H H^{\dagger} H + \xi_{\sigma} \sigma^* \sigma \right] R; \quad M_P^2 = M^2 + \xi_H v^2 + \xi_{\sigma} v_{\sigma}^2$$

 Non-minimal couplings stretch scalar potential in Einstein frame; make it convex and asymptotically flat at large field values

$$\tilde{V}(h,\rho) = \frac{1}{\Omega^4(h,\rho)} \left[\frac{\lambda_H}{4} \left(h^2 - v^2 \right)^2 + \frac{\lambda_\sigma}{4} \left(\rho^2 - v_\sigma^2 \right)^2 + \frac{\lambda_{H\sigma}}{2} \left(h^2 - v^2 \right) \left(\rho^2 - v_\sigma^2 \right) \right]$$

$$\tilde{g}_{\mu\nu} = \Omega^2(h,\rho) g_{\mu\nu} \qquad \Omega^2 = 1 + \frac{\xi_H(h^2 - v^2) + \xi_\sigma(\rho^2 - v_\sigma^2)}{M_P^2}$$

Inflation in SM*A*S*H

Non-minimal chaotic (Higgs) Hidden Scalar inflation

Take into account unavoidable non-minimal coupling of Higgs and HS field to gravity,

$$S \supset -\int d^4x \sqrt{-g} \left[\frac{M^2}{2} + \xi_H H^{\dagger} H + \xi_\sigma \sigma^* \sigma \right] R; \quad M_P^2 = M^2 + \xi_H v^2 + \xi_\sigma v_\sigma^2$$

- Non-minimal couplings stretch scalar potential in Einstein frame; make it convex and asymptotically flat at large field values
- Potential has valleys = attractors for Higgs Inflation (HI), Hidden Scalar Inflation (HSI) or mixed Higgs Hidden Scalar Inflation (HHSI), depending on relative signs of $\kappa_H \equiv \lambda_{H\sigma}\xi_H \lambda_H\xi_\sigma$, $\kappa_\sigma \equiv \lambda_{H\sigma}\xi_\sigma \lambda_\sigma\xi_H$

$sign(\kappa_H)$	$sign(\kappa_{\sigma})$	Inflation
+	_	HI
_	+	HSI
_	_	HHSI

Inflation in SM*A*S*H

Non-minimal chaotic (Higgs) Hidden Scalar inflation

 Power spectra of primordial scalar and tensor perturbations, with (from CMB observations)

$$A_s = (2.20 \pm 0.08) \times 10^{-9},$$

 $n_s = 0.967 \pm 0.004,$
 $r < 0.07$

obtained for $\xi \simeq 2 \times 10^5 \sqrt{\lambda} \gtrsim 10^{-3}$

where

$$\xi \equiv \begin{cases} \xi_{H}, & \text{for HI,} \\ \xi_{\sigma}, & \text{for HSI,} \\ \xi_{\sigma}, & \text{for HHSI} \end{cases}$$

$$\lambda \equiv \begin{cases} \lambda_{H}, & \text{for HI,} \\ \lambda_{\sigma}, & \text{for HSI,} \\ \lambda_{\sigma} \left(1 - \frac{\lambda_{H\sigma}^{2}}{\lambda_{\sigma}\lambda_{H}}\right), & \text{for HHSI} \end{cases}$$

- HI has unitarity problem
- HSI and HHSI have no unitarity problem if $\lambda_{\sigma}, \tilde{\lambda}_{\sigma} \lesssim 10^{-10}$

PQ symmetry restoration

- Both in HSI and HHSI with $\xi_{\sigma} \lesssim$ 1, slow-roll inflation ends at a value of $\rho \sim \mathcal{O}(M_P)$
- Inflaton starts to undergo Hubble-damped oscillations in a quasi-quartic potential, with Universe expanding as in a radiation-dominated era

PQ symmetry restoration

- Both in HSI and HHSI with $\xi_{\sigma} \lesssim$ 1, slow-roll inflation ends at a value of $\rho \sim \mathcal{O}(M_P)$
- Inflaton starts to undergo Hubble-damped oscillations in a quasi-quartic potential, with Universe expanding as in a radiation-dominated era

• For $f_A \lesssim 10^{17} \, \mathrm{GeV}$, PQ symmetry restored after inflation

[Ballesteros, AR, Tamarit, Welling in prep.]

PQ symmetry restoration

- Both in HSI and HHSI with $\xi_{\sigma} \lesssim$ 1, slow-roll inflation ends at a value of $\rho \sim \mathcal{O}(M_P)$
- Inflaton starts to undergo Hubble-damped oscillations in a quasi-quartic potential, with Universe expanding as in a radiation-dominated era

• For $f_A \lesssim 10^{17} \, \mathrm{GeV}$, PQ symmetry restored after inflation

10⁻¹
10⁻²
10⁻³
10⁻⁴
10⁻⁶
10⁻⁷
10⁻⁸
10⁻¹⁰
10⁻¹¹
10⁻¹²
10
10²
7

• $f_A \gtrsim 10^{17}\,{
m GeV}$ excluded by PLANCK upper limits on isocurvature fluctuations [Ballesteros, AR, Tamarit, Welling in prep.]

[Ballesteros, AR, Tamarit, Welling in prep.]

Reheating temperature and dark radiation

 HSI: Large induced particle masses quench inflaton decays or annihilations into SM particles

$$T_R \sim 10^7 \,\mathrm{GeV} v_{11} \lambda_{10}^{3/8} \delta_3^{-1/8}$$

$$\Delta N_{\nu}^{\rm eff} \sim (\delta_3 v_{11}/\lambda_{10})^{-1/6}$$

 HHSI: Higgs component of inflaton allows for production of SM gauge bosons

$$T_R \sim 10^{10} \,\mathrm{GeV}$$

 $\Delta N_{\nu}^{\mathrm{eff}} \simeq 0.0268 \, \left(\frac{427/4}{g_{*s}(T_A^{\mathrm{dec}})}\right)^{4/3}$

10¹⁰

10²

10³

 10^{4}

10⁵

Expansion and Thermal History in SM*A*S*H

• Number of e-folds N(k) from the time a given comoving scale k leaves horizon until end of inflation predicted. Correspondingly sharp prediction of r versus n_s

Primordial Gravitational Waves in SM*A*S*H

• Can be probed indirectly by upcoming CMB polarization experiments (e.g. CMB-S4):

[Ballesteros, Redondo, AR, Tamarit, 1904.05594]

Primordial Gravitational Waves in SM*A*S*H

Can be probed directly by future space-born gravitational wave interferometer (e.g. DECIGO)

[AR, Saikawa, Tamarit, in preparation]

Primordial Gravitational Waves in SM*A*S*H

• Future space-born GW interferometer (e.g. ultimate DECIGO) sensitive to step in primordial GW spectrum due to change of equation of state around the PQ phase transition:

[AR, Saikawa, Tamarit, in preparation]

$$f = \frac{k}{2\pi a_0} = \frac{H_{\rm hc}}{2\pi} \frac{a_{\rm hc}}{a_0} \approx 2.65 \,\mathrm{Hz} \left(\frac{g_{*s,\mathrm{fin}}}{3.931}\right)^{\frac{1}{3}} \left(\frac{g_{*\rho,\mathrm{hc}}}{106.75}\right)^{\frac{1}{2}} \left(\frac{g_{*s,\mathrm{hc}}}{106.75}\right)^{-\frac{1}{3}} \left(\frac{T_{\mathrm{hc}}}{10^8 \,\mathrm{GeV}}\right)$$

Dark Matter in SM*A*S*H

Axion dark matter mass $m_A \approx 25~\mu \mathrm{eV} - 4.4~\mathrm{meV}$

- Mass range will be probed in this decade:
 - Axion dark matter direct detection (Haloscope)
 - MADMAX @ DESY

- Solar axion telescope (Helioscope)
 - (Baby)IAXO @ DESY

[Desch et al., "A European Strategy Towards Finding Axions and Other WISPs"]

Summary

 Remarkably simple extension of SM involving just one new dimension-full scale provides solution of five fundamental problems:

- 1. Neutrino oscillations
- 2. Baryon asymmetry
- 3. Dark matter
- 4. Inflation
- 5. Non-observation of strong CP violation

$$\mathcal{L} = \mathcal{L}_{\mathrm{kin}} + \mathcal{L}_{\mathrm{yuk}}^{SM}$$

$$-\left[\frac{M^2}{2} + \xi_H H^{\dagger} H + \xi_{\sigma} |\sigma|^2\right] R$$
$$-\lambda_H \left(H^{\dagger} H - \frac{v^2}{2}\right)^2$$

$$-\lambda_H \left(H^\dagger H - \frac{v^2}{2}\right)^2 - 2\lambda_{H\sigma} \left(H^\dagger H - \frac{v^2}{2}\right) \left(|\sigma|^2 - \frac{v_\sigma^2}{2}\right) \quad \text{STABILITY}$$

$$-\lambda_{\sigma} \left(|\sigma|^2 - \frac{v_{\sigma}^2}{2} \right)^2 - \left[y \sigma \tilde{Q} Q + y_{Q_{d_i}} \sigma Q d_i + c.c \right]$$

CP PROBLEM

$$-[F_{ij}L_i\epsilon HN_j + \frac{1}{2}Y_{ij}\sigma N_iN_j + c.c.]$$

SEESAW AND LEPTOGENESIS

Summary

• SM*A*S*H offers self-contained description of cosmology from inflation until today:

Summary

• Firm predictions ($r \gtrsim 0.004$, $\triangle N_{\rm eff}^{\nu} = 0.027$, $m_A \approx 25~\mu {\rm eV} - 4.4~{\rm meV}$) in reach of upcoming experiments:

Summary

- Work in progress:
 - Primordial gravitational waves in SMASH [AR, Saikawa, Tamarit, in preparation]
 - Variations of SMASH
 - 2hdSMASH [Dutta, Matlis, Moortgat-Pich, AR, in progress]
 - GUT SMASH [Ballesteros, Di Luzio, AR, Tamarit, Welling, , in progress]

Back Up: Summary

GUT SMASH opens a further window at neV axion mass which can also be probed in the new decade:

Vacuum Stability in SM*A*S*H

Electroweak vacuum stabilization through Hidden Scalar

- SM-singlet scalar σ helps to stabilize scalar potential in Higgs direction through threshold effect associated with Higgs portal
 - When ho integrated out, Higgs portal gives negative contribution to Higgs quartic, $\overline{\lambda}_H(m_h)=\left.\lambda_H-\lambda_{H\sigma}^2/\lambda_\sigma
 ight|_{\mu=m_h}$
 - At energies above $m_{
 ho}$, true (and larger!) value of λ_H is revealed by integrating ho in
 - Stability up to Planck scale ensured if $\delta=\lambda_{H\sigma}^2/\lambda_\sigma\big|_{\mu=m_b}$ exceeds a minimum value dependent on top mass:

Vacuum Stability in SM*A*S*H

Vacuum stability in PQ scalar direction

• Stability in σ direction threatened by quantum corrections due to right-handed neutrinos and exotic quark,

unless

 $\sum Y_{ii}^4 + 6y^4 \lesssim 16\pi^2 \lambda_\sigma / \log\left(30M_P / \sqrt{2\lambda_\sigma} v_\sigma\right)$

Minimal SU(5) GUT

Original SU(5) model comprised of

[Georgi, Glashow 74]

- three copies of 10_F and $\bar{\bf 5}_F$ representing chiral SM matter fermions
- 24_H and 5_H , representing Higgs bosons

$$10_F = \underbrace{\left(\bar{3}, 1, -\frac{2}{3}\right)_F}_{u^c} \oplus \underbrace{\left(3, 2, +\frac{1}{6}\right)_F}_{q} \oplus \underbrace{\left(1, 1, +1\right)_F}_{e^c},$$

$$\bar{5}_F = \underbrace{\left(\bar{3}, 1, +\frac{1}{3}\right)_F}_{d^c} \oplus \underbrace{\left(1, 2, -\frac{1}{2}\right)_F}_{\ell},$$

$$24_{H} = \underbrace{(1, 1, 0)_{H}}_{S_{H}} \oplus \underbrace{(1, 3, 0)_{H}}_{T_{H}} \oplus \underbrace{(8, 1, 0)_{H}}_{O_{H}}$$

$$\oplus \underbrace{\left(3, 2, -\frac{5}{6}\right)_{H}}_{X_{H}} \oplus \underbrace{\left(\bar{3}, 2, +\frac{5}{6}\right)_{H}}_{\bar{X}_{H}},$$

$$5_H = \underbrace{\left(3, 1, -\frac{1}{3}\right)_H}_{\mathcal{T}} \oplus \underbrace{\left(1, 2, +\frac{1}{2}\right)_H}_{h},$$

Minimal SU(5) GUT

Original SU(5) model comprised of

[Georgi, Glashow 74]

- three copies of 10_F and $\bar{5}_F$ representing chiral SM matter fermions
- 24_H and 5_H , representing Higgs bosons

fails phenomenologically:

- Neutrinos massless
- No gauge coupling unification

[StackExchange]

$$10_F = \underbrace{\left(\bar{3}, 1, -\frac{2}{3}\right)_F}_{u^c} \oplus \underbrace{\left(3, 2, +\frac{1}{6}\right)_F}_{q} \oplus \underbrace{\left(1, 1, +1\right)_F}_{e^c},$$

$$\bar{5}_F = \underbrace{\left(\bar{3}, 1, +\frac{1}{3}\right)_F}_{d^c} \oplus \underbrace{\left(1, 2, -\frac{1}{2}\right)_F}_{\ell}$$

$$24_{H} = \underbrace{(1, 1, 0)_{H}}_{S_{H}} \oplus \underbrace{(1, 3, 0)_{H}}_{T_{H}} \oplus \underbrace{(8, 1, 0)_{H}}_{O_{H}}$$

$$\oplus \underbrace{\left(3, 2, -\frac{5}{6}\right)_{H}}_{X_{H}} \oplus \underbrace{\left(\bar{3}, 2, +\frac{5}{6}\right)_{H}}_{\bar{X}_{H}},$$

$$5_H = \underbrace{\left(3, 1, -\frac{1}{3}\right)_H}_{\mathcal{T}} \oplus \underbrace{\left(1, 2, +\frac{1}{2}\right)_H}_{h},$$

Minimal SU(5) GUT

Original SU(5) model comprised of

[Georgi, Glashow 74]

- three copies of 10_F and $\bar{5}_F$ representing chiral SM matter fermions
- 24_H and 5_H , representing Higgs bosons

fails phenomenologically:

Neutrinos massless

Back Up:

- No gauge coupling unification
- Simple solution: add a $\,24_F\,$ [Bajc, Senjanovic 07]
 - Mixture of type-I and type-III seesaw from electroweak fermion singlets and triplets, $S_F=(1,1,0)_F$ and $T_F=(1,3,0)$

$$10_F = \underbrace{\left(\bar{3}, 1, -\frac{2}{3}\right)_F}_{u^c} \oplus \underbrace{\left(3, 2, +\frac{1}{6}\right)_F}_{q} \oplus \underbrace{\left(1, 1, +1\right)_F}_{e^c},$$

$$\bar{5}_F = \underbrace{\left(\bar{3}, 1, +\frac{1}{3}\right)_F}_{d^c} \oplus \underbrace{\left(1, 2, -\frac{1}{2}\right)_F}_{\ell},$$

$$24_{H} = \underbrace{(1, 1, 0)_{H}}_{S_{H}} \oplus \underbrace{(1, 3, 0)_{H}}_{T_{H}} \oplus \underbrace{(8, 1, 0)_{H}}_{O_{H}}$$

$$\oplus \underbrace{\left(3, 2, -\frac{5}{6}\right)_{H}}_{X_{H}} \oplus \underbrace{\left(\bar{3}, 2, +\frac{5}{6}\right)_{H}}_{\bar{X}_{H}},$$

$$5_H = \underbrace{\left(3, 1, -\frac{1}{3}\right)_H}_{\mathcal{T}} \oplus \underbrace{\left(1, 2, +\frac{1}{2}\right)_H}_{h},$$

$$24_{F} = \underbrace{(1, 1, 0)_{F}}_{S_{F}} \oplus \underbrace{(1, 3, 0)_{F}}_{T_{F}} \oplus \underbrace{(8, 1, 0)_{F}}_{O_{F}}$$

$$\oplus \underbrace{\left(3, 2, -\frac{5}{6}\right)_{F}}_{X_{F}} \oplus \underbrace{\left(\overline{3}, 2, +\frac{5}{6}\right)_{F}}_{\overline{X}_{F}},$$

Minimal SU(5) GUT

Original SU(5) model comprised of

[Georgi, Glashow 74]

- three copies of 10_F and $\bar{5}_F$ representing chiral SM matter fermions
- 24_H and 5_H , representing Higgs bosons

fails phenomenologically:

- Neutrinos massless
- No gauge coupling unification
- Simple solution: add a 24_F [Bajc, Senjanovic 07]
 - Mixture of type-I and type-III seesaw from electroweak fermion singlets and triplets, $S_F=(1,1,0)_F$ and $T_F=(1,3,0)$
 - Gauge coupling unification: electroweak fermion and scalar triplets, $T_F=(1,3,0)$ and $T_H=(1,3,0)$, delay meeting of α_1 and α_2

[Di Luzio, Mihaila 13]

Minimal SU(5) GUT

Original SU(5) model comprised of

[Georgi, Glashow 74]

- three copies of 10_F and $\overline{5}_F$ representing chiral SM matter fermions
- 24_H and 5_H , representing Higgs bosons

fails phenomenologically:

- Neutrinos massless
- No gauge coupling unification
- Simple solution: add a $\,24_F\,$ [Bajc, Senjanovic 07]
 - Mixture of type-I and type-III seesaw from electroweak fermion singlets and triplets, $S_F=(1,1,0)_F$ and $T_F=(1,3,0)$
 - Gauge coupling unification: electroweak fermion and scalar triplets, $T_F=(1,3,0)$ and $T_H=(1,3,0)$, delay meeting of α_1 and α_2
 - Clean correlation between effective electroweak triplet mass m_3 and unification scale M_G

[Di Luzio, Mihaila 13]

$$m_3 = \left(m_{T_F}^4 m_{T_H} \right)^{1/5}$$

Axion in minimal SU(5) GUT

- Require that 24_H complex and add $5'_H$
- Impose PQ symmetry:

$$\overline{5}_F \to e^{-i\alpha/2} \overline{5}_F,$$

$$10_F \to e^{-i\alpha/2} 10_F,$$

$$5_H \to e^{i\alpha} 5_H,$$

$$5_H' \to e^{-i\alpha} 5_H',$$

$$24_H \to e^{-i\alpha} 24_H,$$

$$24_F \to e^{-i\alpha/2} 24_F$$

Axion decay constant:

$$f_A \simeq rac{1}{11} \sqrt{rac{6}{5}} rac{M_G}{g_5}$$

 Gauge coupling unification, taking into account LHC and Superkamiokande constraints:

$$m_A \in [4.8, 6.6] \text{ neV}$$

[Di Luzio, AR, Tamarit, arXiv:1807.09769]

Axion in minimal SU(5) GUT

- Axion mass in neV range:
 - PQ symmetry has to be broken before inflation and not restored afterwards to avoid DM overabundance
- DM abundance depends not only on mass, but also on the initial value of $\theta_i = A_i/f_A$ inside causally connected region which is inflated to observable universe
- Anthropical selection of initial value to reproduce the observed dark matter abundance needed:

$$\Omega_a h^2 = 0.12 \left(\frac{5.0 \text{ neV}}{m_a} \right)^{1.165} \left(\frac{\theta_i}{1.6 \times 10^{-2}} \right)^2$$

[Saikawa]

Axion in minimal SU(5) GUT

- Axion mass in neV range:
 - PQ symmetry has to be broken before inflation and not restored afterwards to avoid DM overabundance
- DM abundance depends not only on mass, but also on the initial value of $\theta_i = A_i/f_A$ inside causally connected region which is inflated to observable universe
- Anthropical selection of initial value to reproduce the observed dark matter abundance needed:

$$\Omega_a h^2 = 0.12 \left(\frac{5.0 \text{ neV}}{m_a} \right)^{1.165} \left(\frac{\theta_i}{1.6 \times 10^{-2}} \right)^2$$

CASPEr-Electric and ABRACADABRA

Axion in minimal SU(5) GUT

- Axion mass in neV range:
 - PQ symmetry has to be broken before inflation and not restored afterwards to avoid DM overabundance
- DM abundance depends not only on mass, but also on the initial value of $\theta_i = A_i/f_A$ inside causally connected region which is inflated to observable universe
- Anthropical selection of initial value to reproduce the observed dark matter abundance needed:

$$\Omega_a h^2 = 0.12 \left(\frac{5.0 \text{ neV}}{m_a} \right)^{1.165} \left(\frac{\theta_i}{1.6 \times 10^{-2}} \right)^2$$

 CASPEr-Electric and ABRACADABRA will probe the relevant parameter space, complementing prospected constraints from HyperKamiokande

Axion in minimal SU(5) GUT

• Can the modulus of the 24_H in this model be a viable inflaton candidate, taking into account its possible non-minimal coupling to gravity?

[Ballesteros, Di Luzio, AR, Tamarit, Welling, in progress]

$$S \supset -\int d^4x \sqrt{-g} \,\xi_{24_H} \operatorname{Tr}(24_H^2) R$$

- For $v_{24_H} = M_G/g_5 \gtrsim 10^{17} \, {\rm GeV}$, PQ symmetry not restored after inflation
- Can isocurvature constraints be avoided?
 - In a pre-inflationary PQ symmetry scenario, where PQ field is not part of the inflaton:
 - axion is massless field in de Sitter space, leading to isocurvature fluctuations, whose power spectrum freezes at horizon crossing
 - Planck non-observation of isocurvature fluctuations leads to bound on Hubble scale during inflation:

$$H_I < 5.7 \times 10^8 \,\mathrm{GeV} \left(\frac{5.0 \,\mathrm{neV}}{m_a}\right)^{0.4175}$$

• Bound does not apply in case of non-minimal chaotic 24_H inflation, since axion part of the inflaton and therefore not massless during inflation and reheating

Revisiting isocurvature bound

- Work in progress: [Ballesteros, Di Luzio, AR, Tamarit, Welling]
 - Numerical evolution of inflationary perturbations, accounting for nonzero masses; use these as initial conditions for lattice simulations including effects of Higgs decays
 - Derive power spectra for isocurvature perturbation
 - Extrapolate to CMB scales
- Results:
 - Super-horizon isocurvature modes have an initial exponential growth but then decay as 1/a(t)^2
 - Extrapolation to CMB times: competition between initial amplification and later decay
 - As $\Delta_{A\gamma}(|\mathbf{k}|, \tau)a(\tau)^2/\Delta_{A\gamma}(|\mathbf{k}|, 0)$ seems to always peak and then oscillate around a constant value, we can establish bound and direct estimate at CMB times

Lower momenta in red, higher momenta in blue In gray: $10^6 \phi_1(\tau_{pr})/M_P$

Revisiting isocurvature bound

- Work in progress: [Ballesteros, Di Luzio, AR, Tamarit, Welling]
 - Numerical evolution of inflationary perturbations, accounting for nonzero masses; use these as initial conditions for lattice simulations including effects of Higgs decays
 - Derive power spectra for isocurvature perturbation
 - Extrapolate to CMB scales
- Results:
 - Super-horizon isocurvature modes have an initial exponential growth but then decay as 1/a(t)²
 - Extrapolation to CMB times: competition between initial amplification and later decay
 - As $\Delta_{A\gamma}(|\mathbf{k}|, \tau)a(\tau)^2/\Delta_{A\gamma}(|\mathbf{k}|, 0)$ seems to always peak and then oscillate around a constant value, we can establish bound and direct estimate at CMB times
 - If inflaton and axion part of multiplet (>= 6 real scalars),
 CMB isocurvature bound satisfied (preliminary)

Dish Antennas

- Oscillating axion/ALP DM in a background magnetic field carries a small electric field component
- A magnetised mirror in axion/ALP DM background radiates photons [Horns, Jaeckel, Lindner, Lobanov, Redondo, AR 13]

Dish Antennas

- Boosted dish antenna: Open dielectric resonator
 - Add stack of dielectric disks with $\sim \lambda/2$ spacing in front of mirror (all immersed in magnetic field) [Jaeckel, Redondo 13]
 - Constructive interference of photon part of wave function

[Millar,Raffelt,Redondo,Steffen 16] [Baryakhtar,Huang,Lasenby18]

Dish Antennas

Boosted dish antenna: Proposed MADMAX experiment [Caldwell et al. `16; Bruns et al. 19]

Magnetic Resonance Searches

Axion DM field induces oscillating NEDMs:

$$d_N(t) = g_d \sqrt{2\rho_{\rm DM}} \cos(m_A t) / m_A$$

- Place a ferroelectric crystal (permanent electric polarisation fields \vec{E}^*) in external $\vec{B}_{\rm ext} \perp E^*$
- Nuclear spins are polarised along $\vec{B}_{\rm ext}$ and precess at Larmor frequency $\,\omega_L=2\mu_N B_{\rm ext}$
- Interaction $\epsilon_S \vec{d}_N(t) \cdot \vec{E}^*$ of DM induced NEDM with the \vec{E}^* -field leads to resonant increase of transverse magnetisation of sample when $\omega_L = m_A$

[Graham, Rajendran 13; Budker et al. 14]

CASPEr-Electric currently being set-up in Boston

[Budker et al. 14]

Searching for Axion-induced Magnetic Fields

[Sikivie, Sullivan, Tanner 14; Kahn, Safdi, Thaler `16]

- ABRACADABRA (MIT) currently being set-up
 - Exploit toroidal magnet with fixed magnetic field:
 - Axion DM generates oscillating effective current around ring
 - ... this generates oscillating magnetic field through center
 - ... this can be detected by pickup loop
- DM-Radio (Stanford): similar experiment in pathfinder status
 [Silva-Feaver et al. 16]

[Ouellet `16; adapted from Kahn, Safdi, Thaler `16]

Searching for Axion-induced Magnetic Fields

[Sikivie, Sullivan, Tanner 14; Kahn, Safdi, Thaler `16]

- ABRACADABRA (MIT) currently being set-up
 - Exploit toroidal magnet with fixed magnetic field:
 - Axion DM generates oscillating effective current around ring
 - ... this generates oscillating magnetic field through center
 - ... this can be detected by pickup loop
- DM-Radio (Stanford): similar experiment in pathfinder status
 [Silva-Feaver et al. 16]

ABRACADABRA-10 cm Run 1:

[AR,Rybka,Rosenberg in 2019 update PDG RPP]

Back Up: Searches for Solar Axions

- International Axion Observatory (IAXO)
 - Large toroidal 8-coil magnet L = ~20 m
 - 8 bores: 600 mm diameter each
 - 8 X-ray telescopes + 8 detection systems
 - Rotating platform with services
- Proposed site: DESY

[IAXO CDR: JINST 9 (2014) T05002 (arXiv:1401.3233)]

Back Up: Searches for Solar Axions

- Prototype for IAXO: BabylAXO
 - Two bores of dimensions similar to final IAXO bores
 - Detection lines representative of final ones
 - Test & improve all systems
- Magnet technical design ongoing at CERN

- Funded mainly via Irastorza: ERC-AvG 2017 IAXO+
- Site: HERA South Hall at DESY
- Construction may start in 2020
- Data taking may start in 2024

Back Up: Searches for Solar Axions

(Baby)IAXO probes meV mass QCD axion and covers most of parameter space relevant for astro hints

[Sikivie 1983, Ansel'm 1985, van Bibber et al. 1987]

ALPS I @ DESY (in collaboration with AEI Hannover and U Hamburg)

[AR 03;....;Ehret et al. 10]

$$P(a \leftrightarrow \gamma) = 4 \frac{(g_{a\gamma}\omega B)^2}{m_a^4} \sin^2\left(\frac{m_a^2}{4\omega}L_B\right)$$

Light-Shining-through-a-Wall Searches

ALPS I @ DESY (in collaboration with AEI Hannover and U Hamburg)

- [AR 03;...;Ehret et al. 10]
- LSW experiments ALPS I and OSQAR @ CERN give currently the best purely laboratory limit on low mass axions:

[AR,Rybka,Rosenberg in 2019 update PDG RPP]

Light-Shining-through-a-Wall Searches

• ALPS II @ DESY (in collaboration with AEI Hannover, U Cardiff, U Florida, U Mainz) [Bähre et al (ALPS II TDR) 13]

Light-Shining-through-a-Wall Searches

ALPS II at DESY

HERA tunnel on about 300 m cleared

24 magnets straightened and tested; first magnets installed

- Construction will be finished end of 2020
- Data taking 2021 and 2022

Back Up: Astrophysical Hints for Axions/ALPs

Excessive stellar energy losses

Practically every stellar systems seems to be cooling faster than predicted by models:

[Giannotti, Irastorza, Redondo, AR '15; Giannotti, Irastorza, Redondo, AR, Saikawa '17]

Back Up: Astrophysical Hints for Axions/ALPs

Excessive stellar energy losses

 Excessive energy losses of HBs, RG, WDs can be explained at one stroke by production of axion/ALP with coupling to photons and electrons:

Back Up: Astrophysical Hints for Axions/ALPs

Excessive stellar energy losses

• Excessive energy losses of HBs, RG, WDs can be explained at one stroke by production of axion/ALP with coupling to photons and electrons, e.g. SMASH:

$$C_{a\gamma} = \frac{2}{3} - 1.92(4)$$

$$C_{ae}^{A/J} \simeq -\frac{1}{16\pi^2 N} \left(\text{tr}\kappa - 2\kappa_{ee} \right)$$

$$\kappa \equiv \frac{m_D m_D^{\dagger}}{v^2}$$

[Giannotti,Irastorza,Redondo,AR,Saikawa 17]