Light-by-Light Scattering in ATLAS

GRK Seminar Freiburg, 06. Nov. 2019

Kristof Schmieden
• The story starts in the **early 30ies**:

 • Dirac's theory developed and positrons discovered
 • Evident that light could scatter off light via pair-production (Halpern & Heisenberg)

 • Heisenberg, Euler, Kockel
 • Using effective Lagrangian to calculate cross section
 \(E_\gamma \ll m_\ell \)
 • \(~ 10^{-70} \text{cm}^2 \) for visible light, \(~ 10^{-30} \text{cm}^2 \) for \(\gamma \)-radiation

[\text{Naturwissensch. 23, 246, 1935}],[\text{Z. Phys. 98 (1936) 714}]

• Exact calculation: loop calculation needed
 • Box diagram involving charged fermions and W-Boson
• Early experimental approach:
 • Search for scattering of visible photons using focused sunlight

[Hughes and Jauncey, Phys. Rev. (36 1930), 773]

- No light was detected
 • "Calculations show that if the photon has a cross section, its area must be less than 3×10^{-20} cm²."

- Cross section for visible light actually is:
 • 10^{-60} cm²!

Figure 3 Apparatus for a light-light scattering experiment:
The two lenses C and D focus sunlight on the same spot O in a light-tight box AB. The dark-adapted eye of an observer at the point P serves as the detector for scattered light.
Outline

- Observing Light-by-Light scattering at the LHC
- The ATLAS measurement

What's next?

- Sensitivity to axion-like particles & other BSM models
- Ideas for measurement anomalous magnetic moment of the tau lepton
Overview of Light-by-Light scattering

- Several names known for Light-by-Light scattering
 - Depending on number of virtual photons
 - Photon - Photon scattering: 4 real photons
 - Pseudo-scalar meson production in S-channel
 - Photons splitting: 1 virtual, 3 real photons
 - Delbrück scattering [1933]: 2 virtual, 2 real photons
 - Lepton g-2: 3 virtual, 1 real photon

- Cross section box-diagram
 - Broken down by particle type in loop
 - Cross section of elementary process: ~10 pb
 - Source of photons?

- Cross section box-diagram
 - Broken down by particle type in loop
 - Cross section of elementary process: ~10 pb
 - Source of photons?

- Several names known for Light-by-Light scattering
 - Depending on number of virtual photons
 - Photon - Photon scattering: 4 real photons
 - Pseudo-scalar meson production in S-channel
 - Photons splitting: 1 virtual, 3 real photons
 - Delbrück scattering [1933]: 2 virtual, 2 real photons
 - Lepton g-2: 3 virtual, 1 real photon

- Cross section box-diagram
 - Broken down by particle type in loop
 - Cross section of elementary process: ~10 pb
 - Source of photons?

- Several names known for Light-by-Light scattering
 - Depending on number of virtual photons
 - Photon - Photon scattering: 4 real photons
 - Pseudo-scalar meson production in S-channel
 - Photons splitting: 1 virtual, 3 real photons
 - Delbrück scattering [1933]: 2 virtual, 2 real photons
 - Lepton g-2: 3 virtual, 1 real photon

- Cross section box-diagram
 - Broken down by particle type in loop
 - Cross section of elementary process: ~10 pb
 - Source of photons?
Ultra Peripheral Heavy Ion Collisions - LHC as photon collider

• Relativistic nuclei are intense source of (quasi-real) photons

• Equivalent photon flux scales with Z^4
 • PbPb beams at LHC are a superb source of high energy photons!

• Maximum photons energy:
 • $E_{\text{max}} \leq \gamma/R \sim 80$ GeV
 • Lorentz factor γ up to 2700 @ LHC
• Relativistic nuclei are intense source of (quasi-real) photons

• Equivalent photon flux scales with Z^4
 • PbPb beams at LHC are a superb source of high energy photons!

• Maximum photons energy:
 • $E_{\text{max}} \leq \gamma/R \sim 80$ GeV
 • Lorentz factor γ up to 2700 @ LHC

• Various types of photon interactions possible
 • Photon-Pomeron: e.g. exclusive J/Psi production
 • Photons - Gluon: photo production of jets
 • Photon - Photon:
 • Producing fermion pairs (e.g. e^+e^-)
 • Light - by - Light scattering
 • QED interaction
 • Mediated via box-diagram
 • Beam particles stay intact

[Fermi, Nuovo Cim. 2 (1925) 143]
The LHC

- Usually operates with proton @ 6.5 TeV beam energy
- ~1 month / per year:
 - Lead ions instead of protons @ 2.76 TeV / nucleon

Proton operation:
- Bunch crossings every 25ns (40 MHz)
- ~60 simultaneous pp collision per bunch crossing
 - ‘Pileup’

Heavy ion operation:
- Bunch crossings every 75ns (13 MHz)
- ~0.004 simultaneous PbPb collision per bunch crossing
 - Essentially no pileup at all
 - Only EM interaction in most bunch crossings! (UPC events)
- Used for photon physics

Kristof Schmieden
How to measure the $\gamma \gamma \rightarrow \gamma \gamma$ process

- **Experimental signature:**
 - 2 exclusive photons in the final state
 - Photons are back-to-back in ϕ
 - $A_\phi = 1 - |\Delta \phi| / \pi < 0.01$

- Cross section steeply falling with increasing energy
 - Looking for low energy photons: $E_T > 3$ GeV

- Very unusual topology and energy range for a high energy collider experiment

- Interesting challenge :-)
How to measure the $\gamma\gamma \rightarrow \gamma\gamma$ process

- pp collision
- Light-by-Light scattering candidate event
- PbPb collision
How to measure the $\gamma\gamma \rightarrow \gamma\gamma$ process

Triggering

• L1 requirements (OR):
 • ≥ 1 EM cluster with $E_T(\gamma) > 1$ GeV && 4 GeV < total $E_T < 200$ GeV
 • ≥ 2 EM clusters with $E_T(\gamma) > 1$ GeV && total $E_T < 50$ GeV

• HLT Requirements (AND):
 • $\Sigma E_T(\text{FCal}) < 3$ GeV on both sides
 • ≤ 15 hits in pixel detector
 • Tagging of exclusive photon final state

• Support Triggers:
 • Sum $E_T < 50$ GeV & FCal Veto & < 15 tracks & > 2 tracks
 • HLT_mb_sptrak_exclusiveloose_vetosp1500_L1VTE20
How to measure the $\gamma\gamma \rightarrow \gamma\gamma$ process

Triggering

- **L1 requirements (OR):**
 - ≥ 1 EM cluster with $E_T(\gamma) > 1$ GeV && 4 GeV < total $E_T < 200$ GeV
 - ≥ 2 EM clusters with $E_T(\gamma) > 1$ GeV && total $E_T < 50$ GeV

- **HLT Requirements (AND):**
 - ΣE_T (FCal) < 3 GeV on both sides
 - ≤ 15 hits in pixel detector
 - Tagging of exclusive photon final state

- **Support Triggers:**
 - Sum $E_T < 50$ GeV & FCal Veto & < 15 tracks & > 2 tracks
 - HLT_mb_sptrk_exclusiveloose_vetosp1500_L1VTE20

• Trigger efficiency determined using e^+e^- final states
 • Triggered by independent support triggers

• Applied to simulated events to correct yield

ATLAS

Pb+Pb $\sqrt{s_{NN}}$=5.02 TeV
• Data 2018, 1.7 nb$^{-1}$

Level-1 trigger efficiency

Fit to data

Stat

Stat \oplus syst

E_T\text{cluster}_1 + E_T\text{cluster}_2 [GeV]

Krisof Schmieden
Photon reconstruction:

- Using default photon reconstruction algorithm
 - Entries in calorimeter cells are grouped to clusters
 - Track matching performed
 - Electrons / Photons
 - Some overlap allowed

Photon identification:

- Uses neural net (Keras), trained for low E_T photons
- Combination of EM calorimeter shower shape variables
 - Discrimination between photons, pions, electrons, noise
How to measure the $\gamma\gamma \rightarrow \gamma\gamma$ process

- **Photon reconstruction:**
 - Using default photon reconstruction algorithm
 - Entries in calorimeter cells are grouped to clusters
 - Track matching performed
 - Electrons / Photons
 - Some overlap allowed

- **Electrons / Photons**
 - Some overlap allowed

- **Photon identification:**
 - Uses neural net (Keras), trained for low E_T photons
 - Combination of EM calorimeter shower shape variables
 - Discrimination between photons, pions, electrons, noise

Photon reconstruction and identification

- **Efficiency measurement:**
 - Using e^+e^- events where a hard bremsstrahlung photon was radiated

- **eeγ final state selection:**
 - Exactly 1 electron $p_T > 4$ GeV \& 1 additional track
 - Track $p_T < 1.5$ GeV
 - Photon with $E_T > 2.5$ GeV must be present in Event!

Kristof Schmieden
How to measure the $\gamma\gamma \rightarrow \gamma\gamma$ process

Event Selection

- **Trigger**
- Exactly 2 photons with $E_T > 3$ GeV && $|\eta| < 2.37$
 Excluding $1.37 < |\eta| < 1.52$

- Invariant di-photon mass $M_{\gamma\gamma} > 6$ GeV

- Veto any extra particle activity within $|\eta| < 2.5$
 - No reconstructed tracks ($p_T > 100$ MeV)
 - No reconstructed pixel tracks ($p_T > 50$ MeV, $|\Delta\eta (\gamma,\text{track})| < 0.5$)

- Back-to-Back topology
 - $p_T(\gamma\gamma) < 2$ GeV (rejects cosmic muons)
 - Reduced acoplanarity < 0.01 ($A_\phi = 1 - |\Delta\phi| / \pi$)
How to measure the $\gamma\gamma \rightarrow \gamma\gamma$ process

Background processes

- **What else has a similar signature?**
 - Central Exclusive Production of 2 photons (CEP): $gg \rightarrow \gamma\gamma$
 - Coloured initial state: significant intrinsic transverse momentum!
 - Broader shape of A_ϕ distribution
 - Control region defined to study CEP: $aco > 0.01$
 - Shape of A_ϕ distribution taken from simulation (SuperChic v3.0)
 - Uncertainty estimated using simulation without secondary particle emission (absorptive effects)
 - Normalisation measured in control region
 - Dominating uncertainty form limited statistics (17%)
 - Overall uncertainty of CEP background in signal region: 20%
 - Expected events in signal region: 5 ± 1
How to measure the $\gamma \gamma \rightarrow \gamma \gamma$ process

- **What else has a similar signature?**

 - Central Exclusive Production of 2 photons (CEP): $gg \rightarrow \gamma \gamma$
 - Coloured initial state: **significant intrinsic transverse momentum**!
 - Broader shape of A_ϕ distribution
 - Control region defined to study CEP: $aco > 0.01$

 - Shape of A_ϕ distribution taken from simulation (SuperChic v3.0)
 - Uncertainty estimated using simulation without secondary particle emission (absorptive effects)

 - Normalisation measured in control region
 - Dominating uncertainty form limited statistics (17%)

 - **Overall uncertainty of CEP background in signal region:** 20%

 - Expected events in signal region: 5 ± 1

 - **Pb*** dissociates, releasing neutrons detectable in the Zero Degree Calorimeter

 - Cross check of ZDC information for events in CEP control region:
 - Good agreement with expectations :)

- **Background processes**

 - $\pm 140m$ from ATLAS IP
 - $8.3 < |\eta| < \infty$
ZDC cross check on CEP background

- ZDC energy deposits
 - Single neutron peaks clearly visible

- More quantitatively
 - Expected that all CEP events have a signal in ZDC
 - 20% of yy and ee final states
 - Can calculated expected ratio of events with / without ZDC activity

\[
\frac{r_{ZDC/noZDC}^{pred}}{r_{ZDC/noZDC}^{meas}} \approx \frac{CEP + 0.2 \times (\text{signal} + ee)}{0.8 \times (\text{signal} + ee)}
\]

- For \(E_T > 3 \) GeV:
 - \(r(\text{pred.}) = 1.5(0.5) \), \(r(\text{meas}) = 0.8 \)

- To compensate difference:
 - Raise in the ee background yield of 20% needed
 - Well covered by uncertainty of 40%

\[E_{ZDC,C} / \langle E_{1n} \rangle \]

\[\text{ATLAS Preliminary} \]
\[\text{Pb+Pb } \sqrt{s_{NN}}=5.02 \text{ TeV} \]
\[0.8 \mu b^{-1} \]
How to measure the $\gamma\gamma \rightarrow \gamma\gamma$ process

- **What else has a similar signature?**

 - Exclusive production of e$^+$e$^-$ electron pairs
 - Both electrons misidentified as photons
 - Electrons bent in magnetic field
 - Broader A_ϕ distribution compared to signal
 - Background rate estimated from data
 - 2 control regions:
 - Signal region + requiring 1 or 2 associated pixel tracks
 - Event yield from control regions extrapolated to signal region
 - Needed: probability to miss pixel track if full track is not reconstructed p^{mistag}

 - p^{mistag} measured requiring 1 full track and exactly 2 signal photons: $(47 \pm 9)\%$

 - Events in signal region: 7 ± 3

- **Background processes**

 - Statistics, p^{mistag}, difference in CRs

Kristof Schmieden
How to measure the $\gamma \gamma \rightarrow \gamma \gamma$ process

Background processes

- **Total background + signal:**

What else has a similar signature?

- Other potential backgrounds found to be negligible:
 - $\gamma \gamma \rightarrow qq$
 - Exclusive di-meson production (pi0, eta, eta’)
 - Also charged mesons considered
 - Bottomonia: $\gamma \gamma \rightarrow \eta_b \rightarrow \gamma \gamma$ (sigma ~1pb)
 - Fake photons: Cosmic rays, calorimeter noise

Kristof Schmieden
Systematic Uncertainties

- Reco & PID SFs:
 - SFs derived in dependence of eta instead of p_T
 - Impact on measured C-factor taken as systematic unc.
 - 4% (Reco) 2% (PID)

- Photon energy scale & resolution
 - Taken from EGamma-group recommendations
 - 2% impact on MC yields, for both scale & resolution

- Angular resolution (in phi)
 - Comparing electron tracks to cluster in $yy\rightarrow ee$ events
 - Additional single cluster smearing in MC: $\sigma_\phi \approx 0.006$
 - Impact on CEP background: 1%
 - Impact on SFs: 2% (taken as systematic)
 \[
 \sigma_{\phi,\text{cluster}} \approx \frac{|\phi^{\text{cluster}1} - \phi^{\text{trk}1}| - |\phi^{\text{cluster}2} - \phi^{\text{trk}2}|}{\sqrt{2}}
 \]

- Trigger
 - Three ee event selection criteria defined: loose, nominal, tight
 - Difference between those taken as systematic unc.
 - Max. Uncertainty: +10% -4% @ E_T(cluster sum) 5 GeV
 - Overall: 2%

- Alternative LbyL signal sample
 - Starlight instead of SuperChic
 - 1% impact on C
 - Signal MC stats:
 - 1%

- Total: 7% on the detector correction factor C
Systematic Uncertainties

- **Reco & PID SFs:**
 - SFs derived in dependence of eta instead of p_T
 - Impact on measured C-factor taken as systematic unc.
 - 4% (Reco) 2% (PID)

- **Photon energy scale & resolution**
 - Taken from EGamma-group recommendations
 - 2% impact on MC yields, for both scale & resolution

- **Angular resolution (in phi)**
 - Comparing electron tracks to cluster in yy\rightarrowee events
 - Additional single cluster smearing in MC: $\sigma_\phi \approx 0.006$
 - Impact on CEP background: 1%
 - Impact on SFs: 2% (taken as systematic)

 $$\sigma_{\phi,\text{cluster}} \approx \left(|\phi_{\text{cluster}1} - \phi_{\text{trk}1}| - |\phi_{\text{cluster}2} - \phi_{\text{trk}2}| \right) \sqrt{2}$$

- **Trigger**
 - Three ee event selection criteria defined: loose, nominal, tight
 - Difference between those taken as systematic unc.
 - Max. Uncertainty: +10% -4% @ E_T(cluster sum) 5 GeV
 - Overall: 2%

- **Alternative LbyL signal sample**
 - Starlight instead of SuperChic
 - 1% impact on C
 - Signal MC stats:
 - 1%

- **Total: 7% on the detector correction factor C**

- **Uncertainty on total background: 21%**

Table 6: Impact of individual systematic variations on the expected number of background events in the signal region.

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEP Aco > 0.01 CR stat uncertainty</td>
<td>±0.06</td>
</tr>
<tr>
<td>CEP Superchic2 vs Superchic3 uncertainty</td>
<td>±0.09</td>
</tr>
<tr>
<td>ee CR stat uncertainty</td>
<td>±0.12</td>
</tr>
<tr>
<td>ee CR variation uncertainty</td>
<td>±0.11</td>
</tr>
<tr>
<td>ee p_T variation uncertainty</td>
<td>±0.07</td>
</tr>
<tr>
<td>EG scale uncertainty</td>
<td>±0.005</td>
</tr>
<tr>
<td>EG resolution uncertainty</td>
<td>±0.01</td>
</tr>
<tr>
<td>Photon angular resolution uncertainty</td>
<td>±0.01</td>
</tr>
<tr>
<td>Trigger uncertainty</td>
<td>±0.004</td>
</tr>
<tr>
<td>photon reco uncertainty</td>
<td>±0.002</td>
</tr>
<tr>
<td>photon PID uncertainty</td>
<td>±0.001</td>
</tr>
<tr>
<td>Total</td>
<td>±0.21</td>
</tr>
</tbody>
</table>
Results on 2015 data

- Very similar analysis, some optimisations missing
- 480µb⁻¹ of PbPb data recorded in 2015
- **First Evidence of Light-by-Light scattering** released in 2016 by ATLAS
 - Compatible result by CMS
- **13 Events observed**, Background: 2.6 ± 0.7
- Cross section:
 - Measured: 70 ± 20 (stat) ± 17 (sys) nb
 - SM expectations: 49 ± 5 nb
- Significance: **4.4σ** (3.8σ expected)
Results on 2018 data

- **2018 Data**: 1.7 nb\(^{-1}\) of PbPb data analysed

- **59 Events observed**, Background: 12 ± 3

- Cross section:
 - Measured: 78 ± 13 (stat) ± 8 (sys) nb
 - SM expectations: 49 ± 5 nb

- **Significance: 8.2\(\sigma\) (6.2\(\sigma\) expected)**

- Light-by-Light scattering of GeV photons observed

- Compatibility with SM prediction within 1.8 standard deviations
Active field:
- Phenomenological work: arxiv:1607.06083,
Interpretation - Search for new Axion Like Particles: CMS

- 0.39 nb⁻¹, E_T > 2 GeV, m > 5 GeV

- p_T (yy) < 1 GeV, |eta| < 2.4 => similar to ATLAS selection

- 14 events observed, 4 background events expected

- ALP limits statistically limited
- Factor 4 difference in statistics

- Expect ~2 times lower limits from ATLAS soon
Interpretation - Other Models

- Measurement can be transformed into limit on specific models beyond the standard model

- Born - Infeld theory
 - Nonlinear extension to QED
 - Imposing an upper limit of the EM field strength
 [Born and Infeld, Proc. R. Soc. A 144, 425 (1934)]
 - More recently: connection to string theory
 [Fradkin and Tseytlin, Infeld, Phys. Lett. 163B, 123 (1985)]
 - Differential Light-by-Light scattering cross section can be turned into limit on mass scale appearing in B-I theory

\[m_{\gamma\gamma} > 6 \text{ GeV}, \quad \text{Pb+Pb (\gamma\gamma)\rightarrow Pb^{(*)}+Pb^{(*)} \gamma} \]

\[\frac{\sigma_{\text{fid}}}{\text{nb}} \]

95% CL exclusion by ATLAS

\[\sqrt{\beta} \text{ [GeV]} \]

\[\sigma_{\text{fid}} \text{ [nb]} \]
Tau anomalous magnetic moment: $\gamma\gamma \rightarrow \tau\tau$

- Electromagnetic interaction - $\gamma\tau$

$$\mathcal{L} = \frac{1}{2} \bar{\tau}_L \sigma^{\mu\nu} \left(a_\tau \frac{e}{2m_\tau} - id_\tau \gamma_5 \right) \tau_R F_{\mu\nu}$$

$$a_\tau^{\text{exp}} = -0.018 \ (17)$$

$$a_\tau^{\text{pred, SM}} = 0.001 \ 177 \ 21 \ (5)$$

- $\gamma\gamma \rightarrow \tau\tau$ sensitive to electric & magnetic moments of tau!
 - a_τ: anomalous magnetic moment
 - d_τ: electric diplome moment

- Usage of UPC PbPb collisions suggest in 1991

- Sensitivity estimation at LHC brand new (Beresford & Liu)
 - 3x smaller uncertainties compared to LEP measurement

arXiv:1908.05180
Tau anomalous magnetic moment: $\gamma \gamma \rightarrow \tau \tau$

- $\gamma \gamma \rightarrow \tau \tau$ sensitive to electric & magnetic moments of tau!
 - a_τ: anomalous magnetic moment
 - d_τ: electric dipole moment
- Usage of UPC PbPb collisions suggest in 1991
- Sensitivity estimation at LHC brand new (Beresford & Liu)
 - 3x smaller uncertainties compared to LEP measurement
 - arXiv:1908.05180

Electromagnetic interaction - $\gamma \tau$

$$\mathcal{L} = \frac{1}{2} \tilde{\tau}_L \sigma^{\mu\nu} \left(a_\tau \frac{e}{2 m_\tau} - i d_\tau \gamma_5 \right) \tau_R F_{\mu\nu}$$

$$a_\tau^{\text{exp}} = -0.018 (17)$$
$$a_\tau^{\text{SM}} = 0.001 177 21 (5)$$

- a_e: Harvard06 (error bar $\times 10^9$)
- a_μ: BNL06 (error bar $\times 10^6$)
- a_τ: DELPHI04
 - 2 nb^{-1}, 10% syst
 - 2 nb^{-1}, 5% syst
 - 20 nb^{-1}, 5% syst
- SM a_τ^{pred} (error bar $\times 10^4$)
- SMEFT $a_\tau^{\text{pred}}, C_{\tau B} = -1$

$\alpha = (g - 2)/2$
Tau anomalous magnetic moment: $\gamma\gamma \to \tau\tau$

- **Challenges:**
 - **Trigger:**
 - Similar triggers as used in Light-by-Light scattering analysis
 - **Reconstruction:**
 - Rely on lepton and tracks reconstruction
 - Track reach down to 0.5 GeV is standard
 - **Selection**
 - 2 leptons with different flavour (very clean)
 - 1 lepton + 1 or 3 tracks
 - Difficult to tag photon initial state without requirement on $\Delta\phi$
Tau anomalous magnetic moment: $\gamma\gamma \rightarrow \tau\tau$

- **Challenges:**
 - **Trigger:**
 - Similar triggers as used in Light-by-Light scattering analysis
 - **Reconstruction:**
 - Rely on lepton and tracks reconstruction
 - Track reach down to 0.5 GeV is standard
 - **Selection**
 - 2 leptons with different flavour (very clean)
 - 1 lepton + 1 or 3 tracks
 - Difficult to tag photon initial state without requirement on $\Delta\phi$

- **Why are the tau-EM moments interesting?**
 - a_τ poorly measured
 - Sensitive to BSM physics:
 - Tests lepton compositeness
 - SUSY at scale $M_S \Rightarrow \delta a_\tau \sim m^2 / M_S^2$
 - τ way more sensitive than μ

- **Impact of BSM effects modelled in EFT vial 2 dim-6 operators:**

![Graph showing constraints on δa_τ](image)

arXiv:1908.05180

Why are the tau-EM moments interesting?

- a_τ poorly measured
- Sensitive to BSM physics:
 - Tests lepton compositeness
 - SUSY at scale $M_S \Rightarrow \delta a_\tau \sim m^2 / M_S^2$
 - τ way more sensitive than μ

Impact of BSM effects modelled in EFT vial 2 dim-6 operators:

![Graph showing constraints on δa_τ](image)

arXiv:1908.05180
Ongoing analysis in ATLAS

- Combine 2015 + 2018 data \(\Rightarrow 2.2 \text{ nb}^{-1}\)

- Lower \(E_T\) threshold to 2.5 GeV
 - Expect \(~90\) events

- Unfold measured distributions
- ALP limits
- Limits on EFT operators
Ongoing analysis in ATLAS

- Combine 2015 + 2018 data => 2.2 nb⁻¹
- Lower E_T threshold to 2.5 GeV
 - Expect ~90 events
- Unfold measured distributions
- ALP limits
- Limits on EFT operators

Where could we potentially go?

- **Lowering E_T threshold:**
 - Calorimeter cluster noise: 1 GeV
 - Exploit longitudinal boost
 - Cut on E (not E_T), $|\eta| < 2.5$
 - $M_{inv} \sim 1$ GeV
 - Trigger?
 - Difficult, even including topological requirements

- **pp collisions (~fb of data):**
 - Challenge: tagging of photon initial state
 - Dedicated low pileup runs
 - Proton tagging

- **Proton tagging**
 - Forward detectors in ATLAS: AFP
 - Different kinematic region:
 - $M_{inv} > 350$ GeV
First direct observation of Light-by-Light scattering at the ATLAS experiment
- Hi collisions from the LHC used as photon collider

Challenging measurement, very different from usual high energy analyses:
- Low energy objects
- Very little activity in detector
- Difficult to trigger

59 Events observed (12 background events expected)
- Measured fid. cross section for $m_{\gamma\gamma} > 6$ GeV: $\sigma = 78 \pm 15$ nb
 - Compatible with SM prediction

Useful to constrain several models beyond the standard model, e.g.
- Axion like particles
- Born-Infeld theory

Lepton final states sensitive to:
- G-2 (tau) measurement
• First direct **observation of Light-by-Light scattering** at the **ATLAS** experiment
 • Hi collisions from the LHC used as photon collider

• **Challenging measurement**, very different from usual high energy analyses:
 • Low energy objects
 • Very little activity in detector
 • Difficult to trigger

• **59 Events observed** (12 background events expected)
 • Measured fid. cross section for \(m_{\gamma\gamma} > 6 \text{ GeV} \): \(\sigma = 78 \pm 15 \text{ nb} \)
 • Compatible with SM prediction

• Useful to constrain several models beyond the standard model, e.g.
 • Axion like particles
 • Born-Infeld theory

• Lepton final states sensitive to:
 • G-2 (tau) measurement

What’s left to do?

• Refined measurement of differential distributions
 • Combination of 2015 & 2018 data \(\Rightarrow 2.1 \text{nb}^{-1}\)

• Derivation of improved limits on some BSM models

• Interpretations in the framework of effective couplings
Additional Kinematic Distributions

ATLAS

Pb+Pb $\sqrt{s_{NN}} = 5.02$ TeV

- Data 2018, 1.7 nb$^{-1}$
- Signal ($\gamma\gamma \rightarrow \gamma\gamma$
- CEP $gg \rightarrow \gamma\gamma$
- $\gamma\gamma \rightarrow ee$
- Sys. unc.

ATLAS

Pb+Pb $\sqrt{s_{NN}} = 5.02$ TeV

- Data 2018, 1.7 nb$^{-1}$
- Signal ($\gamma\gamma \rightarrow \gamma\gamma$
- CEP $gg \rightarrow \gamma\gamma$
- $\gamma\gamma \rightarrow ee$
- Sys. unc.

ATLAS

Pb+Pb $\sqrt{s_{NN}} = 5.02$ TeV

- Data 2018, 1.7 nb$^{-1}$
- Signal ($\gamma\gamma \rightarrow \gamma\gamma$
- CEP $gg \rightarrow \gamma\gamma$
- $\gamma\gamma \rightarrow ee$
- Sys. unc.

Kristof Schmieden
Electron studies

ATLAS

\[\text{Pb+Pb} \, \sqrt{s_{NN}} = 5.02 \text{ TeV} \]

ee selection

![Graph showing data and MC comparison](image)

Data 2018, 1.7 nb\(^{-1}\)

Sys. unc.

\[0.6, 0.8, 1.0, 1.2, 1.4 \]

Data / MC

\[0, 10, 20, 30, 40, 50, 60, 70, 80 \]

m_{ee} [GeV]
Details on peMistag

- Pixel tracks badly modelled in MC
- Chance to miss a pixel track if the track is not reconstructed:
 - Data: 47%, MC: 10%
- Nominal selection + 1 reconstructed track matched to a photon cluster:
 - Selects ee events
- Check how often one or two PIX tracks are reconstructed => p_{mistag}

\[
p_{N_{\text{Pix}}=0}^{\text{event}} = \left(p_{\text{mistag}}^e\right)^2
\]

\[
SR_{\text{expected}} = (N_{\text{events}}^{\text{CR}(N_{\text{PixTrk}}=1)} + N_{\text{events}}^{\text{CR}(N_{\text{PixTrk}}=2)}) \cdot \frac{p_{N_{\text{Pix}}=0}^{\text{event}}}{1 - p_{N_{\text{Pix}}=0}^{\text{event}}}
\]

![Graph showing pixel track multiplicity distribution for events satisfying signal selection except for $\gamma\gamma$ acoplanarity.](Image)

![Graph showing $\gamma\gamma$ acoplanarity distribution for events in control regions.](Image)
masses, angular and at much lower energies \cite{10, 11}. The cross sections, pair intermediate-energy photons, there is a pair-mass dependence only weakly on the pair mass \cite{5}. However, for real photons incident on a heavy atom, these Coulomb Maximon approach \cite{5}, and found that at RHIC, calculations.

Some early coupled-channel calculations predictive calculations of the process are questionable. Many the fine-structure constant), that conventional perturbative result \cite{8}. However, improved all-orders calculation also provides a convenient experimental trigger. In contrast, initial all-orders calculations based on solving the Dirac equation exactly in the ultra-relativistic limit \cite{7} found results that match the lowest-order perturbative result \cite{6}.

The energy of the reaction is the sum of two photons, while the nuclei exchange additional, in \cite{12}, as is shown in Fig. 1. An

Very useful to tag the ultra-peripheral collisions can be selected by choosing events where the nuclei undergo small ion-ion impact parameters, leading -o- order terms \cite{6}. Any higher-order corrections should be the largest seen in Fig. 2, where the mutual Coulomb dissociation is independent of the parameter \(b \) (different order terms \cite{6}).

The Coulomb nuclear breakup requirement selects in \cite{13, 14}, as is shown in Fig. 1. An

\[E_{ZDC_c} / \langle E_{1n} \rangle \]

ZDC cross check on CEP background

- **CEP control region:** \(A_\phi > 0.01 \)
 - Additionally require energy deposit in ZDC corresponding to at least 1 neutron

- Simulation normalised from control region compatible with data
 - But very limited statistics

- **ZDC energy deposits**
 - Single neutron peaks clearly visible

\[\gamma \gamma \text{ acoplanarity} \]

\[\begin{array}{c}
\text{Events / 0.01} \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array} \]

\[\begin{array}{c}
0.02 & 0.04 & 0.06 & 0.08 & 0.1 & 0.12
\end{array} \]

\[\begin{array}{c}
\text{ATLAS} \\
\text{Data, } n_{ZDC} \geq 1 \\
\text{Pb+Pb } \sqrt{s_{NN}} = 5.02 \text{ TeV}
\end{array} \]

\[\text{CEP } \gamma \gamma \text{ MC} \]

\[\text{2015 data set} \]

\[|< +\infty | \bar{\eta} < 8.3 | \eta | < 8.3 | \bar{\eta} > +\infty | \]

\[|< +\infty \! +\! 2 \pi | \bar{\eta} < 8.3 \! +\! \pi | \eta | < 8.3 \! +\! \pi | \bar{\eta} > +\infty \! +\! 2 \pi | \]

\[|< +\infty | \bar{\eta} < 8.3 | \eta | < 8.3 | \bar{\eta} > +\infty | \]

\[|< +\infty \! +\! 2 \pi | \bar{\eta} < 8.3 \! +\! \pi | \eta | < 8.3 \! +\! \pi | \bar{\eta} > +\infty \! +\! 2 \pi | \]

\[|< +\infty | \bar{\eta} < 8.3 | \eta | < 8.3 | \bar{\eta} > +\infty | \]

\[|< +\infty \! +\! 2 \pi | \bar{\eta} < 8.3 \! +\! \pi | \eta | < 8.3 \! +\! \pi | \bar{\eta} > +\infty \! +\! 2 \pi | \]

\[|< +\infty | \bar{\eta} < 8.3 | \eta | < 8.3 | \bar{\eta} > +\infty | \]
Di-Photon spectrum at low energies => Mesons exchange

Lebiedowicz et al.

Kristof Schmieden
The LHC

- **CERN's accelerator complex**

- **LHC:**
 - Usually operates with **proton @ 6.5 TeV** beam energy
 - ~1 month / per year:
 - **Lead** ions instead of protons

https://cds.cern.ch/record/2197559
The ATLAS Detector

- Size of a 6 story building
- 100M readout channels
- 2 staged trigger system
 - L1: hardware based
 - 40MHz -> 100kHz
 - L2: software based
 - 100kHz -> 1kHz
- 100 kHz readout
- 1 kHz to disk
 (~1.5 MB/event)

Kristof Schmieden
The ATLAS Detector

- ~100M readout channels
- 100kHz readout (~1.5 MB/event)
 - 1 kHz to disk
- ‘Textbook’ like multi purpose detector

- ATLAS coordinate system:
 - \(\eta = -\ln \tan(\theta/2) \), \(\phi \)

\(r, \phi, z \) cylindrical coordinates and \(\Theta \) - visualization