

Run: 367321 Event: 755541675 2018-12-01 08:30:26 CEST

Light-by-Light Scattering in ATLAS

GRK Seminar Freiburg, 06. Nov. 2019

Kristof Schmieden

ER

- The story starts in the **early 30ies**:
 - Dirac's theory developed and positrons discovered • Evident that light could scatter off light via pair-production (Halpern & Heisenberg)
 - Heisenberg, Euler, Kockel
 - Using effective Lagrangian to calculate cross section $(E_{\gamma} \ll m_e)$

• ~ 10^{-70} cm² for visible light, 10^{-30} cm² for γ -radiation [Naturwissensch. 23, 246, 1935], [Z. Phys. 98 (1936) 714]

- Exact calculation: loop calculation needed
 - Box diagram involving charged fermions and W-Boson

- Early experimental approach:
 - Search for scattering of visible photons using focused sunlight

[Hughes and Jauncey, Phys. Rev. (36 1930), 773]

Apparatus for a light-light scattering experiment: Figure 3 The two lenses C and D focus sun light on the same spot O in a light-tight box AB. The dark-adapted eye of an observer at the point P serves as the detector for scattered light.

No light was detected

- "Calculations show that if the photon has a cross" section, its area must be less than 3x10⁻²⁰ cm²."
- Cross section for visible light actually is:
 - 10⁻⁶⁰cm²!

- Observing Light-byLight scattering at the LHC
 - The ATLAS measurement

- What's next?
 - Sensitivity to axion-like particles & other BSM models
 - Ideas for measurement anomalous magnetic moment of the tau lepton

Overview of Light-by-Light scattering

- Several names known for Light-by-Light scattering
 Depending on number of virtual photons
 - Photon Photon scattering: 4 real photons
 - Pseudo-scalar meson production in S-channel
 - Photons splitting : 1 virtual, 3 real photons
 - Delbrück scattering [1933]: 2 virtual, 2 real photons
 - Lepton g-2: 3 virtual, 1 real photon

- Cross section box-diagram
 - Broken down by particle type in loop
- Cross section of elementary process: ~10 pb
- Source of photons?

Ultra Peripheral Heavy Ion Collisions - LHC as photon collider

- Relativistic nuclei are intense source of (quasi-real) photons
- Equivalent photon flux scales with Z⁴
 - PbPb beams at LHC are a superb source of high energy photons!
- Maximum photons energy:
 - $E_{max} <= \gamma/R \sim 80 \text{ GeV}$
 - Lorentz factor γ up to 2700 @ LHC

[Fermi, Nuovo Cim. 2 (1925) 143]

Ultra Peripheral Heavy Ion Collisions - LHC as photon collider

- Relativistic nuclei are intense source of (quasi-real) photons
- Equivalent photon flux scales with Z⁴
 - PbPb beams at LHC are a superb source of high energy photons!
- Maximum photons energy:
 - $E_{max} <= \gamma/R \sim 80 \text{ GeV}$
 - Lorentz factor γ up to 2700 @ LHC

[Fermi, Nuovo Cim. 2 (1925) 143]

- Various types of photon interactions possible
 - Photon-Pomeron: e.g. exclusive J/Psi production
 - Photons Gluon: photo production of jets
 - Photon Photon:
 - Producing fermion pairs (e.g. e+e-)
 - Light by Light scattering
 - QED interaction
 - Mediated via box-diagram
 - Beam particles stay intact

The LHC

- Bunch crossings every 25ns (40 MHz)
- ~60 simultaneous pp collision per

- Bunch crossings every 75ns (13 MHz)
- ~0.004 simultaneous PbPb collision
 - Only EM interaction in most bunch

• Used for photon physics

- Experimental signature:
 - 2 exclusive photons in the final state
 - \bullet Photons are back to back in ϕ
 - $A_{\phi} = 1 |\Delta \phi| / \pi < 0.01$
- Cross section steeply falling with increasing energy
 - Looking for low energy photons: $E_T > 3 \text{ GeV}$
- Very **unusual topology** and **energy range** for a high energy collider experiment
 - Interesting challenge :-)

2016: <u>Nature Physics 13 (2017) 852</u>

2019: <u>Phys.Rev.Lett. 123 (2019)</u>

How to measure the $\gamma\gamma \rightarrow \gamma\gamma$ process

• PbPb collision

Kristof Schmieden

• pp collision

• Light-by-Light scattering candidate event

• L1 requirements (OR):

- \geq 1 EM cluster with $E_T(\gamma) > 1$ GeV && 4 GeV < total $E_T < 200$ GeV
- \geq 2 EM clusters with $E_T(\gamma) > 1$ GeV & total $E_T < 50$ GeV

• HLT Requirements (AND):

- ΣE_T (FCal) < 3 GeV on both sides
- \leq 15 hits in pixel detector
 - Tagging of exclusive photon final state

• Support Triggers:

- Sum $E_T < 50$ GeV & FCal Veto & < 15 tracks & > 2 tracks
- HLT_mb_sptrk_exclusiveloose_vetosp1500_L1VTE20

• L1 requirements (OR):

- \geq 1 EM cluster with $E_T(\gamma) > 1$ GeV && 4 GeV < total $E_T < 200$ GeV
- \geq 2 EM clusters with $E_T(\gamma) > 1$ GeV &&

• HLT Requirements (AND):

- ΣE_T (FCal) < 3 GeV on both sides
- \leq 15 hits in pixel detector
 - Tagging of exclusive photon final state

• Support Triggers:

- Sum $E_T < 50$ GeV & FCal Veto & < 15 tracks & > 2 tracks
- HLT_mb_sptrk_exclusiveloose_vetosp1500_L1VTE20

Triggering

- Trigger efficiency determined using e+e- final states
 - Triggered by independent support triggers
- Applied to simulated events to correct yield

• Photon reconstruction:

- Using default photon reconstruction algorithm
 - Entries in calorimeter cells are grouped to clusters
 - Track matching performed
 - Electrons / Photons
 - Some overlap allowed

- Photon identification:
 - Uses neural net (Keras), trained for low E_T photons
 - Combination of EM calorimeter shower shape variables
 - Discrimination between photons, pions, electrons, noise

Photon reconstruction and identification

• Photon reconstruction:

- Using default photon reconstruction algorithm
 - Entries in calorimeter cells are grouped to clusters
 - Track matching performed
 - Electrons / Photons
 - Some overlap allowed

- Photon identification:
 - Uses neural net (Keras), trained for low E_T photons
 - Combination of EM calorimeter shower shape variables
 - Discrimination between photons, pions, electrons, noise

- Efficiency measurement:
 - Using e+e- events where a hard bremsstrahlung photon was radiated
 - $ee\gamma$ final state selection:
 - Exactly 1 electron $p_T > 4$ GeV && 1 additional track
 - Track $p_T < 1.5 \text{ GeV}$
 - Photon with $E_T > 2.5$ GeV must be present in Event!

• Trigger

- Exactly 2 photons with $E_T > 3 \text{ GeV \& } |\eta| < 2.37$ Excluding $1.37 < |\eta| < 1.52$
- Invariant di-photon mass $M_{\gamma\gamma} > 6 \text{ GeV}$
- Veto any extra particle activity within $|\eta| < 2.5$
 - No reconstructed tracks ($p_T > 100 \text{ MeV}$)
 - No reconstructed pixel tracks ($p_T > 50$ MeV, $|\Delta \eta (\gamma, \text{track})| < 0.5$)
- Back-to-Back topology
 - $p_T(\gamma\gamma) < 2 \text{ GeV}$ (rejects cosmic muons)
 - Reduced acoplanarity < 0.01 ($A_{\phi} = 1 |\Delta \phi| / \pi$)

Event Selection

$\eta\eta \rightarrow e^+e^- \rightarrow e\gamma e\gamma$ candidate event:

How to measure the $\gamma\gamma \rightarrow \gamma\gamma$ process

- What else has a similar signature?
- Central Exclusive Production of 2 photons (**CEP**): $gg \rightarrow \gamma\gamma$
 - Coloured initial state: significant intrinsic transverse momentum!
 - Broader shape of A_{ϕ} distribution
 - Control region defined to study CEP: aco > 0.01
- Shape of A_{ϕ} distribution taken from simulation (SuperChic v3.0)
 - Uncertainty estimated using simulation without secondary particle emission (absorptive effects)
- Normalisation measured in control region
 - Dominating uncertainty form limited statistics (17%)
- Overall uncertainty of CEP background in signal region: 20%
- Expected events in signal region: 5 ± 1

Background processes

How to measure the $\gamma\gamma \rightarrow \gamma\gamma$ process

- What else has a similar signature?
- Central Exclusive Production of 2 photons (**CEP**): $gg \rightarrow \gamma\gamma$
 - Coloured initial state: significant intrinsic transverse momentum!
 - Broader shape of A_{ϕ} distribution
 - Control region defined to study CEP: aco > 0.01
- Shape of A_{ϕ} distribution taken from simulation (SuperChic v3.0)
 - Uncertainty estimated using simulation without secondary particle emission (absorptive effects)
- Normalisation measured in control region
 - Dominating uncertainty form limited statistics (17%)
- Overall uncertainty of CEP background in signal region: 20%
- Expected events in signal region: 5 ± 1

• Pb* dissociates, releasing neutrons detectable in the Zero Degree Calorimeter

- Cross check of ZDC information for events in CEP control region:
 - Good agreement with expectations :)

Kristof Schmieden

Background processes

• ± 140m from ATLAS IP • 8.3 < $|\eta|$ < inf

ZDC cross check on CEP background

- ZDC energy deposits
 - Single neutron peaks clearly visible

More quantitatively

• Expected that all CEP events have a signal in ZDC • 20% of yy and ee final states

• Can calculated expected ratio of events with / without ZDC activity

$$r_{\text{ZDC/noZDC}}^{\text{pred}} \approx \frac{\text{CEP} + 0.2 * (\text{signal} + ee)}{0.8 * (\text{signal} + ee)}$$

• For $E_T > 3$ GeV: • r(pred.) = 1.5(0.5), r(meas) = 0.8

• To compensate difference: • Raise in the ee background yield of 20% needed • Well covered by uncertainty of 40%

How to measure the $\gamma\gamma \rightarrow \gamma\gamma$ process

- What else has a similar signature?
- Exclusive production of e+e- electron pairs
 - Both electrons misidentified as photons
- Electrons bent in magnetic field
 - Broader A_{ϕ} distribution compared to signal
- Background rate estimated from data
 - 2 control regions:
 - Signal region + requiring 1 or 2 associated pixel tracks
 - Event yield from control regions extrapolated to signal region
 Needed: probability to miss pixel track if full track is not reconstructed pemistag
 - p_{mistag} measured requiring 1 full track and exactly 2 signal photons: $(47 \pm 9)\%$

Background processes

How to measure the $\gamma\gamma \rightarrow \gamma\gamma$ process

- What else has a similar signature?
- Other potential backgrounds found to be negligible:
 - $\gamma\gamma \rightarrow qq$
 - Exclusive di-meson production (pi0, eta, eta')
 Also charged mesons considered
 - Bottomonia: $\gamma \gamma \rightarrow \eta_b \rightarrow \gamma \gamma$ (sigma ~1pb)
 - Fake photons: Cosmic rays, calorimeter noise

Kristof Schmieden

• Total background + signal:

Systematic Uncertainties

- Reco & PID SFs:
 - SFs derived in dependence of eta instead of p_T
 - Impact on measured C-factor taken as systematic unc.
 - 4% (Reco) 2% (PID)
- Photon energy scale & resolution
 - Taken from EGamma-group recommendations
 - 2% impact on MC yields, for both scale & resolution
- Angular resolution (in phi)
 - Comparing electron tracks to cluster in yy->ee events
 - Additional single cluster smearing in MC: $\sigma_{\phi} \approx 0.006$
 - Impact on CEP background: 1%
 - Impact on SFs: 2% (taken as systematic)

$$\sigma_{\phi^{\text{cluster}}} \approx \frac{(|\phi^{\text{cluster}1} - \phi^{\text{trk}1}| - |\phi^{\text{cluster}2} - \phi^{\text{trk}2}|)}{\sqrt{2}}$$

- Trigger
 - Three ee event selection criteria defined: loose, nominal, tight
 - Difference between those taken as systematic unc.
 - Max. Uncertainty: +10% -4% @ E_T(cluster sum) 5 GeV
 - Overall: 2%

Kristof Schmieden

- Alternative LbyL signal sample
 - Starlight instead of SuperChic
 - 1% impact on C
 - Signal MC stats:
 - 1%

• Total: 7% on the detector correction factor C

Systematic Uncertainties

- Reco & PID SFs:
 - SFs derived in dependence of eta instead of p_T
 - Impact on measured C-factor taken as systematic unc.
 - 4% (Reco) 2% (PID)
- Photon energy scale & resolution
 - Taken from EGamma-group recommendations
 - 2% impact on MC yields, for both scale & resolution
- Angular resolution (in phi)
 - Comparing electron tracks to cluster in yy->ee events
 - Additional single cluster smearing in MC: $\sigma_{\phi} \approx 0.006$
 - Impact on CEP background: 1%
 - Impact on SFs: 2% (taken as systematic)

$$\sigma_{\phi^{\text{cluster}}} \approx \frac{(|\phi^{\text{cluster}1} - \phi^{\text{trk}1}| - |\phi^{\text{cluster}2} - \phi^{\text{trk}2}|)}{\sqrt{2}}$$

- Trigger
 - Three ee event selection criteria defined: loose, nominal,
 - Difference between those taken as systematic unc.
 - Max. Uncertainty: +10% -4% @ E_T(cluster sum) 5 Ge\
 - Overall: 2%

Kristof Schmieden

- Alternative LbyL signal sample
 - Starlight instead of SuperChic
 - 1% impact on C
 - Signal MC stats:
 - 1%

• Total: 7% on the detector correction factor C

• Uncertainty on total background: 21%

	Source of uncertainty	Variat
	CEP Aco > 0.01 CR stat uncertainty	±0.0
	CEP Superchic2 vs Superchic3 uncertainty	± 0.0
	ee CR stat uncertainty	±0.1
	ee CR variation uncertainty	±0.1
	ee $p_{\text{mistag}}^{\text{e}}$ variation uncertainty	± 0.0
	EG scale uncertainty	±0.0
	EG resolution uncertainty	± 0.0
	Photon angular resolution uncertainty	± 0.0
tight	Trigger uncertainty	± 0.0
	photon reco uncertainty	± 0.0
	photon PID uncertainty	± 0.0
V	Total	± 0.2
		•

Results on 2015 data

- Very similar analysis, some optimisations missing
 - 480µb⁻¹ of PbPb data recorded in 2015
 - First Evidence of Light-by-Light scattering released in 2016 by ATLAS • Compatible result by CMS

- **13 Events observed**, Background: 2.6 ± 0.7
- Cross section:
 - 70 ± 20 (stat) ± 17 (sys) nb • Measured:
 - SM expectations: 49 ± 5 nb
- Significance: **4.4** σ (3.8 σ expected)

Results on 2018 data

- 2018 Data: 1.7 nb⁻¹ of PbPb data analysed
 - **59 Events observed**, Background: 12 ± 3
 - Cross section:
 - Measured: 78 ± 13 (stat) ± 8 (sys) nb
 - SM expectations: 49 ± 5 nb
 - Significance: 8.2 σ (6.2 σ expected)

• Light-by-Light scattering of GeV photons observed

• Compatibility with SM prediction within 1.8 standard deviations

Interpretation - Search for new Axion Like Particles

- Being interesting in it's own right, there's more to learn from this result:
 - Measurement can be transformed into limits on specific models beyond the standard model
- Axion like particles:
 - (pseudo-) scalar particles that are too heavy to solve strong CP problem • Will couple to photons, may couple to anything else
 - Identical signature as Light-by-Light scattering
 - Resonant behaviour

Active field:

- Phenomenological work: <u>arxiv:1607.06083</u>,
- Latest CMS result: Phys.Lett. B797 (2019)

Interpretation - Search for new Axion Like Particles: CMS

- 0.39 nb⁻¹, E_T > 2 GeV, m > 5 GeV
 - $p_T(yy) < 1$ GeV, |eta| < 2.4 => similar to ATLAS selection
 - 14 events observed, 4 background events expected
- ALP limits statistically limited
 - Factor 4 difference in statistics
 - Expect ~2 times lower limits from ATLAS soon

• Measurement can be transformed into limit on specific models beyond the standard model

- Born Infeld theory
 - Nonlinear extension to QED
 - Imposing an upper limit of the EM field strength [Born and Infeld, Proc. R. Soc. A 144, 425 (1934)]
 - More recently: connection to string theory [Fradkin and Tseytlin, Infeld, Phys. Lett. 163B, 123 (1985)]

 Differential Light-by-Light scattering cross section can be turned into limit on mass scale appearing in B-I theory

• $\gamma\gamma \rightarrow \tau\tau$ sensitive to electric & magnetic moments of tau!

- a_{τ} : anomalous magnetic moment
- d_r: electric diplome moment
- Usage of UPC PbPb collisions suggest in 1991

Phys.Lett. B271 (1991) 256-260

- Sensitivity estimation at LHC brand new (Beresford & Liu)
 - 3x smaller uncertainties compared to LEP measurement

<u>arXiv:1908.05180</u>

• Electromagnetic interaction - $\gamma\tau$

$$\mathcal{L} = \frac{1}{2} \bar{\tau}_{\mathrm{L}} \sigma^{\mu\nu} \left(a_{\tau} \frac{e}{2m_{\tau}} - \mathrm{i} d_{\tau} \gamma_5 \right) \tau_{\mathrm{R}} F_{\mu\nu}$$

$$a_{\tau}^{\text{exp}} = -0.018(17)$$

 $a_{\tau, \text{SM}}^{\text{pred}} = 0.00117721(5)$

• $\gamma\gamma \rightarrow \tau\tau$ sensitive to electric & magnetic moments of tau!

- a_{τ} : anomalous magnetic moment
- d_r: electric diplome moment
- Usage of UPC PbPb collisions suggest in 1991

Phys.Lett. B271 (1991) 256-260

- Sensitivity estimation at LHC brand new (Beresford & Liu)
 - 3x smaller uncertainties compared to LEP measurement

<u>arXiv:1908.05180</u>

• Electromagnetic interaction - $\gamma\tau$

$$\mathcal{L} = \frac{1}{2} \bar{\tau}_{\mathrm{L}} \sigma^{\mu\nu} \left(a_{\tau} \frac{e}{2m_{\tau}} - \mathrm{i} d_{\tau} \gamma_5 \right) \tau_{\mathrm{R}} F_{\mu\nu}$$

$$a_{\tau}^{\text{exp}} = -0.018 \,(17)$$

 $a_{\tau, \,\text{SM}}^{\text{pred}} = 0.001 \,177 \,21 \,(5)$

- Challenges:
 - Trigger:
 - Similar triggers as used in Light-by-Light scattering analysis
 - Reconstruction:
 - Rely on lepton and tracks reconstruction
 - Track reach down to 0.5 GeV is standard
- Selection
 - 2 leptons with different flavour (very clean)
 - 1 lepton + 1 or 3 tracks
 - Difficult to tag photon initial state without requirement on $\Delta \phi$

Kristof Schmieden

= 45.6%

- Challenges:
- Selection

Summary

- First direct observation of Light-by-Light scattering at the ATLAS experiment
 - Hi collisions from the LHC used as photon collider

• Challenging measurement, very different from usual high energy analyses:

- Low energy objects
- Very little activity in detector
 - Difficult to trigger

• 59 Events observed (12 background events expected)

• Measured fid. cross section for $m_{\gamma\gamma} > 6$ GeV: $\sigma = 78 \pm 15$ nb

Compatible with SM prediction

• Useful to constrain several models beyond the standard model, e.g.

- Axion like particles
- Born-Infeld theory
- Lepton final states sensitive to:
 - G-2 (tau) measurement

Summary

- First direct observation of Light-by-Light scattering at the ATLAS experiment
 - Hi collisions from the LHC used as photon collider

• Challenging measurement, very different from usual high energy analyses:

- Low energy objects
- Very little activity in detector
 - Difficult to trigger

59 Events observed (12 background events expected)

• Measured fid. cross section for $m_{\gamma\gamma} > 6$ GeV: $\sigma = 78 \pm 15$ nb

Compatible with SM prediction

• Useful to constrain several models beyond the standard model, e.g.

- Axion like particles
- Born-Infeld theory
- Lepton final states sensitive to:
 - G-2 (tau) measurement

Kristof Schmieden

What's left to do?

- Refined measurement of differential distributions
 - Combination of 2015 & 2018 data => 2.1nb⁻¹
- Derivation of improved limits on some BSM models
- Interpretations in the framework of effective couplings

Additional Kinematic Distributions

Kristof Schmieden

2018: arXiv:1904.03536

Kristof Schmieden

2018: arXiv:1904.03536

Details on peMistag

• Pixel tracks badly modelled in MC

• Chance to miss a pixel track if the track is not reconstructed:

- - Selects ee events
- are reconstructed => $p^{e_{mistag}}$

$$p_{N_{\rm Pix}=0}^{\rm event} = \left(p_{\rm mistag}^{\rm e}\right)^2$$


```
    Nominal selection + 1 reconstructed

track matched to a photon cluster:
```

```
• Check how often one or two PIX tracks
```


ZDC cross check on CEP background

- CEP control region: $A_{\phi} > 0.01$
 - Additionally require energy deposit in ZDC corresponding to at least 1 neutron
- Simulation normalised from control region compatible with data
 - But very limited statistics

• ZDC energy deposits

• Single neutron peaks clearly visible

Di-Photon spectrum at low energies => Mesons exchange

 10^{7} σ (pb) $|\cos\theta| < 0.6$ $\gamma\gamma \rightarrow \gamma\gamma$, fermionic contributions leptons 10^{5} ---- quarks mesonic contributions scalars ---- pseudoscalars 10^{3} tensors 10 10^{-1} 10^{-3} 3 2 \sqrt{s} (GeV)

The LHC

- CERN's accelerator complex
- LHC:
 - Usually operates with **proton** @ 6.5 TeV beam energy
 - ~1 month / per year:
 - Lead ions instead of protons

The ATLAS Detector

- Size of a 6 story building
- 100M readout channels
- 2 staged trigger system
 - L1: hardware based • 40MHz -> 100kHz
 - L2: software based • 100kHz -> 1kHz
- 100 kHz readout
- 1 kHz to disk (~1.5 MB/event)

The ATLAS Detector

- ~100M readout channels
- 100kHz readout (~1.5 MB/event)
 - 1 kHz to disk
- 'Textbook' like multi purpose detector
- ATLAS coordinate system:
 - $\eta = -\ln \tan(\theta/2), \phi$

