
Rainer Sommer 
John von Neumann Institute for Computing, DESY  

& 
Humboldt Universität zu Berlin

Freiburg by zoom, January 27, 2021

How strong are the strong 
interactions?



Rainer Sommer | MIT | December 2019

Particle physics - the quest for the fundamental theory 

dark matter
matter/anti-matter asy
(strings, extra dimensions, 
…)  

Standard Model  
       (+ neutrino mass terms)
    = strong + weak 
       + electromagnetic

electromagnetic 
 + Fermi-theory 

en
er

gytoday’s frontier

our focus



Rainer Sommer | MIT | December 2019

Particle physics - the quest for the fundamental theory 

dark matter
matter/anti-matter asy
(strings, extra dimensions, 
…)  

Standard Model  
       (+ neutrino mass terms)
    = strong + weak 
       + electromagnetic

electromagnetic 
 + Fermi-theory 

en
er

gytoday’s frontier

our focus

 [GeV]HM
80 100 120 140 160 180 200

H
ig

g
s 

B
R

 +
 T

o
ta

l U
n

ce
rt

-410

-310

-210

-110

1

L
H

C
 H

IG
G

S
 X

S
 W

G
 2

0
1

3

bb

ττ

µµ

cc

gg

γγ γZ

WW

ZZ



QCD and the Particle Data Group review

The strong coupling

τ-decays
lattice

structure
functions

e
+e

–jets & shapes

hadron 
collider

electroweak
precision "ts

Baikov

ABM
BBG
JR

MMHT
NNPDF

Davier
Pich
Boito
SM review

HPQCD (Wilson loops)

HPQCD (c-c correlators)

Maltmann (Wilson loops)

Dissertori (3j)

JADE (3j)

DW (T)

Abbate (T)

Gehrm. (T)

CMS 
  (tt cross section)

GFitter

Hoang 
  (C)

JADE(j&s)

OPAL(j&s)

ALEPH (jets&shapes)

PACS-CS (SF scheme)

ETM (ghost-gluon vertex)

BBGPSV (static potent.)

April 2016

How strong are the  
strong interactions?



Rainer Sommer | Univ. Freiburg | January 2021

QCD

‣ Theory of strong interactions

‣ Quantum Field theory with Lagrangian 
 
 

‣ Fields: gluons and quarks 

‣ But particles: hadrons 
             p, n, !, K,…   confinement!

‣ Definition of coupling is not straight forward 
(we do e.g. not want the !-! coupling)

name Char mass in M
up 2/3 5

down -1/3 10
charm 2/3 1000
strange -1/3 100

top 2/3 175000
bottom -1/3 42000

LQCD = � 1

2g02
tr Fµ⌫Fµ⌫ +

NfX

f=1

 f {D +m0f} f



Rainer Sommer | Univ. Freiburg | January 2021

QCD coupling

‣ Theorists:  
 
take                     dimensions 
subtract poles in          …   ←  no physics



QCD coupling

Analogous to

Quark as test charge  

force in PT: 

define: 
 
 
                                        

••

Fpe(r) = ↵em
1

r2

Q with mQ ! 1
Q
_

Q
. .

x y

r = |x� y|

FQQ̄(r) = ↵MS(µ)
4

3

1

r2
+O(↵2

MS
)

↵qq(µ) = ↵MS(µ) + c1↵
2
MS

(µ) + . . .
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⇢
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QCD coupling
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perturbatively defined 
by such relations

makes sense for ↵ ⌧ 1
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Energy dependence: Asymptotic freedom

> 0, independent of scheme(=definition) s

µ
@

@µ
ḡs(µ) = �s(ḡs) = �ḡ3s (b0 + b1ḡ

2
s + . . .)

Taylor series in ↵s = ḡ2s/(4⇡) is reliable at large energy  µ‣  

‣ Reach large energy, with precision

‣ Determine       in some scheme s 

‣ Use PT —>  predictions for high energy processes 
in terms of perturbative series, e.g. for LHC  

↵s
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A look at phenomenology,  e.g.  Re+e-

4 9. Quantum chromodynamics

9.1.2. Quark masses :

Free quarks have never been observed, which is understood as a result of a long-
distance, confining property of the strong QCD force. Up, down, strange, charm, and
bottom quarks all hadronize, i.e. become part of a meson or baryon, on a timescale
∼ 1/Λ; the top quark instead decays before it has time to hadronize. This means that
the question of what one means by the quark mass is a complex one, which requires that
one adopts a specific prescription. A perturbatively defined prescription is the pole mass,
mq, which corresponds to the position of the divergence of the propagator. This is close
to one’s physical picture of mass. However, when relating it to observable quantities, it
suffers from substantial non-perturbative ambiguities (see e.g. Ref. 19). An alternative is
the MS mass, mq(µ2

R), which depends on the renormalization scale µR.

Results for the masses of heavier quarks are often quoted either as the pole mass or
as the MS mass evaluated at a scale equal to the mass, mq(m2

q); light quark masses are

often quoted in the MS scheme at a scale µR ∼ 2 GeV . The pole and MS masses are

related by a slowly converging series that starts mq = mq(m2
q)(1 +

4αs(m2
q)

3π
+ O(α2

s)),

while the scale-dependence of MS masses is given by

µ2
R

dmq(µ2
R)

dµ2
R

=

[

−
αs(µ2

R)

π
+ O(α2

s)

]

mq(µ
2
R) . (9.6)

More detailed discussion is to be found in a dedicated section of the Review, “Quark
Masses.”

9.2. Structure of QCD predictions

9.2.1. Fully inclusive cross sections :

The simplest observables in QCD are those that do not involve initial-state hadrons
and that are fully inclusive with respect to details of the final state. One example is the
total cross section for e+e− → hadrons at center-of-mass energy Q, for which one can
write

σ(e+e− → hadrons, Q)

σ(e+e− → µ+µ−, Q)
≡ R(Q) = REW(Q)(1 + δQCD(Q)) , (9.7)

where REW(Q) is the purely electroweak prediction for the ratio and δQCD(Q) is the
correction due to QCD effects. To keep the discussion simple, we can restrict our
attention to energies Q % MZ , where the process is dominated by photon exchange
(REW = 3

∑

q e2
q , neglecting finite-quark-mass corrections, where the eq are the electric

charges of the quarks),

δQCD(Q) =
∞
∑

n=1

cn ·
(

αs(Q2)

π

)n

+ O
(

Λ4

Q4

)

. (9.8)
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Re+e�(Q) =
�(e+e� ! hadrons)

�(e+e� ! µ+µ�)

determine ↵s(µ = Q)
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6 50. Plots of cross sections and related quantities

R in Light-Flavor, Charm, and Beauty Threshold Regions
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Figure 50.6: R in the light-flavor, charm, and beauty threshold regions. Data errors are total below 2 GeV and statistical above 2 GeV.
The curves are the same as in Fig. 50.5. Note: CLEO data above Υ(4S) were not fully corrected for radiative effects, and we retain
them on the plot only for illustrative purposes with a normalization factor of 0.8. The full list of references to the original data and
the details of the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. The computer-readable data are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, May 2010.)
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PT does not really work:
Non-perturbative “effects”

particle (= hadrons) — production 
partial solution: go to Euclidean region (smearing, moments)
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Determinations of "s

‣ high energy experiment + phenomenology is  
very challenging (as we just saw)

‣ alternative: 
low energy experiment + “simulation”  
                                         = MC-evaluation of  
                                            discretized path integral 
 
                                   hadron masses / properties 
      
                                    parameters of theory 
                                    

↵qq(µ) ⌘
3r2

4
FQQ̄(r) , µ =

1

r

4 Step scaling for short distances and large volume

For six di↵erent lattice spacings a, Wilson loops have been measured with total statistic of Nwl, listed
in table 1. The coupling g2

qq(r, a) at finite lattice spacing a was derived from Wilson loops applying the
analysis described in [22] with only one di↵erence: the parallel transporters in time are the dynamical
gauge fields (no smearing) and statistical errors are reduced by the multi-hit technique [23].

To extrapolate the coupling to its continuum value we used two di↵erent strategies. In the regime
of intermediate distances the scale was set at r0 [24] and the coupling g2

qq(r, a) was extrapolated to
the continuum at r/r0 = 0.3, 0.4, . . . , 1.1. In the short distance regime (r  0.45r0) the continuum
extrapolation of the coupling g2

qq(r) was performed using step scaling.
Originally used to bridge large scale di↵erences in finite volume couplings [25], we use it here to

extrapolate from large to small distances, in large volume.

0 0.5 1
0

5

10

15

20

r/r0

g2 qq
(r

)

continuum limit
step scaling

step scaling
r  0.45r0

Figure 3: Six step scaling iterations starting
from r⇤ = 0.45r0 reaching down to r ⇡ 0.1r0
and the continuum limit for the large distance
regime.
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(a/r)2

g2 qq
(s

k r ⇤
,a
/r

)/
u

⇢ , 0
⇢ = 0

Figure 4: Continuum limit eq. (14) of the step
scaling function with (⇢ , 0) and without
(⇢ = 0) slope. Red markers are shifted for
visualization.

In an iterative process one computes the step
scaling function

g2
qq(sr) = �(s, g2

qq(r)) , s = 0.75 (11)

with scale factor s. The step scaling function �
is a discrete � function. Starting at a given point
(g2

qq(r⇤) = u0) a series is formed by applying the
step scaling function iteratively:

u0 = g
2
qq(r⇤) r⇤ = 0.45r0

u1 = g
2
qq(sr⇤) = �(s, u0)

u2 = g
2
qq(s2r⇤) = �(s, u1)
...

u5 = g
2
qq(s5r⇤) = �(s, u4)

In this way one can reach down from r⇤ = 0.45r0
to r5 = s5r⇤ ⇡ 0.11r0, visualized in fig. 3. In each
iteration one has to compute the lattice equivalent
⌃ of the step scaling function, which has an addi-
tional dependence on the lattice spacing a,

g2
qq(sr, a) = ⌃(s, u, a/r) |g2

qq(r,a)=u (12)

and perform its continuum extrapolation,

�(s, u) = lim
a/r!0

⌃(s, u, a/r) , (13)

which is the starting point of the next iteration. The
extrapolation to a/r ! 0 is performed as a linear
fit

⌃(s, u, a/r) = �(s, u){1 + ⇢ (a/r)2} (14)

with slope ⇢(u) and continuum value�(s, u). To test our treatment of cut o↵ e↵ects we extrapolate with
and without slope ⇢, where the extrapolation without slope is constrained to data points (a/r)2  0.05

/ 1/µ

4⇡ ↵

example: pure gauge theory, very fine lattice;  Husung, Koren, Krah, S. 2017

Lattice 
QCD
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Lattice QCD in a nutshell
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‣ Euclidean Green functions  
                                  

 

 
—> access to energy levels  and matrix elements  
 
 
 

  

 

  

                        

‣ Euclidean  lattice path integral: ordinary integral over  variables 

‣ Monte Carlo integration called “Simulation”, importance sampling, get low lying spectrum and 
more  
 

G(τ) = ⟨0 | ̂q e−Ĥτ ̂q |0⟩ = ∑
n

|αn |2 e−(En−E0)τ , αn = ⟨n | ̂q |0⟩ , Ĥ = V( ̂q) + ̂p2

2m

En αn

G(τ) = lim
T→∞

∫ [∏i dqi]e−S[q] qn q0

∫ [∏i dqi]e−S[q]
, τ = n a

S[q] =
N−1

∑
i=0

V(qi) + m
2 ( qi+1 − qi

a )
2

= ∫
T

0
dt [V(q(t)) + m

2 ( dq
dt )

2
] + O(a2)

qj = q( j a)

qj, j = 1,…, N − 1 , N = T/a

“Simulating” Quantum Mechanics



QCD

‣ quarks: 3-vectors in color space 
 

           ψ(x) =
ψ1(x)
ψ2(x)
ψ3(x)

∈ ℂ

‣ gauge invariance 
 
             Λ(x) ∈ SU(3) : ψ(x) → ψΛ(x) = Λ(x) ψ(x)

‣ together with locality, unitarity, causality this fixes almost ( -term ) entirely the 
Lagrangian  
gluons come through gauge invariance (minimal coupling)

θ

‣ apart from quark masses only one parameter: strong coupling αs
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Simulating QCD

discrete space-time, spacing -, hyper-cubic lattice

gluons:   

on links

U(x, μ) = . exp {a ∫
1

0
ds Aμ(x + a(1 − s) ̂μ)} ∈ SU(3)

Euclidean action:  
 

       

 
      

S = SG + SF

SG = 1
g2

0 ∑
p

tr {1−U(p)},

SF = a4 ∑
x

ψ̄(x) (D(U) + m) ψ(x) , D(U) : discretized Dirac operator

Path integral expectation values,      by MC integration 

take :   THE definition of QCD

⟨O⟩ = Z−1 ∫fields
O e−S

a → 0

a

a
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Simulating QCD

hadron Green function

  

 

evaluated by MC, importance sampling, only ~1000 MC “events”=“configurations” 
 
error  ,    
                                         algorithmic, “critical slowing down”

 
 

Gπ(τ) = ⟨0 | ̂π e−Ĥτ ̂π† |0⟩ = ∑
n

|αn |2 e−(En(π)−E0)τ

Ĥ = latt. QCD hamiltonian E1(π) − E0 = mπ

∝ 1/ # configs computer time ∝ (L /a)3T/a × (aΛ)−z

z ≈ 2

ameff
π (τ) ≡ log(Gπ(τ)/Gπ(τ + a)) = mπ + O(e−(E2(π)−mπ)τ)

a

a

 0.44
 0.46
 0.48
 0.5

 0.52
 0.54
 0.56
 0.58
 0.6

 0.62
 0.64

 10  20  30  40  50  60

m
PS

ef
f

x0

mπ
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“Solving” (lattice) QCD (logics)

simulate with

compute  
 
tune parameters until  
 
 
repeat with smaller 
and smaller   

compute e.g. 

extrapolate to 

  = (bare) parameters  
 

 
 

  

 
 
smaller and smaller   
 
 
 

  continuum limit

g0

αqq (r = const . /mproton)

{amu = amd, ams, g0}

amπ, amK, amproton

{ amπ

amproton
, amK

amproton } = { mπ

mproton
, mK

mproton }
experimental

a mproton

a mproton → 0
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of intermediate distances the scale was set at r0 [24] and the coupling g2

qq(r, a) was extrapolated to
the continuum at r/r0 = 0.3, 0.4, . . . , 1.1. In the short distance regime (r  0.45r0) the continuum
extrapolation of the coupling g2

qq(r) was performed using step scaling.
Originally used to bridge large scale di↵erences in finite volume couplings [25], we use it here to

extrapolate from large to small distances, in large volume.
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g2 qq
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step scaling
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r  0.45r0

Figure 3: Six step scaling iterations starting
from r⇤ = 0.45r0 reaching down to r ⇡ 0.1r0
and the continuum limit for the large distance
regime.
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Figure 4: Continuum limit eq. (14) of the step
scaling function with (⇢ , 0) and without
(⇢ = 0) slope. Red markers are shifted for
visualization.

In an iterative process one computes the step
scaling function

g2
qq(sr) = �(s, g2

qq(r)) , s = 0.75 (11)

with scale factor s. The step scaling function �
is a discrete � function. Starting at a given point
(g2

qq(r⇤) = u0) a series is formed by applying the
step scaling function iteratively:

u0 = g
2
qq(r⇤) r⇤ = 0.45r0

u1 = g
2
qq(sr⇤) = �(s, u0)

u2 = g
2
qq(s2r⇤) = �(s, u1)
...

u5 = g
2
qq(s5r⇤) = �(s, u4)

In this way one can reach down from r⇤ = 0.45r0
to r5 = s5r⇤ ⇡ 0.11r0, visualized in fig. 3. In each
iteration one has to compute the lattice equivalent
⌃ of the step scaling function, which has an addi-
tional dependence on the lattice spacing a,

g2
qq(sr, a) = ⌃(s, u, a/r) |g2

qq(r,a)=u (12)

and perform its continuum extrapolation,

�(s, u) = lim
a/r!0

⌃(s, u, a/r) , (13)

which is the starting point of the next iteration. The
extrapolation to a/r ! 0 is performed as a linear
fit

⌃(s, u, a/r) = �(s, u){1 + ⇢ (a/r)2} (14)

with slope ⇢(u) and continuum value�(s, u). To test our treatment of cut o↵ e↵ects we extrapolate with
and without slope ⇢, where the extrapolation without slope is constrained to data points (a/r)2  0.05

/ 1/µ

4⇡ ↵
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A lot of progress in recent years

‣ a lot of progress in recent years

• concepts

• algorithms  
 
 
 

• computers

‣ precise results are possible

‣ but "(4) is a challenge

year Cost to generate one  96x483 
configuration [hours on 512 cores]

2001 17000       “Berlin wall”

2015         5       Hasenbusch preconditioning, multigrid/deflation,  
                      open BC 
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Solution: finite volume ! = 1/L



Running from Observables in finite volume
Non-perturbative running of ↵

[ LPHAA
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Step Scaling Function: Connects L → 2L
LPHAA
Collaboration

  extrapolate   
ḡ2(µ) = ḡ2(1/L)

ḡ2(µ) = ḡ2(1/L)

ḡ2(µ/2, a/L) = ḡ2(1/(2L), a/L)

1/4

1/6
same

same

a

same

a0 =
4

6
a

L
ḡ2(µ/2, a0/L) = ḡ2(1/(2L), a0/L)

ḡ2(µ/2, 0 ) = �( ḡ2(µ) )

  continuum step scaling function   � =

LQCD = � 1

2g02
tr Fµ⌫Fµ⌫ +

NfX

f=1

 f {D +m0f} f



Challenge is met by finite volume couplings

a2µ2

take continuum limit
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large volume
PACS−CS(2009)SF
ALPHA(2016)SF
ALPHA(2016)GF

take continuum limit



History of finite volume couplings
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Lüscher, dellaMorte, Narayanan, Neuberger, Petronzio, Ramos, Rolf, Schaefer, Simma, Sint, Sommer, Weisz, Wittig, Wolff

‣ 1991 2-d sigma model [LüWeWo]

‣ 1992 Schrödinger functional [LüNaWeWo, Si]

‣ 1992-95 SU(2) YM coupling [LüSoWeWo, DiFrGuLüPeSoWeWo]

‣ 1993 DESY gets an APE-computer   (< speed of my laptop)

‣ 1994 SU(3) YM coupling [LüSoWeWo]

‣ 2000 3-loop 6 for SF coupling [BoWeWo]

‣ 2001-05 Nf=2 coupling [BoFrGeHaHeJaKuRoSimSinSoWeWiWo]

‣ 2009 Nf=3 coupling S. Aoki et al. (PACS-CS) 
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1. Determination of hadronic scale: CLS Ensembles

‣ finite L                                            large L 
 
    simulated at common  g0 ⇔ common lattice spacing a
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ḡ2SF(µ = 1/L) =
#

hE8
ki



10-1 100 101 102
0

0.2

0.4

0.6

0.8

 [GeV]

s( )

  3. Running to large energy

Coupling definition

in-homogeneous 
boundary conditions
(colored boundaries)

chromo-electric 
field strength 

at boundaries E8 similar to Casimir 
effect

high precision at small coupling
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Abstract

We review lattice results related to pion, kaon, D-meson, B-meson, and nucleon physics with

the aim of making them easily accessible to the nuclear and particle physics communities. More

specifically, we report on the determination of the light-quark masses, the form factor f+(0) arising

in the semileptonic K → π transition at zero momentum transfer, as well as the decay constant ratio

fK/fπ and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe

the results obtained on the lattice for some of the low-energy constants of SU(2)L × SU(2)R and

SU(3)L × SU(3)R Chiral Perturbation Theory. We review the determination of the BK parameter

of neutral kaon mixing as well as the additional four B parameters that arise in theories of physics

beyond the Standard Model. For the heavy-quark sector, we provide results for mc and mb as well

as those for D- and B-meson decay constants, form factors, and mixing parameters. These are the

heavy-quark quantities most relevant for the determination of CKM matrix elements and the global

CKM unitarity-triangle fit. We review the status of lattice determinations of the strong coupling

constant αs. Finally, in this review we have added a new section reviewing results for nucleon matrix

elements of the axial, scalar and tensor bilinears, both isovector and flavor diagonal.
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Figure 9.4: Summary of determinations of –s(M2
Z

) from the seven sub-fields discussed in the text.
The yellow (light shaded) bands and dotted lines indicate the pre-average values of each sub-field.
The dashed line and blue (dark shaded) band represent the final world average value of –s(M2

Z
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Abstract

We review lattice results related to pion, kaon, D-meson, B-meson, and nucleon physics with

the aim of making them easily accessible to the nuclear and particle physics communities. More

specifically, we report on the determination of the light-quark masses, the form factor f+(0) arising

in the semileptonic K → π transition at zero momentum transfer, as well as the decay constant ratio

fK/fπ and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe

the results obtained on the lattice for some of the low-energy constants of SU(2)L × SU(2)R and

SU(3)L × SU(3)R Chiral Perturbation Theory. We review the determination of the BK parameter

of neutral kaon mixing as well as the additional four B parameters that arise in theories of physics

beyond the Standard Model. For the heavy-quark sector, we provide results for mc and mb as well

as those for D- and B-meson decay constants, form factors, and mixing parameters. These are the

heavy-quark quantities most relevant for the determination of CKM matrix elements and the global

CKM unitarity-triangle fit. We review the status of lattice determinations of the strong coupling

constant αs. Finally, in this review we have added a new section reviewing results for nucleon matrix

elements of the axial, scalar and tensor bilinears, both isovector and flavor diagonal.
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Conclusions

‣ Lattice QCD, finite size techniques & high order PT 
→ Control over strong interactions from lowest to highest energies

‣ Agreement with experiment → QCD valid at all energies
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Conclusions

‣ Lattice QCD, finite size techniques & high order PT 
→ Control over strong interactions from lowest to highest energies

‣ Agreement with experiment → QCD valid at all energies

32 9. Quantum Chromodynamics

The CMS Collaboration has also derived an –s value at NLO from dijet production at
Ô

s =
8 TeV [393], but only in combination with a PDF fit. The last point of the inclusive jet sub-field
from Ref. [541] is derived from a simultaneous fit to six datasets from di�erent experiments and
partially includes data used already for the other data points, e.g. the CMS result at 7 TeV.

All NLO results are within their large uncertainties in agreement with the world average and
the associated analyses provide valuable new values for the scale dependence of –s at energy scales
now extending up to almost 2.0 TeV as shown in Fig. 9.5.
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Figure 9.2: Summary of determinations of –s(M2
Z

) at NLO from inclusive and multi-jet measure-
ments at hadron colliders. The uncertainty is dominated by estimates of the impact of missing
higher orders. The yellow (light shaded) bands and dotted lines indicate average values for the two
sub-fields. The dashed line and blue (dark shaded) band represent the final world average value of
–s(M2

Z
).

9.4.6 Electroweak precision fit:

For this category, we update the global electroweak fit result of Ref. [547] to the one of Ref. [548],
which now includes kinematic top quark and W boson mass measurements from the LHC, new
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Conclusions

‣ Lattice QCD, finite size techniques & high order PT 
→ Control over strong interactions from lowest to highest energies

‣ Agreement with experiment → QCD valid at all energies

‣ Below 1% accuracy for "(mZ) 
→ precision input for LHC, vacuum stability, BSM searches

‣ at "=0.1: PT is accurate 

‣ at "=0.2: examples where PT is not accurate (not discussed here)
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New strategy based on decoupling of heavy quarks
sketch of history

‣ Weinberg, …, Bernreuther+Wetzel, … Chetyrkin et al. 
Nf - dependent effective theory / effective coupling 
in mass-independent renormalization schemes 
4-loop relations  
note:  
      73   <<  Mcharm <<  Mbottom  <<  Mtop  
~  0.3GeV    1 GeV      6 GeV       170 GeV 

‣ Wuppertal+NIC group (2014 - 2019)  
charm-quark-mass dependence of low energy mass scales (e.g. 
nucleon mass can quantitatively be  predicted 
by (above) pert. theory.

‣ now: turn the tables: predict 73 from 70 and low energy scale
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where the dots represent the power corrections. The

running factor ⇤(0)

MS
/µdec can be obtained from the non-

perturbative running in pure gauge available in [10] once
the value of ḡNf=0(µdec) is known. Decoupling (cf.
Eq. (24)) tells us to use the value of the massive cou-
pling ḡz(µdec(M)).
The essential trick is to define the scale in eq. (1) by

S = µdec , with [g(3)GF0(µdec, µdec/M)]2 = uM . (26)

where the massive gradient flow coupling has a certain
value uM. By decoupling we also have

g(0)GF(µdec)
2 = uM +O(1/M) . (27)

We further rewrite

⇤(0)

MS

µdec
=
⇤(0)

MS

⇤(0)
GF

'(0)
GF0(

p
uM) , (28)

where the ratio The last essential point is the function
which relates the coupling in the full theory with the
massive quarks and the one with all massless ones,

uM =  M(u0, z) , with u0 = [ḡ(3)GF(µ, 0)]
2 , z = M/µ ,

(29)
at fixed scale µ. Putting all pieces together we arrive at

P`,f(M/⇤(3)

MS
)
⇤(3)

MS

µdec
=
⇤(0)

MS

⇤(0)
GF

'(0)
GF(

p
 M(u0, z)) ,(30)

[g(3)GF(µdec, z)]
2 =  M(u0, z) =  M( [ḡ(3)GF(µdec, 0)]

2 , z) ,(31)

or

⇢P`,f(z/⇢) =
⇤(0)

MS

⇤(0)
GF

'(0)
GF(

p
 M(u0, z)) (32)

in terms of the dimensionless variable

⇢ =
⇤(3)

MS

µdec
. (33)

• Non-perturbative determination of the function
 M for one fixed value of the massless coupling u0

and one large value of z,

• together with the non-perturbative function '(0)
GF

• and together with the perturbative function P`,f

(MS, high order)

allows to obtain ⇢ as a solution of the above equation.

Determination of ḡz(µdec(M))

The most challenging part is the determination of
ḡz(µdec(M)), since it requires to perform a continuum

L/a � ḡ2Nf=3(µdec(M)) µdec(M) [GeV]

12 4.3020 3.9533(59) 0.789(15)

16 4.4662 3.9496(77) 0.789(15)

20 4.5997 3.9648(97) 0.789(15)

24 4.7141 3.959(50) 0.789(15)

32 4.90 3.949(11) 0.789(15)

TABLE I. Line of constant physics. The massless coupling is

fixed (cf Eq. (22)), fixing the simulation parameters needed

to determine the massive coupling ḡz(µdec(M)).
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FIG. 1. Continuum extrapolation of the massive coupling

ḡz(µdec(M)) at four di↵erent values of the quark masses (la-

beled by z). We apply two cuts aM < 0.35, 0.5 to our data

in order to estimate the systematic uncertainty.

extrapolation with heavy quark masses, and potentially
large cuto↵ e↵ects / (aM)p. We start with the line of
constant physics (LCP) defined at M = 0 of table I. This
defines the bare coupling g20 = 6/� for each L/a such that
condition Eq. (22) is satisfied. In order to determine the
values of the massive coupling ḡz(µdec(M)), one needs
to fix the value of the substracted bare quark mass amq

such that the renormalized RGI mass M is fixed. Since
µdec(M) = 789(15) MeV, this can be achieved by fixing

z =
M

µdec(M)
=

L

a
ZRGIZm(g0) (1+ bm(g0)(amq)) (amq) .

The renormalization is performed non-perturbatively.
We use ZRGI = 1.474(11) from the analysis in [16],
and a non-perturbative determination of Zm(g0) (see the
supplementary material). All in all, we choose the val-
ues z = 1.97, 4, 6, 8, that corresponds approximately to
M ⇡ 1.6, 3.2, 4.7, 6.3 GeV. The simulation parameters
are available in the supplementary material, all that is
left is to perform a continuum extrapolation of the mas-
sive coupling ḡz(µdec(M)).
Figure 1 shows the result of such continuum extrapo-

lations. Clearly they become more challenging at large
values of z (large values of the quark masses). We ex-
plore the systematics by imposing two mass cuts aM <
0.35, 0.5 and find compatible results, with the results
with aM < 0.35 having significantly larger errors, spe-
cially at large values of M . We take these as our best
estimates of the continuum values of ḡz(µdec(M)) (see
second column of table II).
We would like to note that in this exploratory work,

we have used a modest amount of computer time. In par-

MS

Nf = 0

Nf = 3

Nf = 0

GF
non-perturbative

5-loop

4

where the dots represent the power corrections. The
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the value of ḡNf=0(µdec) is known. Decoupling (cf.
Eq. (24)) tells us to use the value of the massive cou-
pling ḡz(µdec(M)).
The essential trick is to define the scale in eq. (1) by

S = µdec , with [g(3)GF0(µdec, µdec/M)]2 = uM . (26)

where the massive gradient flow coupling has a certain
value uM. By decoupling we also have

g(0)GF(µdec)
2 = uM +O(1/M) . (27)

We further rewrite
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which relates the coupling in the full theory with the
massive quarks and the one with all massless ones,

uM =  M(u0, z) , with u0 = [ḡ(3)GF(µ, 0)]
2 , z = M/µ ,

(29)
at fixed scale µ. Putting all pieces together we arrive at
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• Non-perturbative determination of the function
 M for one fixed value of the massless coupling u0

and one large value of z,

• together with the non-perturbative function '(0)
GF

• and together with the perturbative function P`,f

(MS, high order)

allows to obtain ⇢ as a solution of the above equation.

Determination of ḡz(µdec(M))

The most challenging part is the determination of
ḡz(µdec(M)), since it requires to perform a continuum

L/a � ḡ2Nf=3(µdec(M)) µdec(M) [GeV]

12 4.3020 3.9533(59) 0.789(15)

16 4.4662 3.9496(77) 0.789(15)

20 4.5997 3.9648(97) 0.789(15)
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FIG. 1. Continuum extrapolation of the massive coupling

ḡz(µdec(M)) at four di↵erent values of the quark masses (la-

beled by z). We apply two cuts aM < 0.35, 0.5 to our data

in order to estimate the systematic uncertainty.

extrapolation with heavy quark masses, and potentially
large cuto↵ e↵ects / (aM)p. We start with the line of
constant physics (LCP) defined at M = 0 of table I. This
defines the bare coupling g20 = 6/� for each L/a such that
condition Eq. (22) is satisfied. In order to determine the
values of the massive coupling ḡz(µdec(M)), one needs
to fix the value of the substracted bare quark mass amq

such that the renormalized RGI mass M is fixed. Since
µdec(M) = 789(15) MeV, this can be achieved by fixing

z =
M

µdec(M)
=

L

a
ZRGIZm(g0) (1+ bm(g0)(amq)) (amq) .

The renormalization is performed non-perturbatively.
We use ZRGI = 1.474(11) from the analysis in [16],
and a non-perturbative determination of Zm(g0) (see the
supplementary material). All in all, we choose the val-
ues z = 1.97, 4, 6, 8, that corresponds approximately to
M ⇡ 1.6, 3.2, 4.7, 6.3 GeV. The simulation parameters
are available in the supplementary material, all that is
left is to perform a continuum extrapolation of the mas-
sive coupling ḡz(µdec(M)).
Figure 1 shows the result of such continuum extrapo-

lations. Clearly they become more challenging at large
values of z (large values of the quark masses). We ex-
plore the systematics by imposing two mass cuts aM <
0.35, 0.5 and find compatible results, with the results
with aM < 0.35 having significantly larger errors, spe-
cially at large values of M . We take these as our best
estimates of the continuum values of ḡz(µdec(M)) (see
second column of table II).
We would like to note that in this exploratory work,

we have used a modest amount of computer time. In par-
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where the dots represent the power corrections. The

running factor ⇤(0)

MS
/µdec can be obtained from the non-

perturbative running in pure gauge available in [10] once
the value of ḡNf=0(µdec) is known. Decoupling (cf.
Eq. (24)) tells us to use the value of the massive cou-
pling ḡz(µdec(M)).
The essential trick is to define the scale in eq. (1) by

S = µdec , with [g(3)GF0(µdec, µdec/M)]2 = uM . (26)

where the massive gradient flow coupling has a certain
value uM. By decoupling we also have

g(0)GF(µdec)
2 = uM +O(1/M) . (27)

We further rewrite

⇤(0)

MS

µdec
=
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uM) , (28)

where the ratio The last essential point is the function
which relates the coupling in the full theory with the
massive quarks and the one with all massless ones,

uM =  M(u0, z) , with u0 = [ḡ(3)GF(µ, 0)]
2 , z = M/µ ,

(29)
at fixed scale µ. Putting all pieces together we arrive at
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in terms of the dimensionless variable
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• Non-perturbative determination of the function
 M for one fixed value of the massless coupling u0

and one large value of z,

• together with the non-perturbative function '(0)
GF

• and together with the perturbative function P`,f

(MS, high order)

allows to obtain ⇢ as a solution of the above equation.

Determination of ḡz(µdec(M))

The most challenging part is the determination of
ḡz(µdec(M)), since it requires to perform a continuum

L/a � ḡ2Nf=3(µdec(M)) µdec(M) [GeV]
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fixed (cf Eq. (22)), fixing the simulation parameters needed

to determine the massive coupling ḡz(µdec(M)).
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ḡ2 z

(a/L)2

z = 1.972 z = 4 z = 6 z = 8

FIG. 1. Continuum extrapolation of the massive coupling

ḡz(µdec(M)) at four di↵erent values of the quark masses (la-

beled by z). We apply two cuts aM < 0.35, 0.5 to our data

in order to estimate the systematic uncertainty.

extrapolation with heavy quark masses, and potentially
large cuto↵ e↵ects / (aM)p. We start with the line of
constant physics (LCP) defined at M = 0 of table I. This
defines the bare coupling g20 = 6/� for each L/a such that
condition Eq. (22) is satisfied. In order to determine the
values of the massive coupling ḡz(µdec(M)), one needs
to fix the value of the substracted bare quark mass amq

such that the renormalized RGI mass M is fixed. Since
µdec(M) = 789(15) MeV, this can be achieved by fixing

z =
M

µdec(M)
=

L

a
ZRGIZm(g0) (1+ bm(g0)(amq)) (amq) .

The renormalization is performed non-perturbatively.
We use ZRGI = 1.474(11) from the analysis in [16],
and a non-perturbative determination of Zm(g0) (see the
supplementary material). All in all, we choose the val-
ues z = 1.97, 4, 6, 8, that corresponds approximately to
M ⇡ 1.6, 3.2, 4.7, 6.3 GeV. The simulation parameters
are available in the supplementary material, all that is
left is to perform a continuum extrapolation of the mas-
sive coupling ḡz(µdec(M)).
Figure 1 shows the result of such continuum extrapo-

lations. Clearly they become more challenging at large
values of z (large values of the quark masses). We ex-
plore the systematics by imposing two mass cuts aM <
0.35, 0.5 and find compatible results, with the results
with aM < 0.35 having significantly larger errors, spe-
cially at large values of M . We take these as our best
estimates of the continuum values of ḡz(µdec(M)) (see
second column of table II).
We would like to note that in this exploratory work,

we have used a modest amount of computer time. In par-
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and one large value of z,

• together with the non-perturbative function '(0)
GF

• and together with the perturbative function P`,f

(MS, high order)

allows to obtain ⇢ as a solution of the above equation.

Determination of ḡz(µdec(M))

The most challenging part is the determination of
ḡz(µdec(M)), since it requires to perform a continuum

L/a � ḡ2Nf=3(µdec(M)) µdec(M) [GeV]

12 4.3020 3.9533(59) 0.789(15)

16 4.4662 3.9496(77) 0.789(15)

20 4.5997 3.9648(97) 0.789(15)

24 4.7141 3.959(50) 0.789(15)

32 4.90 3.949(11) 0.789(15)

TABLE I. Line of constant physics. The massless coupling is

fixed (cf Eq. (22)), fixing the simulation parameters needed

to determine the massive coupling ḡz(µdec(M)).
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FIG. 1. Continuum extrapolation of the massive coupling

ḡz(µdec(M)) at four di↵erent values of the quark masses (la-

beled by z). We apply two cuts aM < 0.35, 0.5 to our data

in order to estimate the systematic uncertainty.

extrapolation with heavy quark masses, and potentially
large cuto↵ e↵ects / (aM)p. We start with the line of
constant physics (LCP) defined at M = 0 of table I. This
defines the bare coupling g20 = 6/� for each L/a such that
condition Eq. (22) is satisfied. In order to determine the
values of the massive coupling ḡz(µdec(M)), one needs
to fix the value of the substracted bare quark mass amq

such that the renormalized RGI mass M is fixed. Since
µdec(M) = 789(15) MeV, this can be achieved by fixing

z =
M

µdec(M)
=

L

a
ZRGIZm(g0) (1+ bm(g0)(amq)) (amq) .

The renormalization is performed non-perturbatively.
We use ZRGI = 1.474(11) from the analysis in [16],
and a non-perturbative determination of Zm(g0) (see the
supplementary material). All in all, we choose the val-
ues z = 1.97, 4, 6, 8, that corresponds approximately to
M ⇡ 1.6, 3.2, 4.7, 6.3 GeV. The simulation parameters
are available in the supplementary material, all that is
left is to perform a continuum extrapolation of the mas-
sive coupling ḡz(µdec(M)).
Figure 1 shows the result of such continuum extrapo-

lations. Clearly they become more challenging at large
values of z (large values of the quark masses). We ex-
plore the systematics by imposing two mass cuts aM <
0.35, 0.5 and find compatible results, with the results
with aM < 0.35 having significantly larger errors, spe-
cially at large values of M . We take these as our best
estimates of the continuum values of ḡz(µdec(M)) (see
second column of table II).
We would like to note that in this exploratory work,

we have used a modest amount of computer time. In par-

Nf = 3

Nf = 0

GF
non-perturbative

non-perturbative but  
well-known [Dalla Brida & Ramos] 
function given by !-function in  

finite volume GF scheme
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where the dots represent the power corrections. The

running factor ⇤(0)

MS
/µdec can be obtained from the non-

perturbative running in pure gauge available in [10] once
the value of ḡNf=0(µdec) is known. Decoupling (cf.
Eq. (24)) tells us to use the value of the massive cou-
pling ḡz(µdec(M)).
The essential trick is to define the scale in eq. (1) by

S = µdec , with [g(3)GF0(µdec, µdec/M)]2 = uM . (26)

where the massive gradient flow coupling has a certain
value uM. By decoupling we also have

g(0)GF(µdec)
2 = uM +O(1/M) . (27)

We further rewrite

⇤(0)

MS

µdec
=
⇤(0)

MS

⇤(0)
GF

'(0)
GF0(

p
uM) , (28)

where the ratio The last essential point is the function
which relates the coupling in the full theory with the
massive quarks and the one with all massless ones,

uM =  M(u0, z) , with u0 = [ḡ(3)GF(µ, 0)]
2 , z = M/µ ,

(29)
at fixed scale µ. Putting all pieces together we arrive at

P`,f(M/⇤(3)

MS
)
⇤(3)

MS

µdec
=
⇤(0)

MS

⇤(0)
GF

'(0)
GF(

p
 M(u0, z)) ,(30)

[g(3)GF(µdec, z)]
2 =  M(u0, z) =  M( [ḡ(3)GF(µdec, 0)]

2 , z) ,(31)

or

⇢P`,f(z/⇢) =
⇤(0)

MS

⇤(0)
GF

'(0)
GF(

p
 M(u0, z)) (32)

in terms of the dimensionless variable

⇢ =
⇤(3)

MS

µdec
. (33)

• Non-perturbative determination of the function
 M for one fixed value of the massless coupling u0

and one large value of z,

• together with the non-perturbative function '(0)
GF

• and together with the perturbative function P`,f

(MS, high order)

allows to obtain ⇢ as a solution of the above equation.

Determination of ḡz(µdec(M))

The most challenging part is the determination of
ḡz(µdec(M)), since it requires to perform a continuum

L/a � ḡ2Nf=3(µdec(M)) µdec(M) [GeV]

12 4.3020 3.9533(59) 0.789(15)

16 4.4662 3.9496(77) 0.789(15)

20 4.5997 3.9648(97) 0.789(15)

24 4.7141 3.959(50) 0.789(15)

32 4.90 3.949(11) 0.789(15)

TABLE I. Line of constant physics. The massless coupling is

fixed (cf Eq. (22)), fixing the simulation parameters needed

to determine the massive coupling ḡz(µdec(M)).
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FIG. 1. Continuum extrapolation of the massive coupling

ḡz(µdec(M)) at four di↵erent values of the quark masses (la-

beled by z). We apply two cuts aM < 0.35, 0.5 to our data

in order to estimate the systematic uncertainty.

extrapolation with heavy quark masses, and potentially
large cuto↵ e↵ects / (aM)p. We start with the line of
constant physics (LCP) defined at M = 0 of table I. This
defines the bare coupling g20 = 6/� for each L/a such that
condition Eq. (22) is satisfied. In order to determine the
values of the massive coupling ḡz(µdec(M)), one needs
to fix the value of the substracted bare quark mass amq

such that the renormalized RGI mass M is fixed. Since
µdec(M) = 789(15) MeV, this can be achieved by fixing

z =
M

µdec(M)
=

L

a
ZRGIZm(g0) (1+ bm(g0)(amq)) (amq) .

The renormalization is performed non-perturbatively.
We use ZRGI = 1.474(11) from the analysis in [16],
and a non-perturbative determination of Zm(g0) (see the
supplementary material). All in all, we choose the val-
ues z = 1.97, 4, 6, 8, that corresponds approximately to
M ⇡ 1.6, 3.2, 4.7, 6.3 GeV. The simulation parameters
are available in the supplementary material, all that is
left is to perform a continuum extrapolation of the mas-
sive coupling ḡz(µdec(M)).
Figure 1 shows the result of such continuum extrapo-

lations. Clearly they become more challenging at large
values of z (large values of the quark masses). We ex-
plore the systematics by imposing two mass cuts aM <
0.35, 0.5 and find compatible results, with the results
with aM < 0.35 having significantly larger errors, spe-
cially at large values of M . We take these as our best
estimates of the continuum values of ḡz(µdec(M)) (see
second column of table II).
We would like to note that in this exploratory work,

we have used a modest amount of computer time. In par-

MS

Nf = 0

5-loop known perturbative 
function

"=M=4 "dec

"=M=8 "dec Nf = 3
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New strategy based on decoupling

‣ very promising

‣ reduction of error by factor 0.5 seems reachable

‣ that will be good enough for a while to come 
(until there is a linear collider)
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Additional



Nf < 5

‣ Only Nf=3 (or 4) are reached by direct computation

‣ Threshold matching QCD(Nf) and QCD(Nf+1) by 
perturbation theory

‣ Corrections are small in perturbation theory

‣ Exploratory NP investigation exists  
[M. Bruno, J. Finkenrath, F. Knechtli, B. Leder, R. S., 2015]
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Be aware

‣  

‣ perturbation theory for decoupling, Nf=3 → Nf=5  
looks great. 
 
can it be entirely misleading?  
then 0.0003 error would be wrong. 
 
non-perturbative tests have confirmed 
perturbation theory for decoupling with precision

f⇡, fK depend on Vud, Vus, and the SM scale setting

Lhad/
p
t0

GF running

scheme switch
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PT decoupling
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A small warning about PT 



A small warning about PT 



Test where ! is constant


