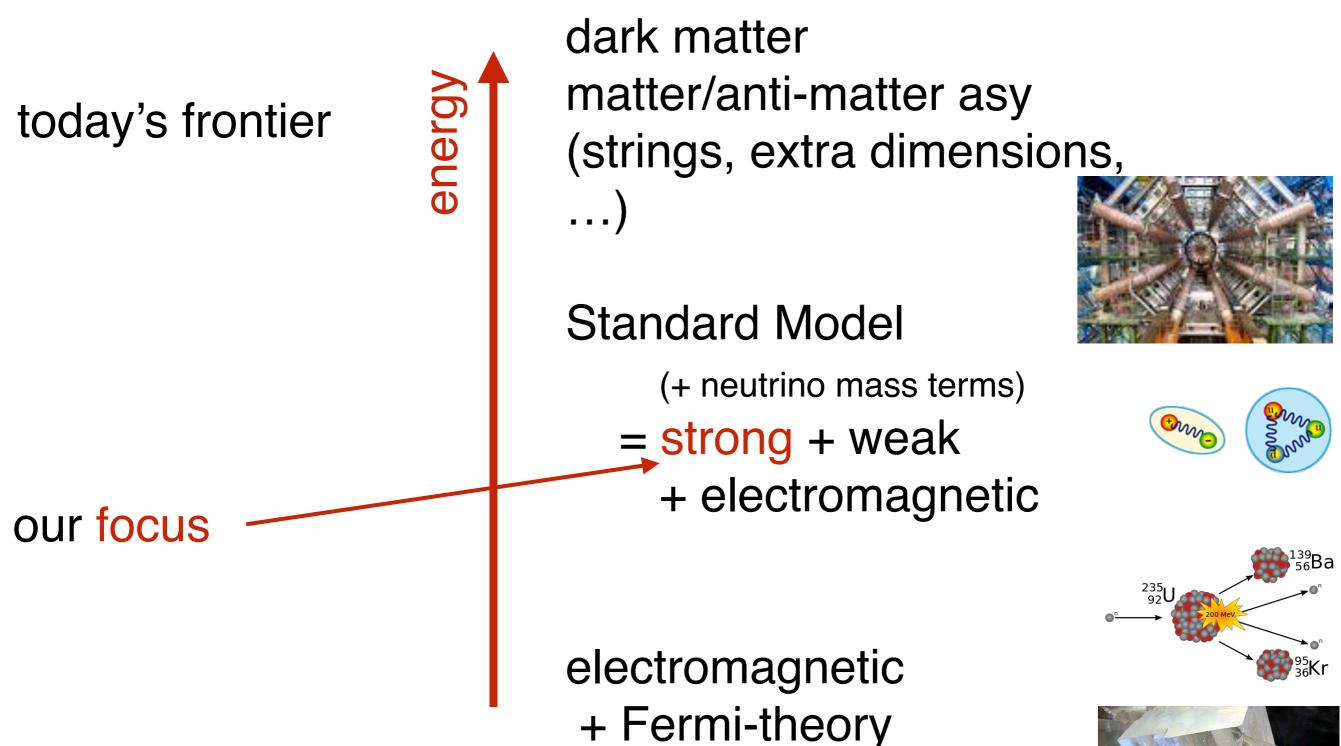
How strong are the strong interactions?

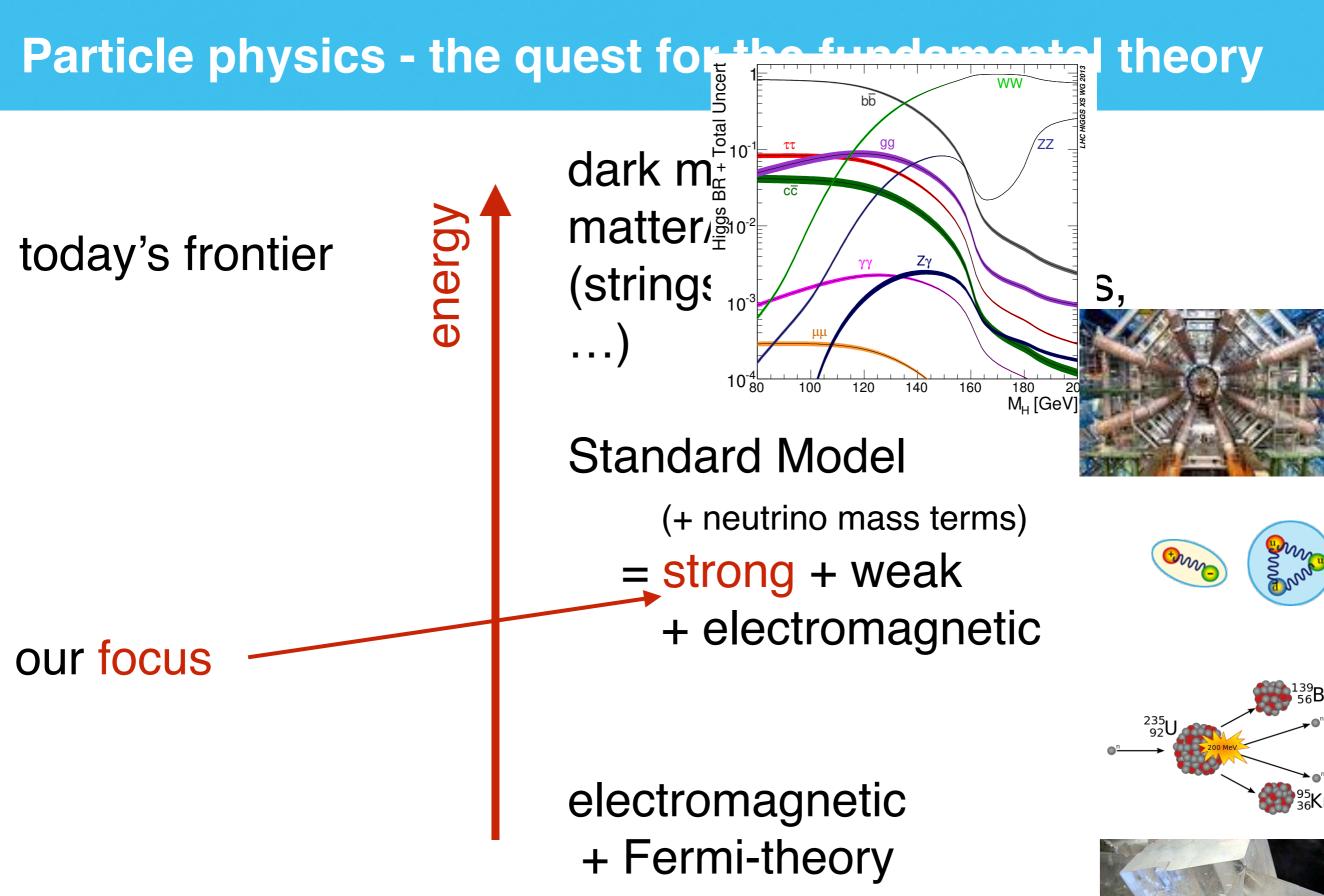
Rainer Sommer

John von Neumann Institute for Computing, DESY & Humboldt Universität zu Berlin

Freiburg by zoom, January 27, 2021

Particle physics - the quest for the fundamental theory

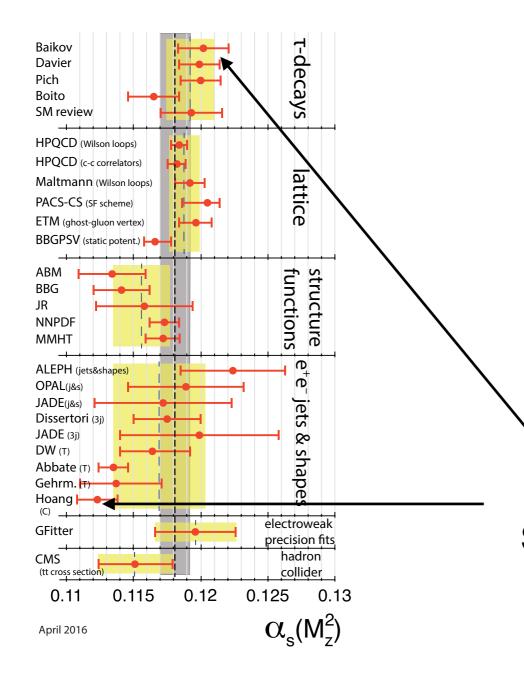


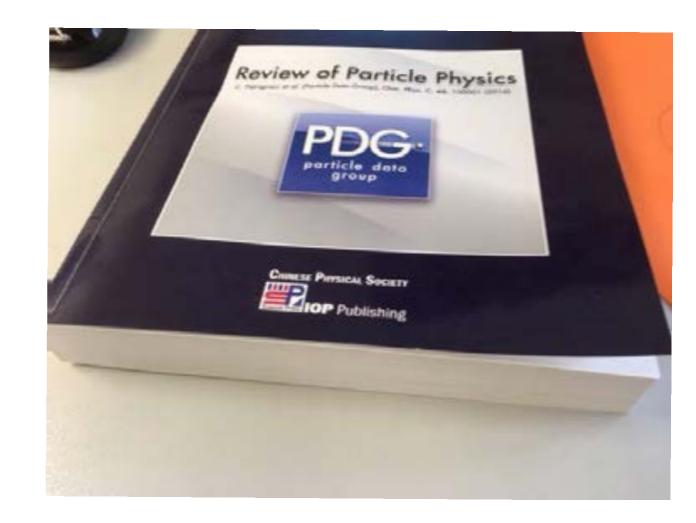


Rainer Sommer | MIT | Decem

QCD and the Particle Data Group review

The strong coupling



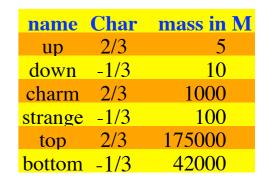


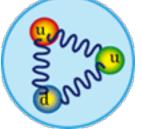
How strong are the strong interactions?

- Theory of strong interactions
- Quantum Field theory with Lagrangian

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{2g_0^2} \operatorname{tr} F_{\mu\nu} F_{\mu\nu} + \sum_{f=1}^{N_f} \overline{\psi}_f \{D + m_{0f}\} \psi_f$$

- Fields: gluons and quarks
- But particles: hadrons p, n, π , K,... confinement!
- Definition of coupling is not straight forward (we do e.g. not want the π - π coupling)





Theorists:

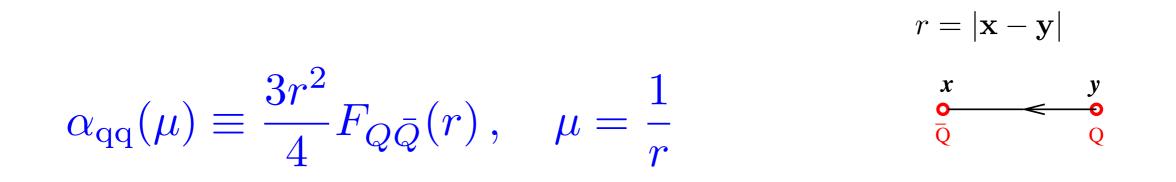
takedimensionssubtract poles in... ← no physics

QCD coupling

Analogous to
$$F_{pe}(r) = \alpha_{em} \frac{1}{r^2}$$
 $r = |\mathbf{x} - \mathbf{y}|$
Quark as test charge Q with $m_Q \rightarrow \infty$
force in PT: $F_{Q\bar{Q}}(r) = \alpha_{\overline{MS}}(\mu) \frac{4}{3} \frac{1}{r^2} + O(\alpha_{\overline{MS}}^2)$
define: $\alpha_{qq}(\mu) \equiv \frac{3r^2}{4} F_{Q\bar{Q}}(r), \ \mu = \frac{1}{r}$
no corrections
 $\alpha_{qq}(\mu) = \alpha_{\overline{MS}}(\mu) + c_1 \alpha_{\overline{MS}}^2(\mu) + \dots$
 $c_1 = \frac{1}{(4\pi)^2} \left\{ \frac{35}{3} - 22\gamma_E - (\frac{2}{9} - \frac{4}{3}\gamma_E)N_f \right\} = O(1)$

[Billoire; Fishler]

QCD coupling



then

$$\alpha_{\rm qq}(\mu) = \alpha_{\rm \overline{MS}}(\mu) + c_1 \alpha_{\rm \overline{MS}}^2(\mu) + \dots$$

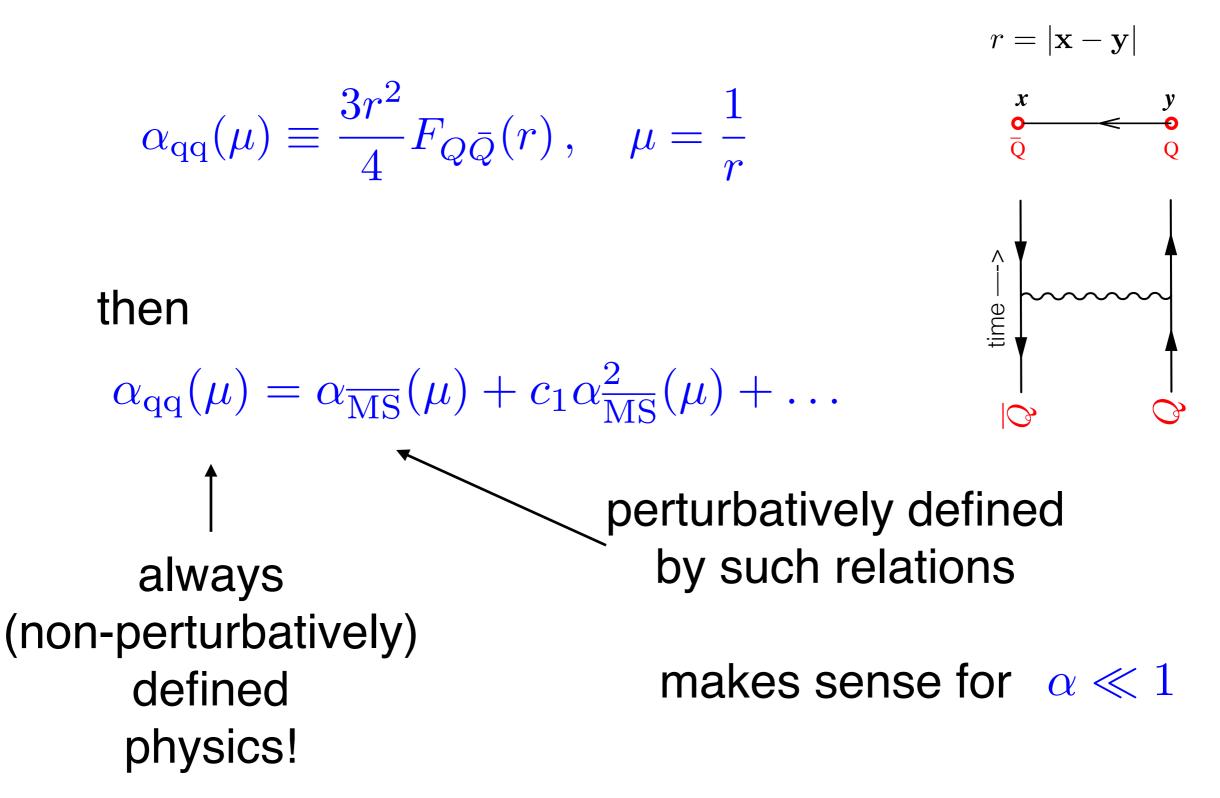
always (non-perturbatively) defined physics!

NIC

perturbatively defined by such relations

makes sense for $\alpha \ll 1$

QCD coupling



Energy dependence: Asymptotic freedom

$$\mu \frac{\partial}{\partial \mu} \bar{g}_s(\mu) = \beta_s(\bar{g}_s) = -\bar{g}_s^3 (b_0 + b_1 \bar{g}_s^2 + \dots)$$

$$\Rightarrow 0, \text{ independent of scheme}(=\text{definition}) \text{ s}$$

$$\Rightarrow \text{Taylor series in } \alpha_s = \bar{g}_s^2 / (4\pi) \text{ is reliable at large energy } \mu$$

- Reach large energy, with precision
- Determine α_s in some scheme s
- Use PT —> predictions for high energy processes in terms of perturbative series, e.g. for LHC

A look at phenomenology, e.g. R_{e+e-}

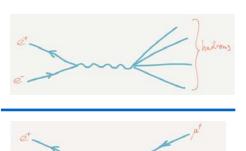
 $R_{e^+e^-}(Q) = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to u^+u^-)}$

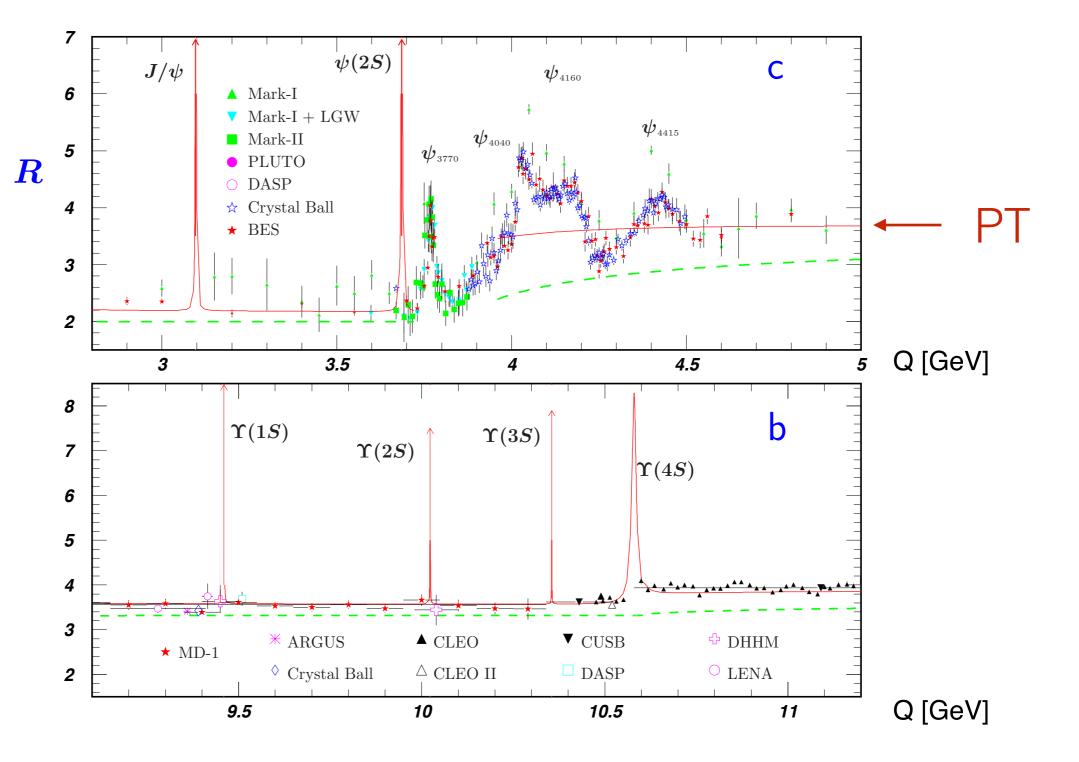
total cross section for $e^+e^- \rightarrow$ hadrons at center-of-mass energy Q

$$\frac{\sigma(e^+e^- \to \text{hadrons}, Q)}{\sigma(e^+e^- \to \mu^+\mu^-, Q)} \equiv R(Q) = R_{\text{EW}}(Q)(1 + \delta_{\text{QCD}}(Q))$$

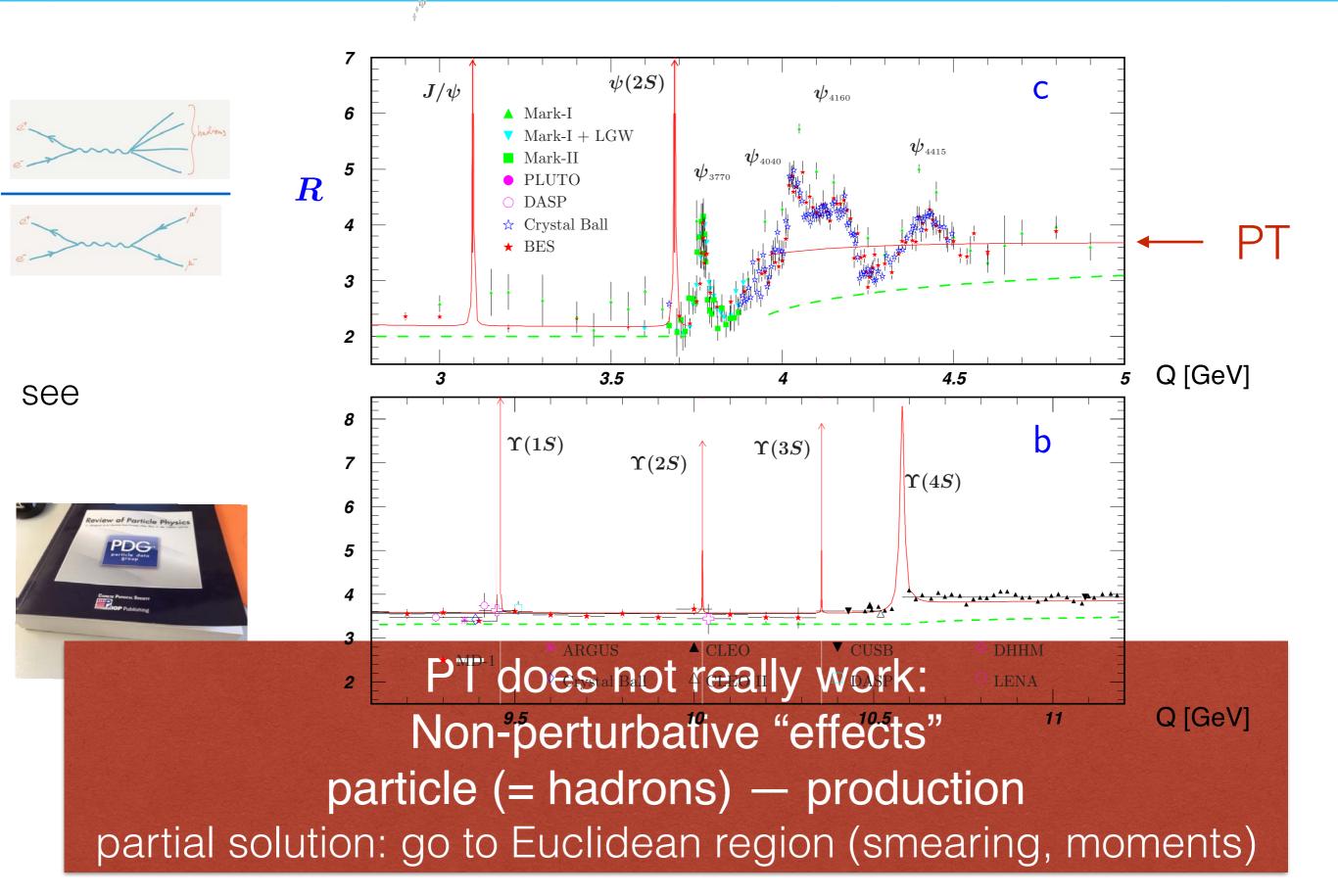
$$\delta_{\text{QCD}}(Q) = \sum_{n=1}^{\infty} c_n \cdot \left(\frac{\alpha_s(Q^2)}{\pi}\right)^n + \mathcal{O}\left(\frac{\Lambda^4}{Q^4}\right)$$

determine $\alpha_s(\mu = Q)$



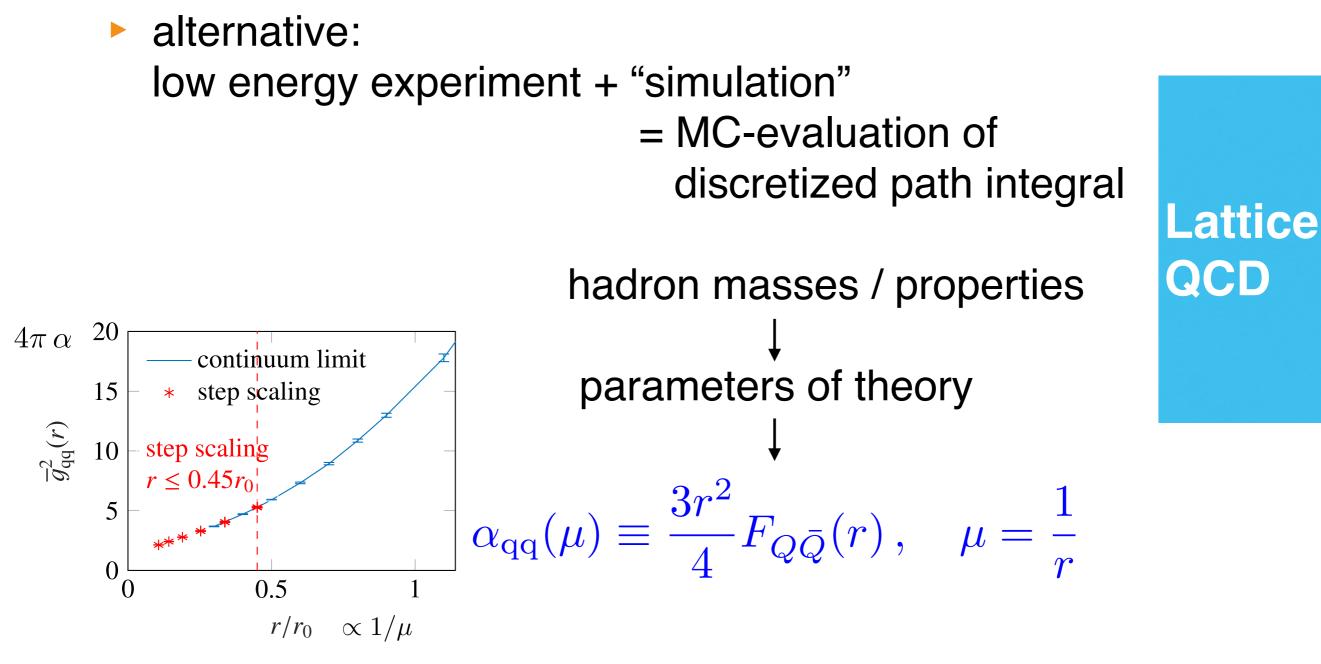


A State Stat



Determinations of α_{s}

high energy experiment + phenomenology is very challenging (as we just saw)



example: pure gauge theory, very fine lattice; Husung, Koren, Krah, S. 2017

Lattice QCD in a nutshell



2.

"Simulating" Quantum Mechanics

Euclidean Green functions

$$G(\tau) = \langle 0 | \hat{q} e^{-\hat{H}\tau} \hat{q} | 0 \rangle = \sum_{n} |\alpha_{n}|^{2} e^{-(E_{n} - E_{0})\tau}, \quad \alpha_{n} = \langle n | \hat{q} | 0 \rangle, \quad \hat{H} = V(\hat{q}) + \frac{\hat{p}^{2}}{2m}$$

$$-> \text{ access to energy levels } E_{n} \text{ and matrix elements } \alpha_{n}$$

$$G(\tau) = \lim_{T \to \infty} \frac{\int [\prod_{i} dq_{i}] e^{-S[q]} q_{n} q_{0}}{\int [\prod_{i} dq_{i}] e^{-S[q]}}, \quad \tau = n a$$

$$S[q] = \sum_{i=0}^{N-1} V(q_{i}) + \frac{m}{2} \left(\frac{q_{i+1} - q_{i}}{a}\right)^{2} = \int_{0}^{T} dt \left[V(q(t)) + \frac{m}{2} \left(\frac{dq}{dt}\right)^{2}\right] + O(a^{2})$$

$$q_{j} = q(j a)$$

- Euclidean lattice path integral: ordinary integral over variables q_j , j = 1, ..., N 1, N = T/a
- Monte Carlo integration called "Simulation", importance sampling, get low lying spectrum and more

quarks: 3-vectors in color space

$$\psi(x) = \begin{pmatrix} \psi_1(x) \\ \psi_2(x) \\ \psi_3(x) \end{pmatrix} \in \mathbb{C}$$

gauge invariance

$$\Lambda(x) \in \mathrm{SU}(3) : \psi(x) \to \psi^{\Lambda}(x) = \Lambda(x) \, \psi(x)$$

- together with locality, unitarity, causality this fixes almost (θ-term) entirely the Lagrangian gluons come through gauge invariance (minimal coupling)
- apart from quark masses only one parameter: strong coupling α_s

Simulating **QCD**

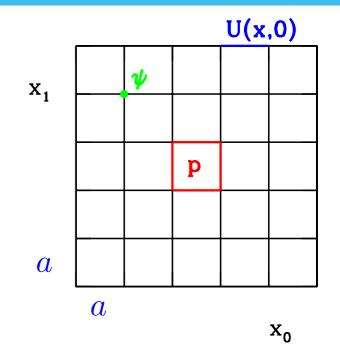
discrete space-time, spacing *a*, hyper-cubic lattice

gluons:
$$U(x,\mu) = \mathscr{P} \exp\left\{a \int_0^1 ds A_\mu(x+a(1-s)\hat{\mu})\right\} \in SU(3)$$

on links

Euclidean action: $S = S_G + S_F$

$$S_G = \frac{1}{g_0^2} \sum_{p} \operatorname{tr} \{ 1 - U(p) \},$$



 $S_F = a^4 \sum_{x} \bar{\psi}(x) \left(D(U) + m \right) \psi(x) , \ D(U) :$ discretized Dirac operator

Path integral expectation values, $\langle O \rangle = Z^{-1} \int_{\text{fields}} O e^{-S}$ by MC integration take $a \to 0$: THE definition of QCD

Rair

Simulating **QCD**

NIC

hadron Green function

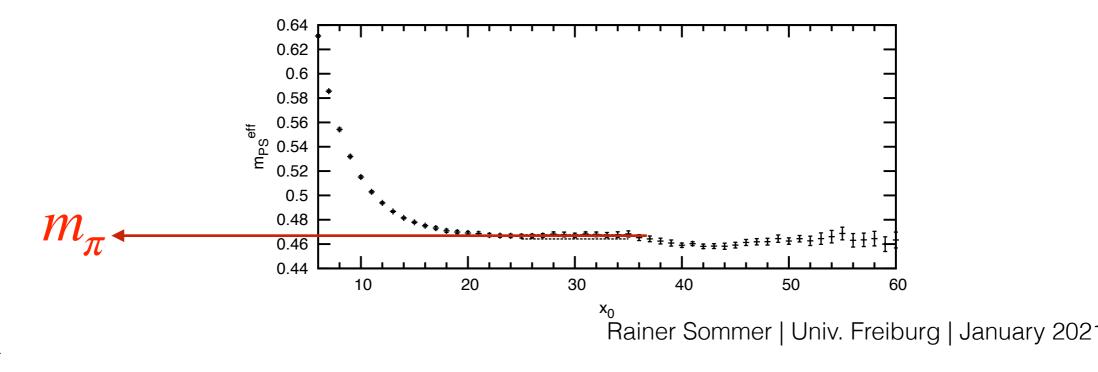
$$G_{\pi}(\tau) = \langle 0 | \hat{\pi} e^{-\hat{H}\tau} \hat{\pi}^{\dagger} | 0 \rangle = \sum_{n} |\alpha_{n}|^{2} e^{-(E_{n}(\pi) - E_{0})\tau}$$
$$\hat{H} = \text{latt. QCD hamiltonian} \qquad E_{1}(\pi) - E_{0} = m_{\pi}$$

 $\begin{array}{c|c} \mathbf{U}(\mathbf{x},\mathbf{0}) \\ \mathbf{x}_1 & \psi & \mathbf{0} \\ \mathbf{p} & \mathbf{0} \\ \mathbf{a} & \mathbf{0} \\ \mathbf{a} \\ \mathbf{a} \\ \mathbf{a} \end{array}$

evaluated by MC, importance sampling, only ~1000 MC "events"="configurations"

error $\propto 1/\sqrt{\# \text{ configs}}$, computer time $\propto (L/a)^3 T/a \times (a\Lambda)^{-z}$ $z \approx 2$ algorithmic, "critical slowing down"

$$am_{\pi}^{\text{eff}}(\tau) \equiv \log(G_{\pi}(\tau)/G_{\pi}(\tau+a)) = m_{\pi} + O(e^{-(E_2(\pi)-m_{\pi})\tau})$$



x0

"Solving" (lattice) QCD (logics)

simulate with

compute

tune parameters until

repeat with smaller and smaller g_0

 $\{am_u = am_d, am_s, g_0\} = (bare) parameters$

 $am_{\pi}, am_{K}, am_{\text{proton}}$

$$\left\{\frac{am_{\pi}}{am_{\text{proton}}}, \frac{am_{K}}{am_{\text{proton}}}\right\} = \left\{\frac{m_{\pi}}{m_{\text{proton}}}, \frac{m_{K}}{m_{\text{proton}}}\right\}_{\text{experimental}}$$

smaller and smaller $a m_{proton}$

compute e.g. $\alpha_{qq} \left(r = \text{const.}/m_{\text{proton}} \right)$ $a m_{\text{proton}} \rightarrow 0$ continuum limit extrapolate to

"Solving" (lattice) QCD (logics)

simulate with

compute

tune parameters until

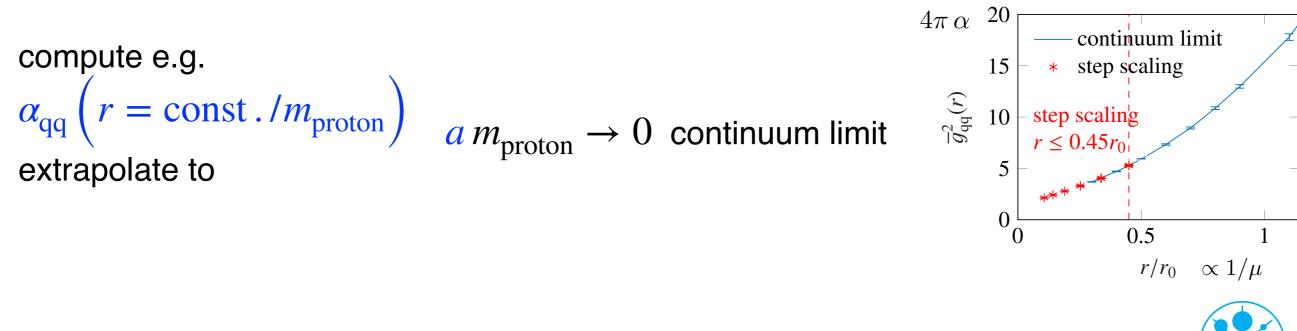
repeat with smaller and smaller g_0

 $\{am_u = am_d, am_s, g_0\} = (bare) parameters$

 $am_{\pi}, am_{K}, am_{\text{proton}}$

$$\left\{\frac{am_{\pi}}{am_{\text{proton}}}, \frac{am_{K}}{am_{\text{proton}}}\right\} = \left\{\frac{m_{\pi}}{m_{\text{proton}}}, \frac{m_{K}}{m_{\text{proton}}}\right\}_{\text{experimental}}$$

smaller and smaller $a m_{proton}$

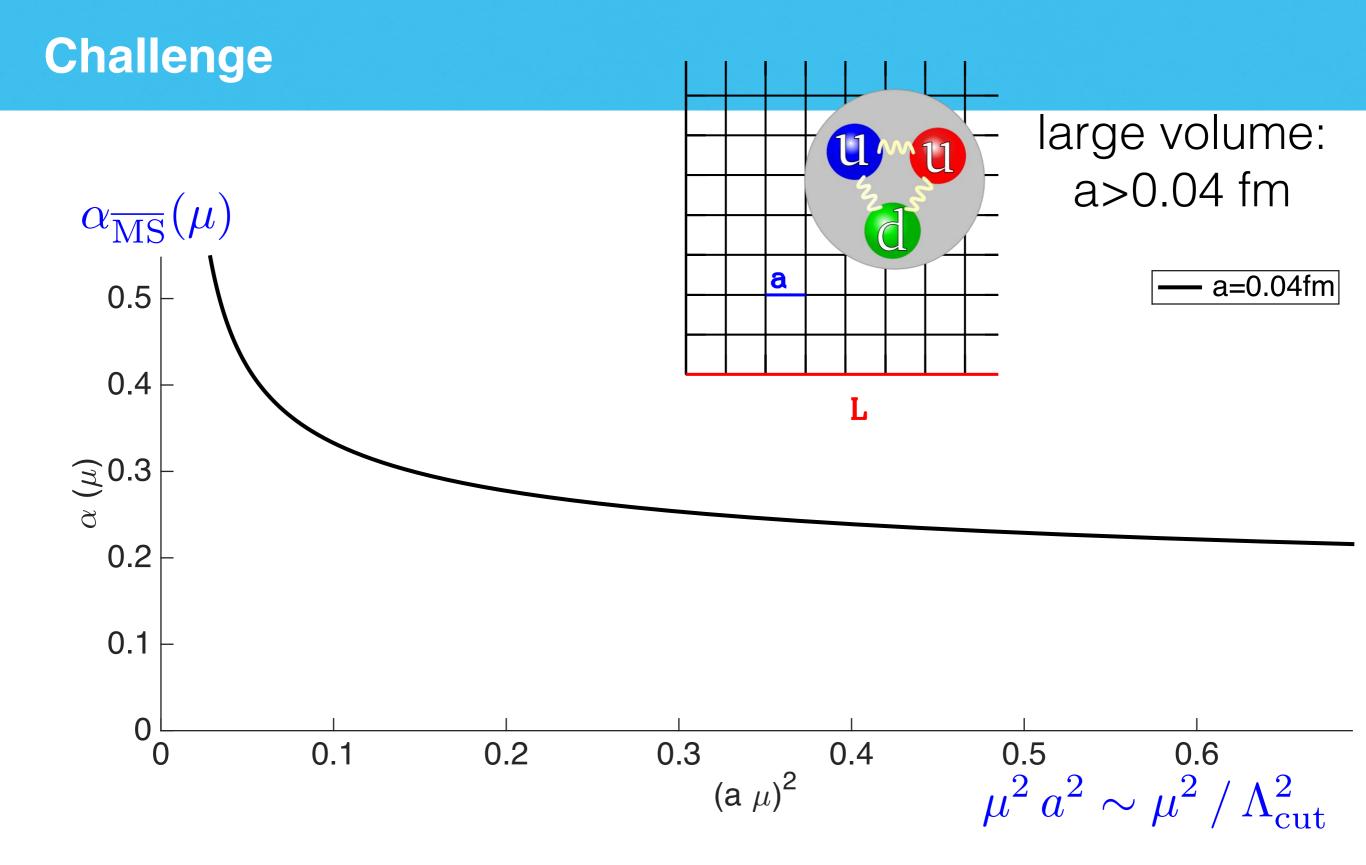


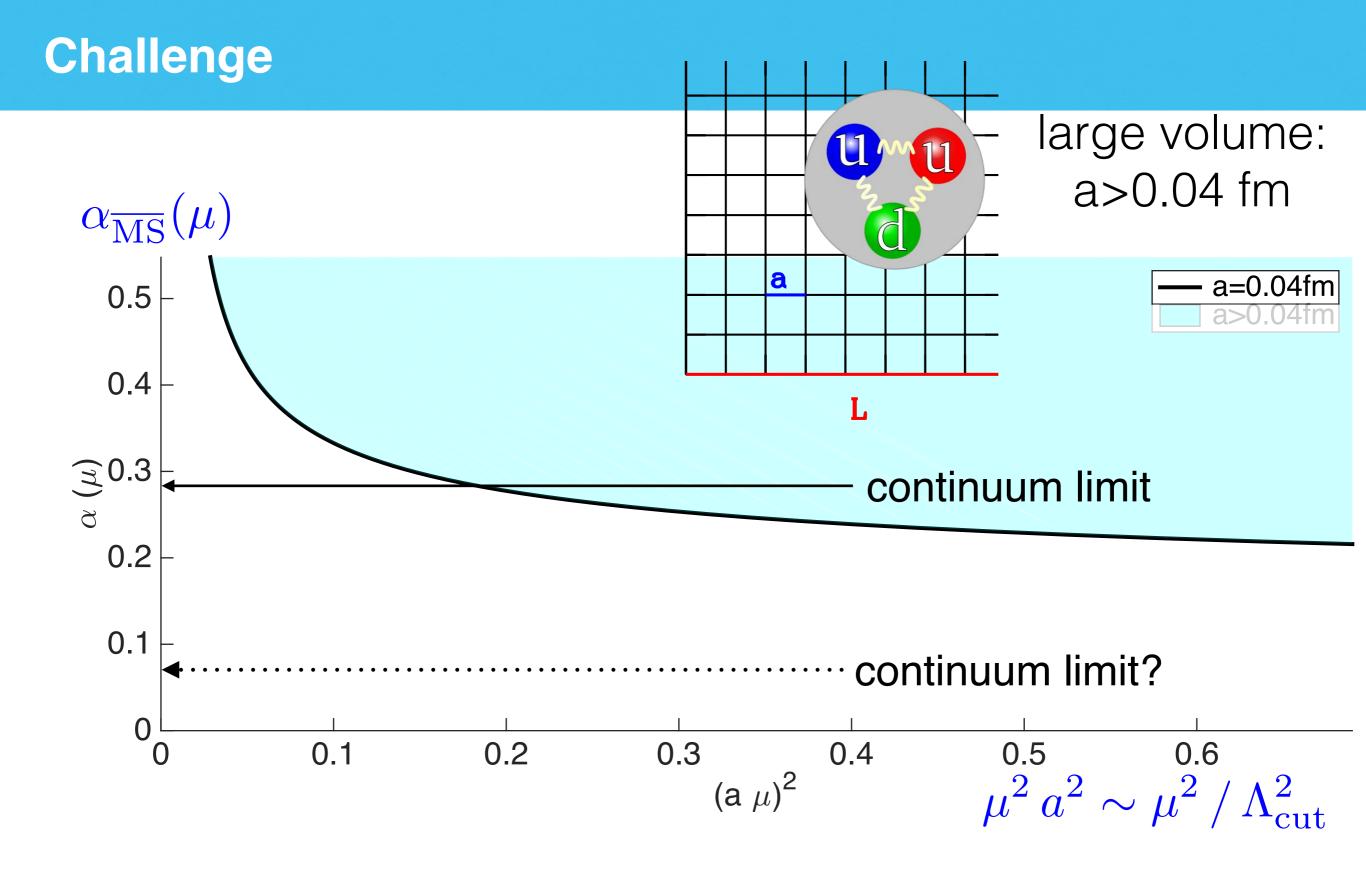
A lot of progress in recent years

- a lot of progress in recent years
 - concepts

 algorithms 	year	Cost to generate one 96x48 ³ configuration [hours on 512 cores]	
	2001	17000	"Berlin wall"
	2015	5	Hasenbusch preconditioning, multigrid/deflation, open BC

- computers
- precise results are possible
- but $\alpha(\mu)$ is a challenge

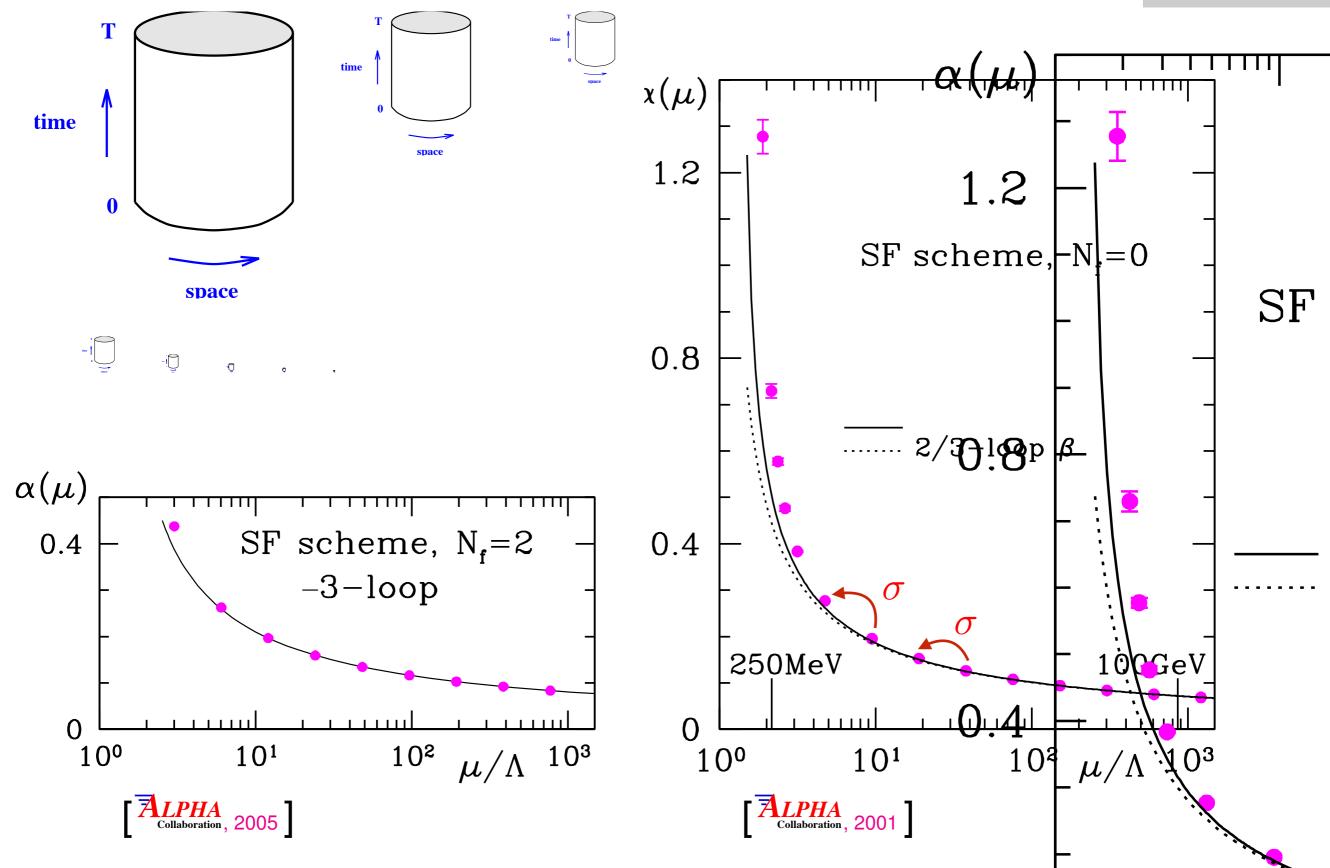




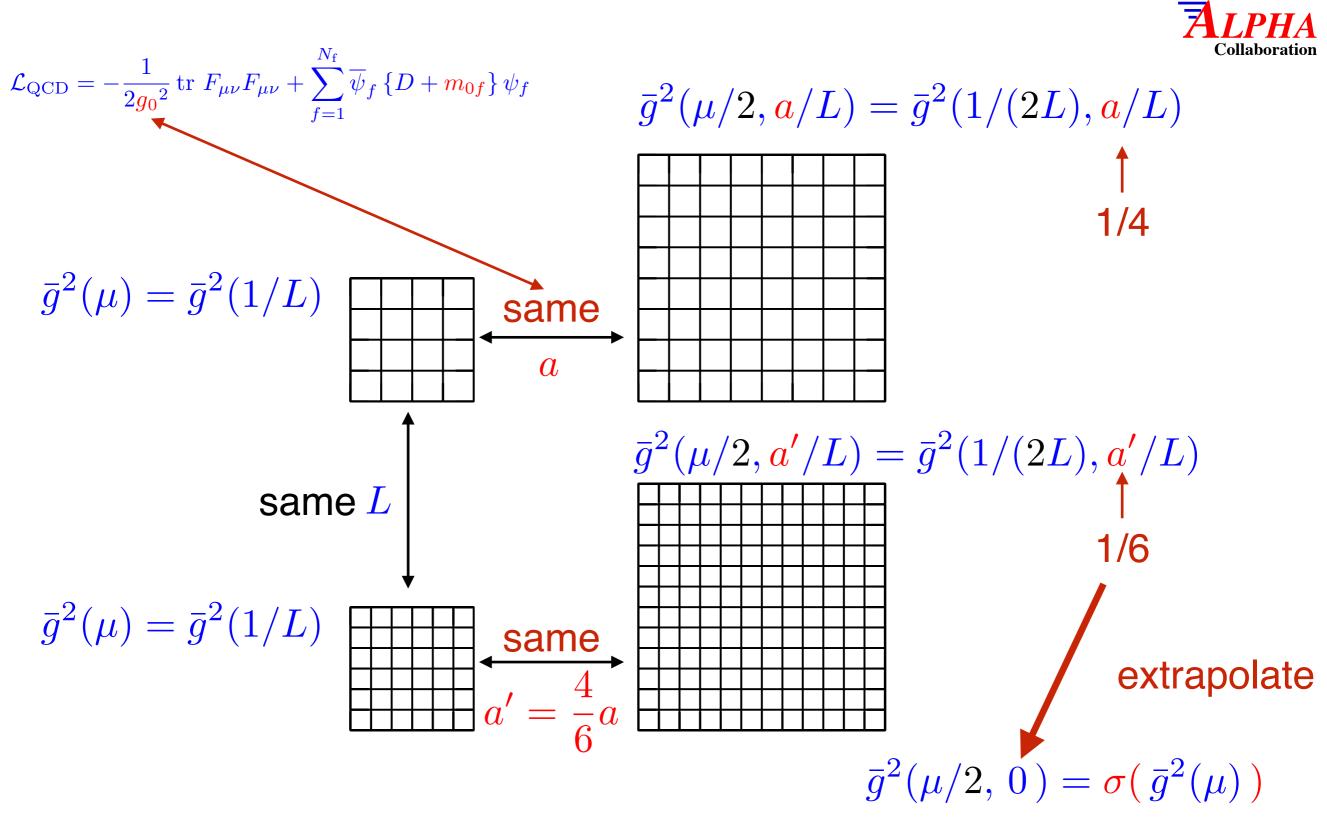
 $a^2 \mu^2 \ll 1$ or strong assumptions to take continuum limit

Solution: finite volume $\mu = 1/L$

Running from Observables in finite volume

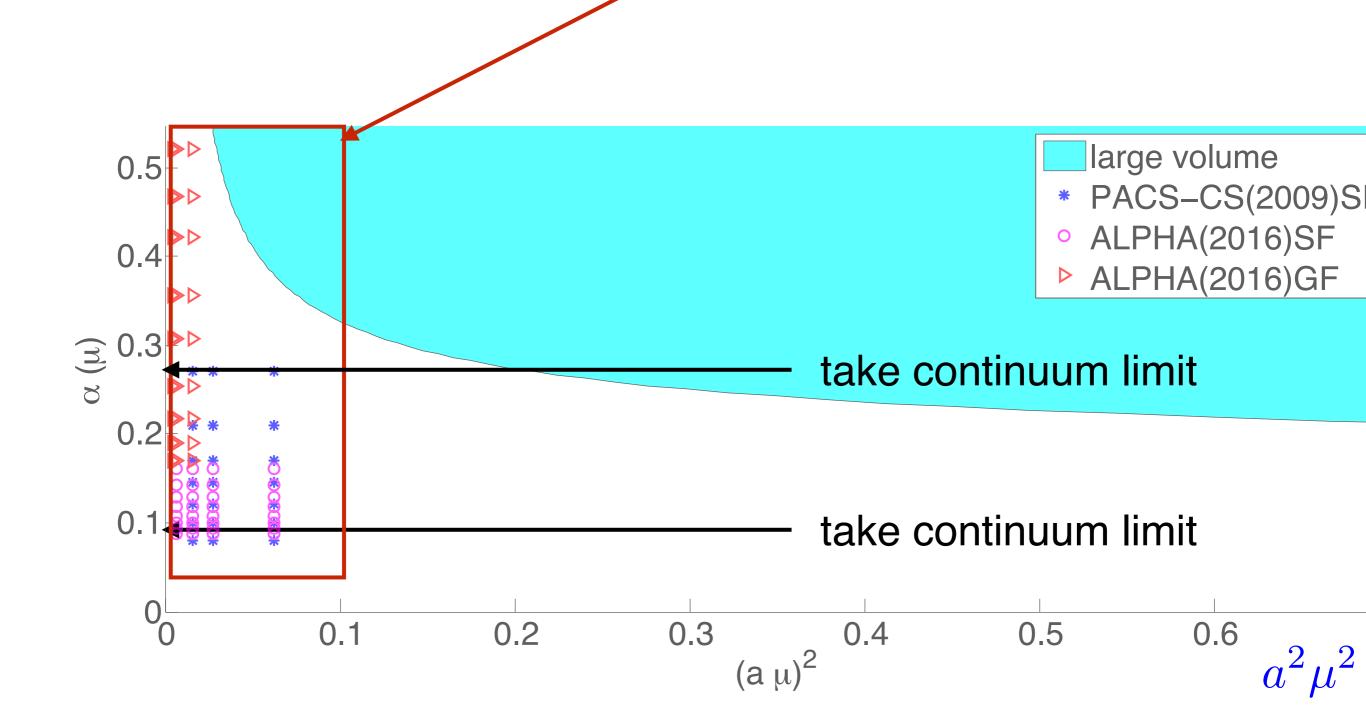


Step Scaling Function: Connects L → 2L



 $\sigma =$ continuum step scaling function

Challenge is met by finite volume couplings



History of finite volume couplings

- 1991 2-d sigma model [LüWeWo]
- 1992 Schrödinger functional [LüNaWeWo, Si]
- 1992-95 SU(2) YM coupling [LüSoWeWo, DiFrGuLüPeSoWeWo]
- 1993 DESY gets an APE-computer
- 1994 SU(3) YM coupling [LüSoWeWo]
- > 2000 3-loop β for SF coupling [BoWeV]
- 2001-05 N_f=2 coupling [BoFrGeHaHe.]
- 2009 N_f=3 coupling S. Aoki et al. (PAC

Bode, dellaBrida, Bruno, Frezzotti, Divitiis, Fritzsch, Gehrmann, Guagnelli, Hasenbusch, Heitger, Jansen, Kurth, Korzec, Lüscher, dellaMorte, Narayanan, Neuberger, Petronzio, Ramos, Rolf, Schaefer, Simma, Sint, Sommer, Weisz, Wittig, Wolff

History of finite volume couplings

- 1991 2-d sigma model [LüWeWo]
- 1992 Schrödinger functional [LüNaWeWo, Si]
- 1992-95 SU(2) YM coupling [LüSoWeWo, DiFrGuLüPeSoWeWo]
- 1993 DESY gets an APE-computer (< speed of my laptop)</p>
- 1994 SU(3) YM coupling [LüSoWeWo]
- > 2000 3-loop β for SF coupling [BoWeWo]
- 2001-05 N_f=2 coupling [BoFrGeHaHeJaKuRoSimSinSoWeWiWo]
- 2009 N_f=3 coupling S. Aoki et al. (PACS-CS)
- 2010-2013 Gradient flow coupling [NaNe, Lü, LüWe, RaFr, SinRa]

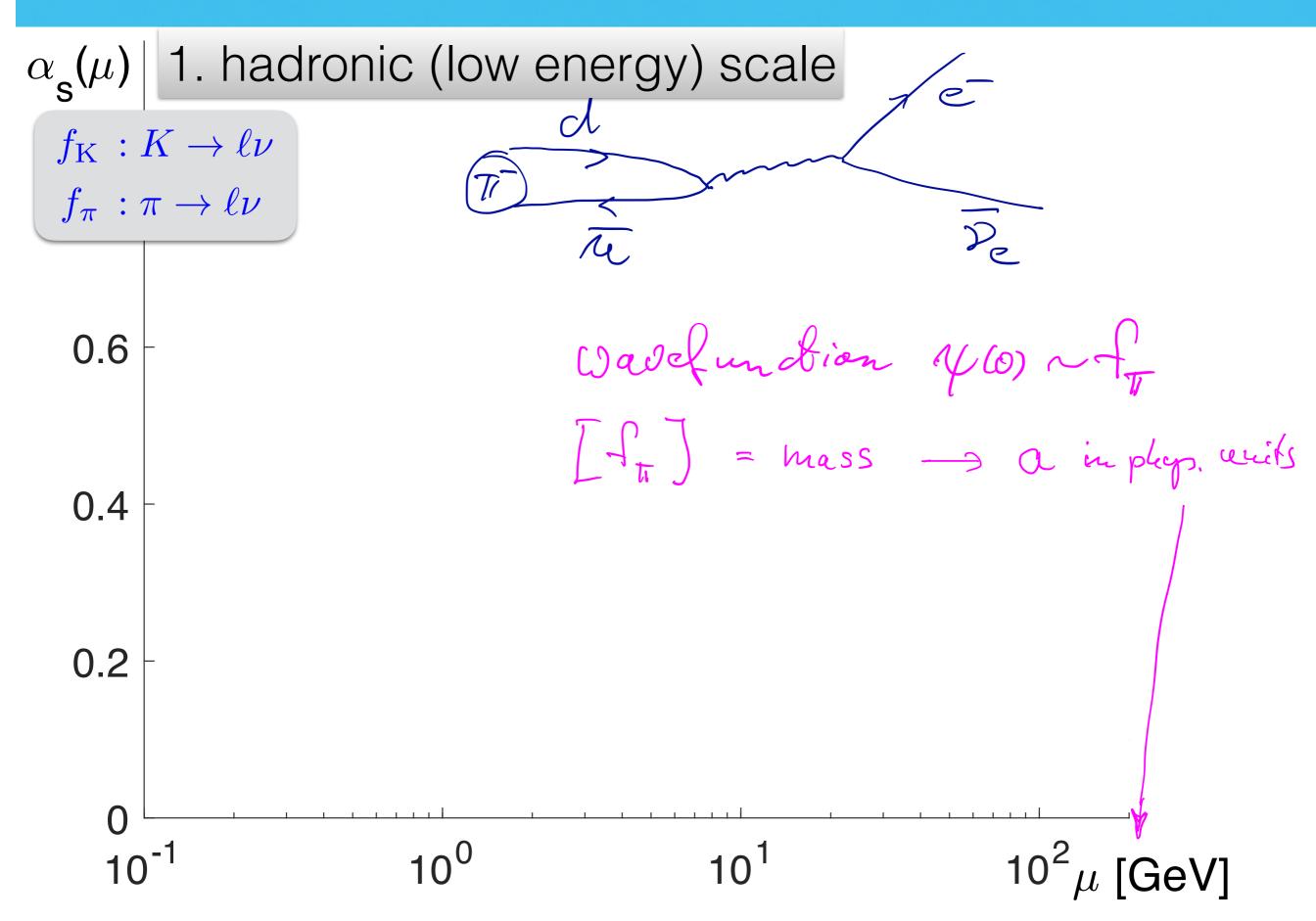
Bode, dellaBrida, Bruno, Frezzotti, Divitiis, Fritzsch, Gehrmann, Guagnelli, Hasenbusch, Heitger, Jansen, Kurth, Korzec, Lüscher, dellaMorte, Narayanan, Neuberger, Petronzio, Ramos, Rolf, Schaefer, Simma, Sint, Sommer, Weisz, Wittig, Wolff

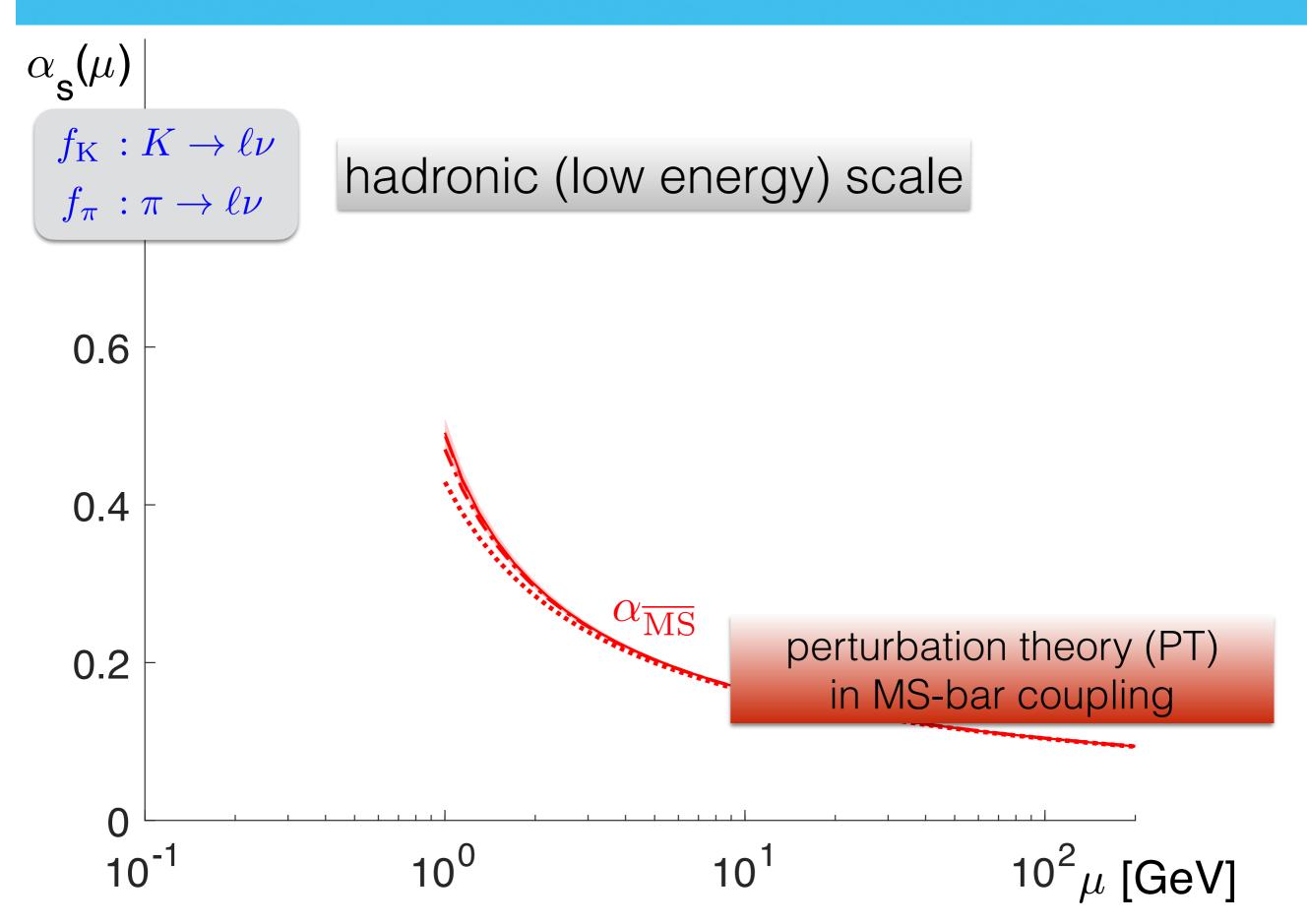
History of finite volume couplings

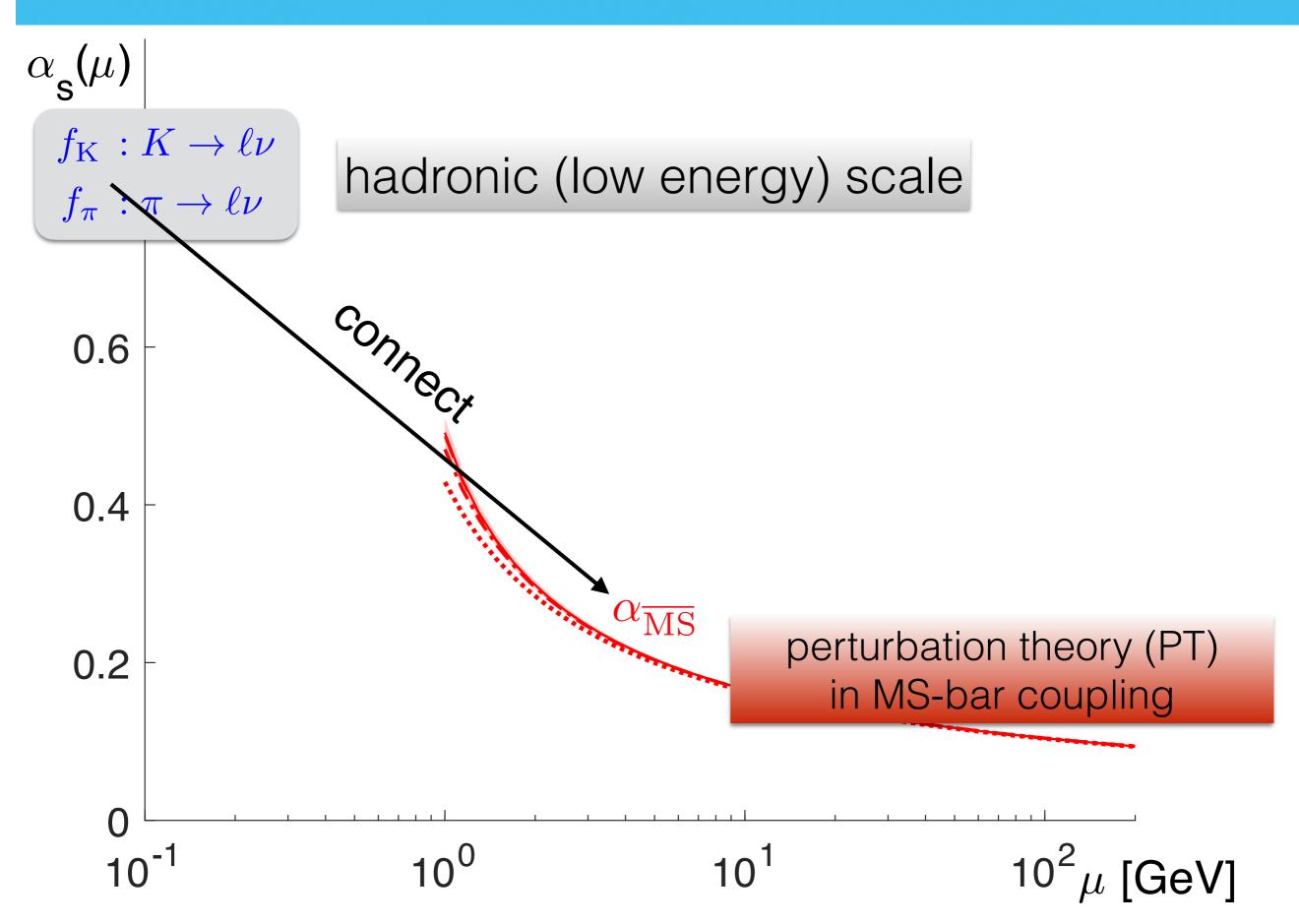
- 1991 2-d sigma model [LüWeWo]
- 1992 Schrödinger functional [LüNaWeWo, Si]
- 1992-95 SU(2) YM coupling [LüSoWeWo, DiFrGuLüPeSoWeWo]
- 1993 DESY gets an APE-computer (< speed of my laptop)</p>
- 1994 SU(3) YM coupling [LüSoWeWo]
- > 2000 3-loop β for SF coupling [BoWeWo]

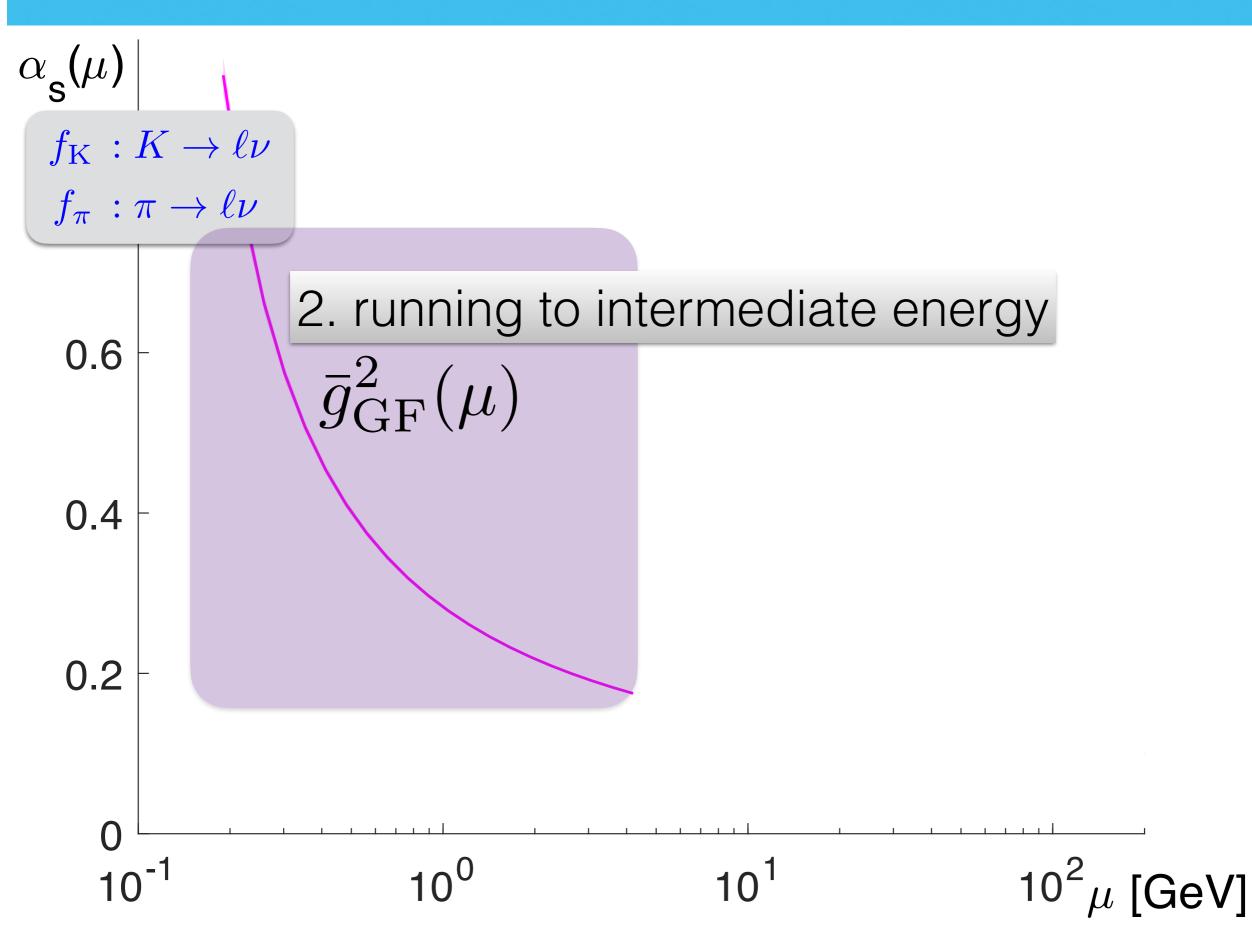
2017 N_f=3 coupling [BriBruFrKoRaSchSimSinSo] with good precision

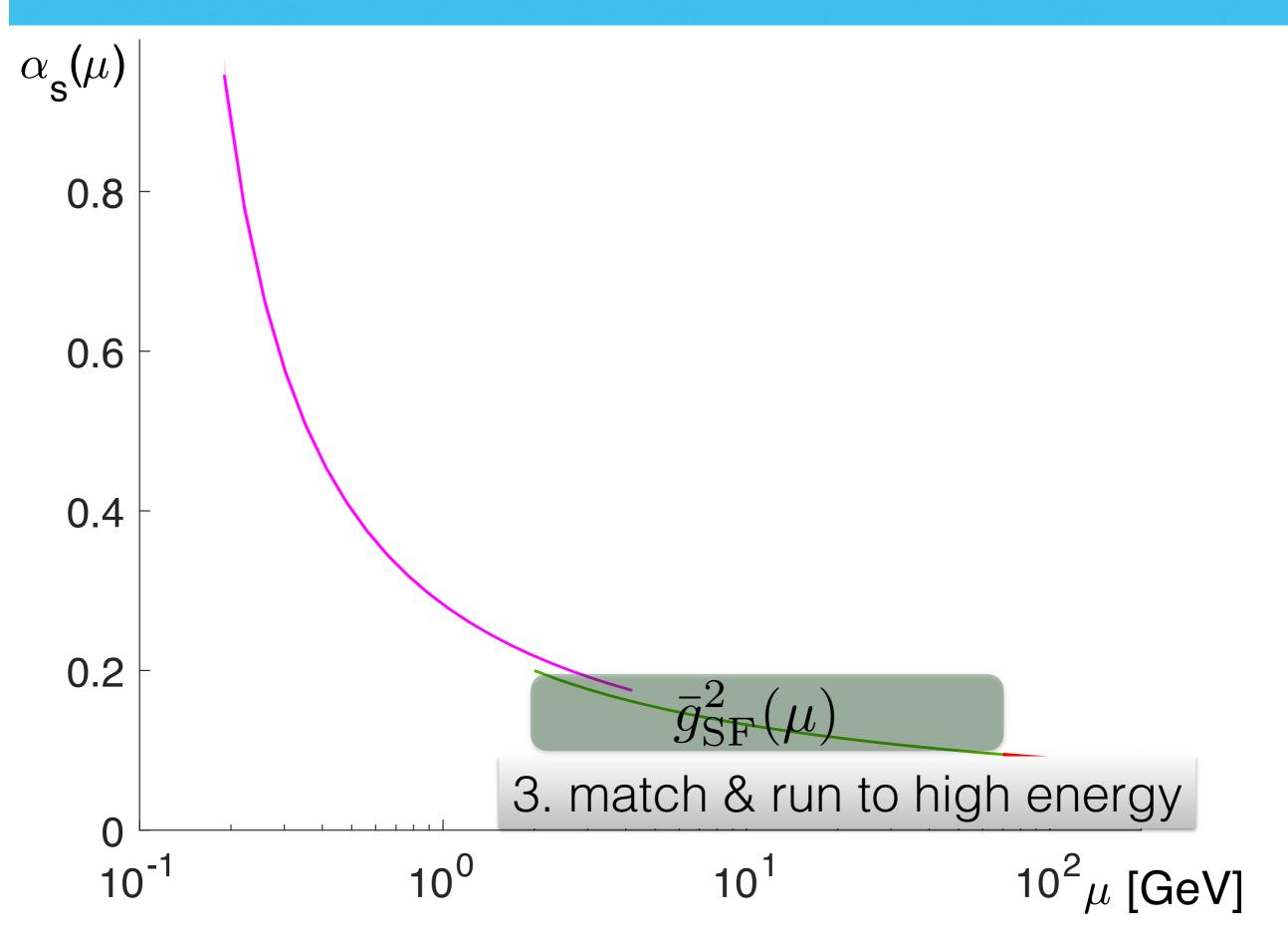
Bode, dellaBrida, Bruno, Frezzotti, Divitiis, Fritzsch, Gehrmann, Guagnelli, Hasenbusch, Heitger, Jansen, Kurth, Korzec, Lüscher, dellaMorte, Narayanan, Neuberger, Petronzio, Ramos, Rolf, Schaefer, Simma, Sint, Sommer, Weisz, Wittig, Wolff



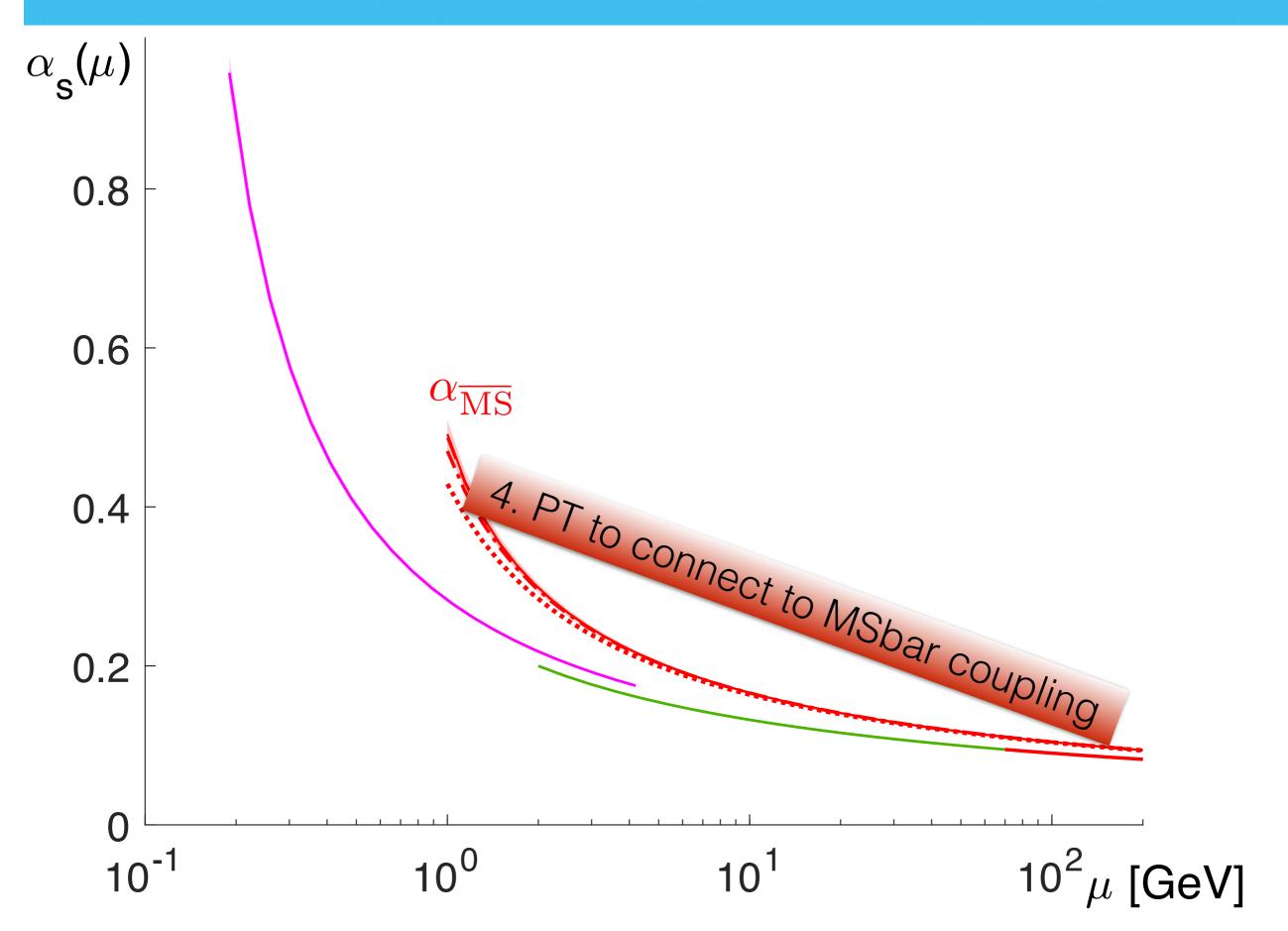




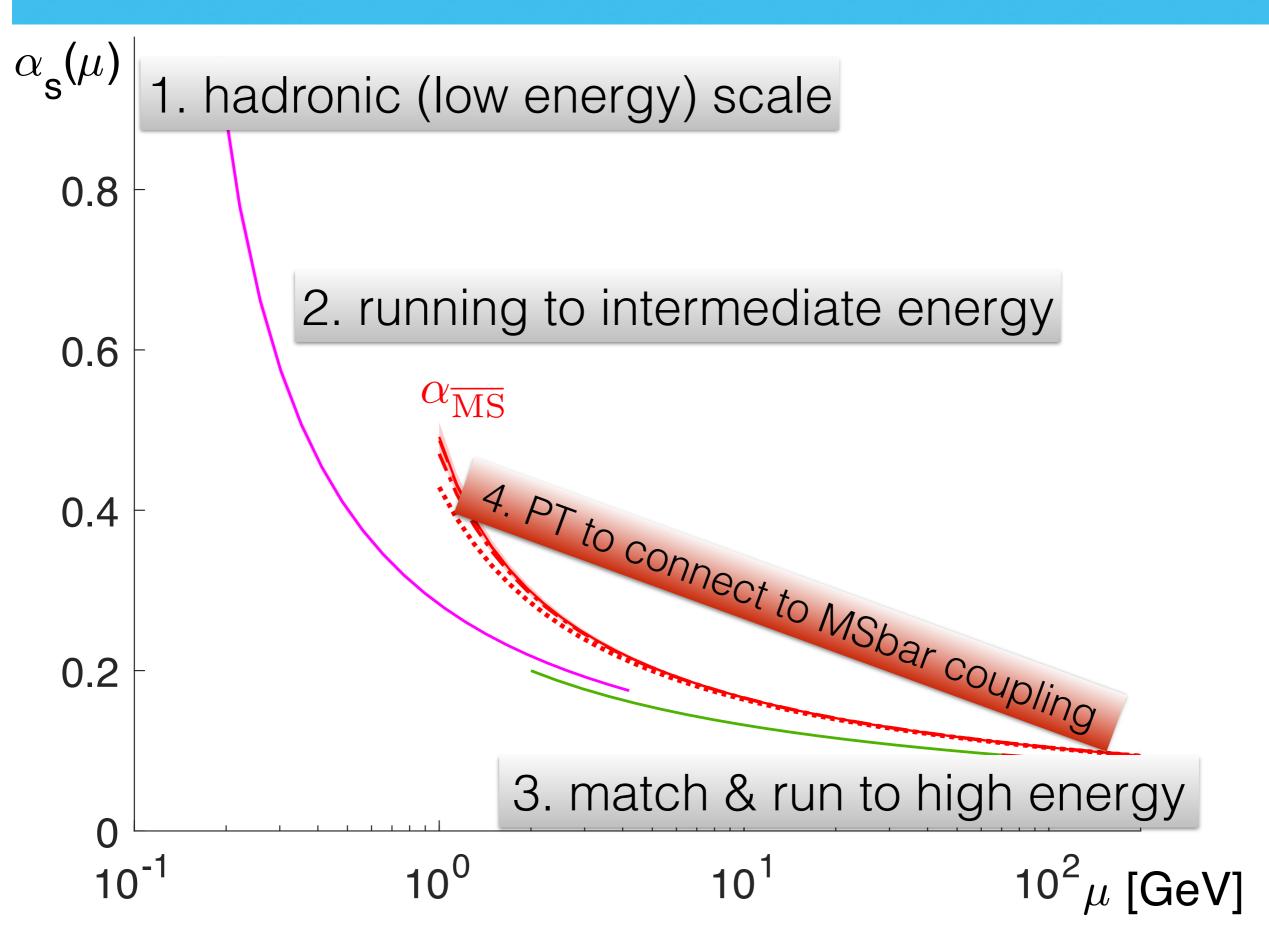




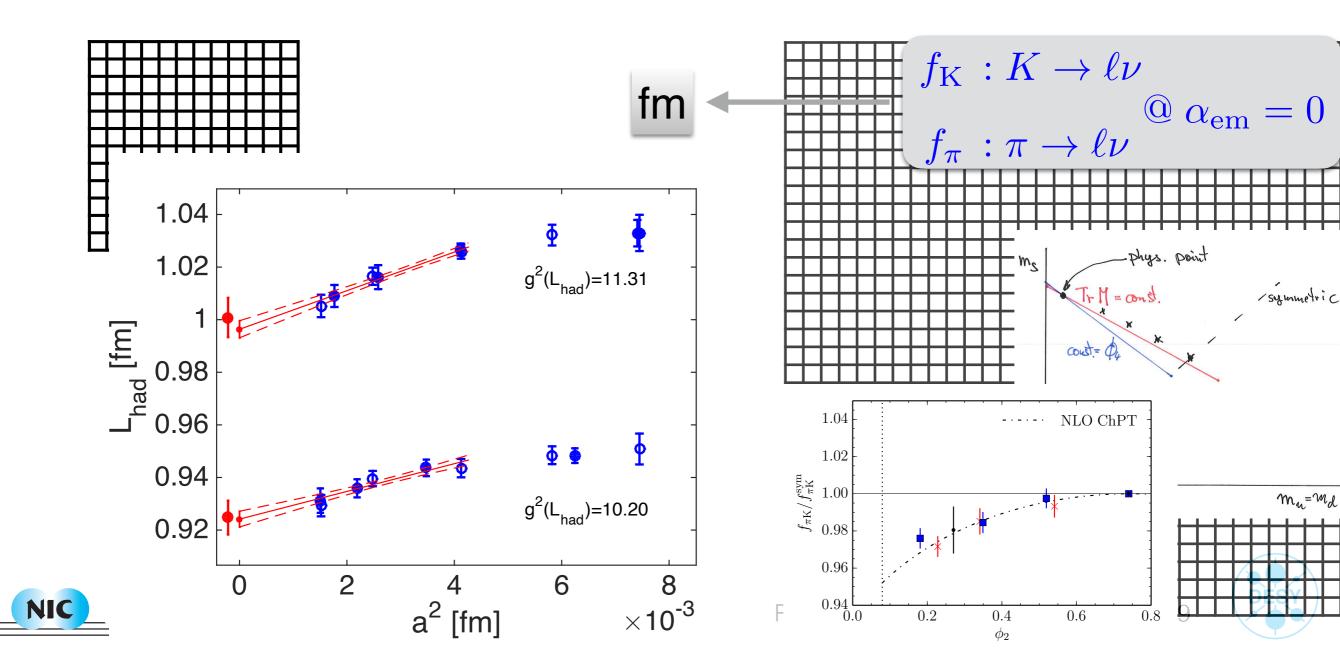
Overall strategy



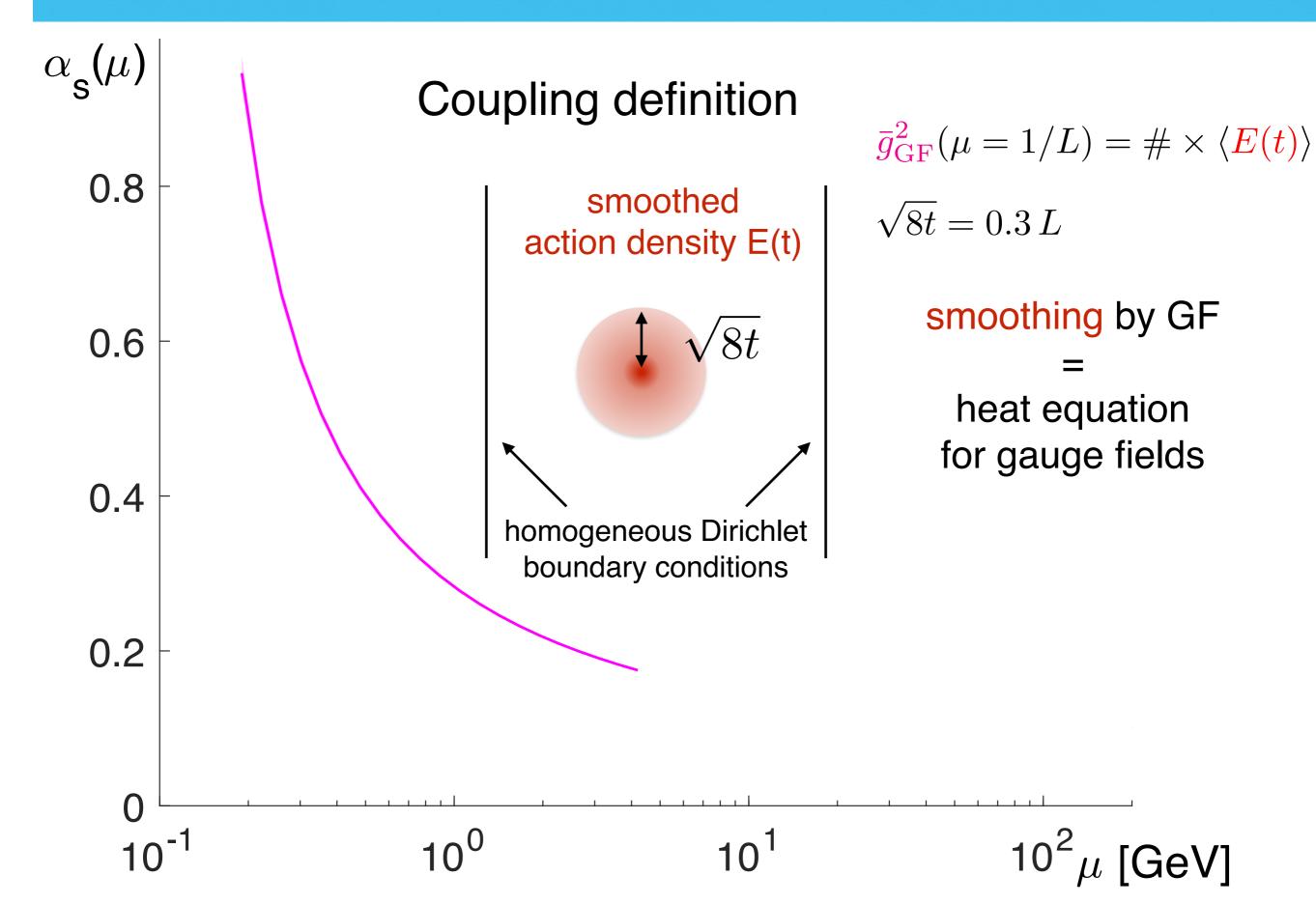
Overall strategy



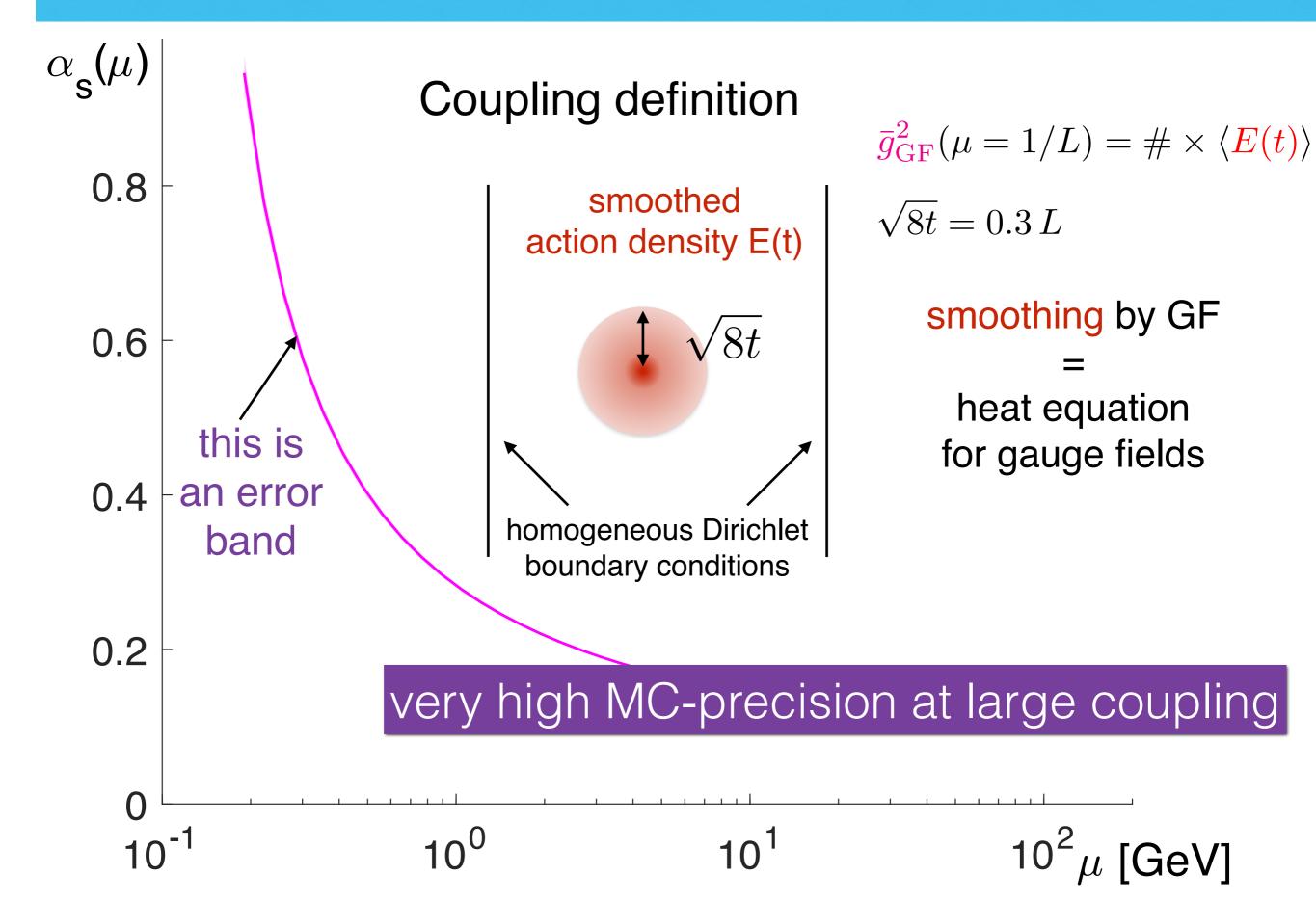
1. Determination of hadronic scale: CLS Ensembles



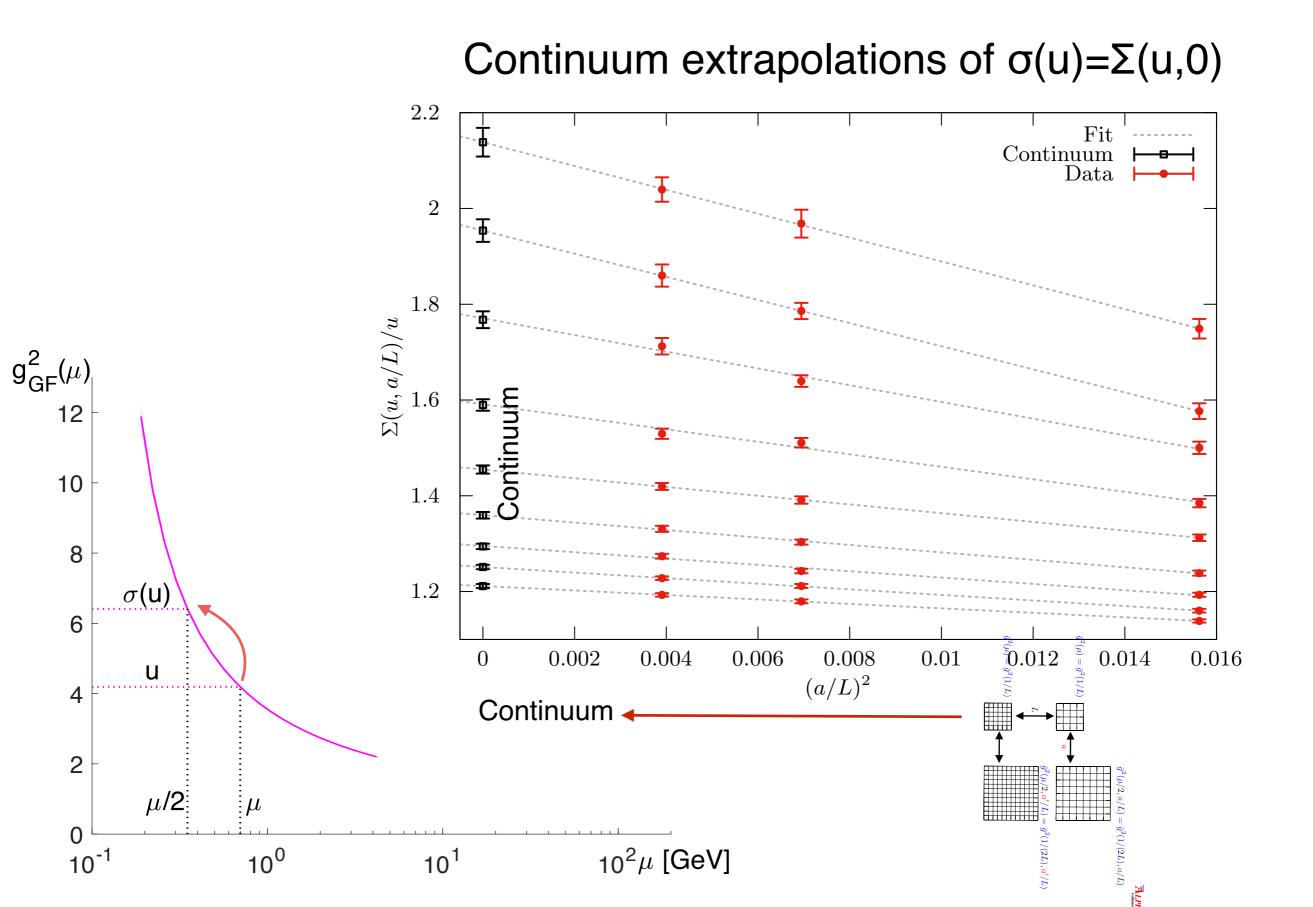
2. Running to intermediate energy



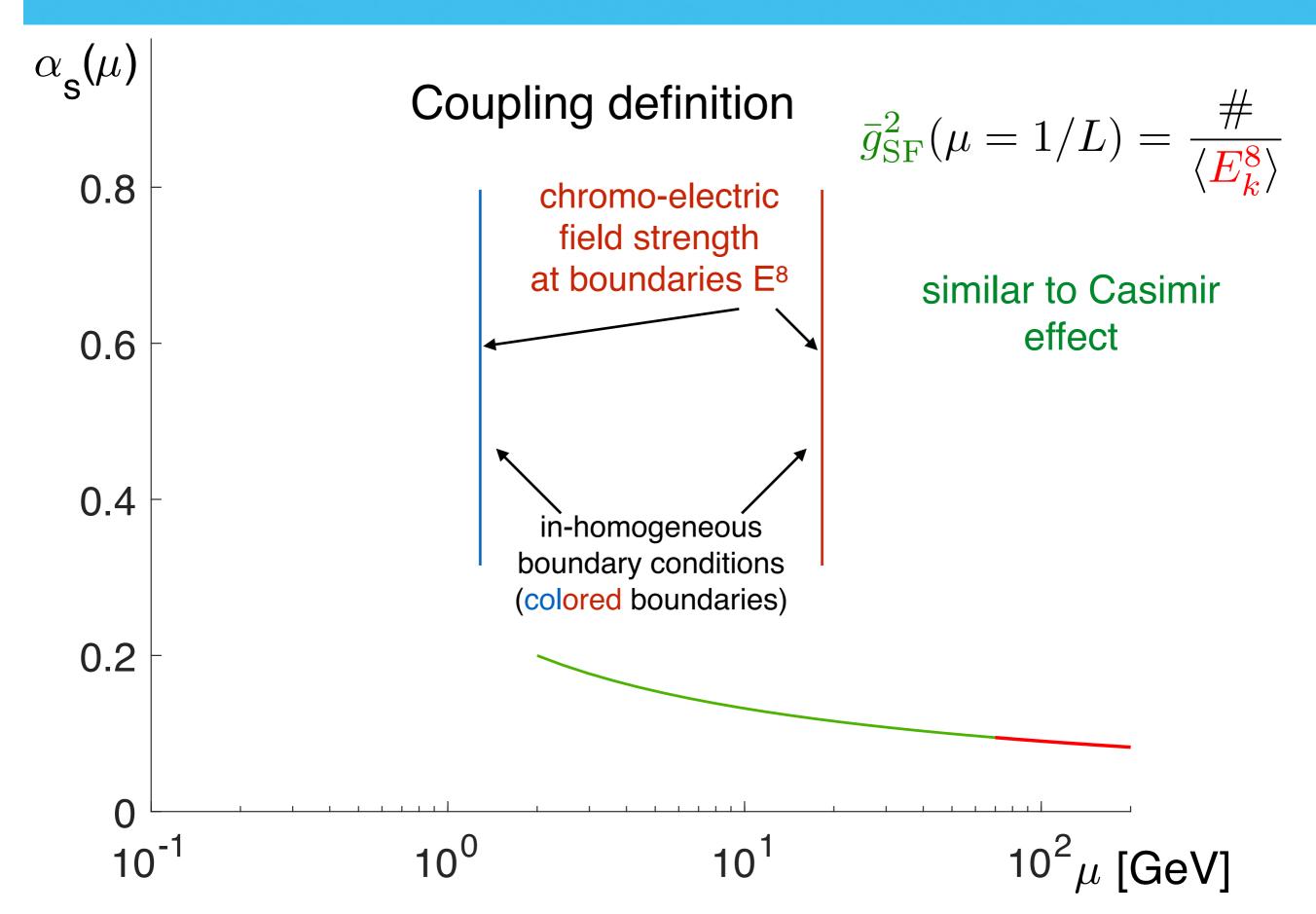
2. Running to intermediate energy



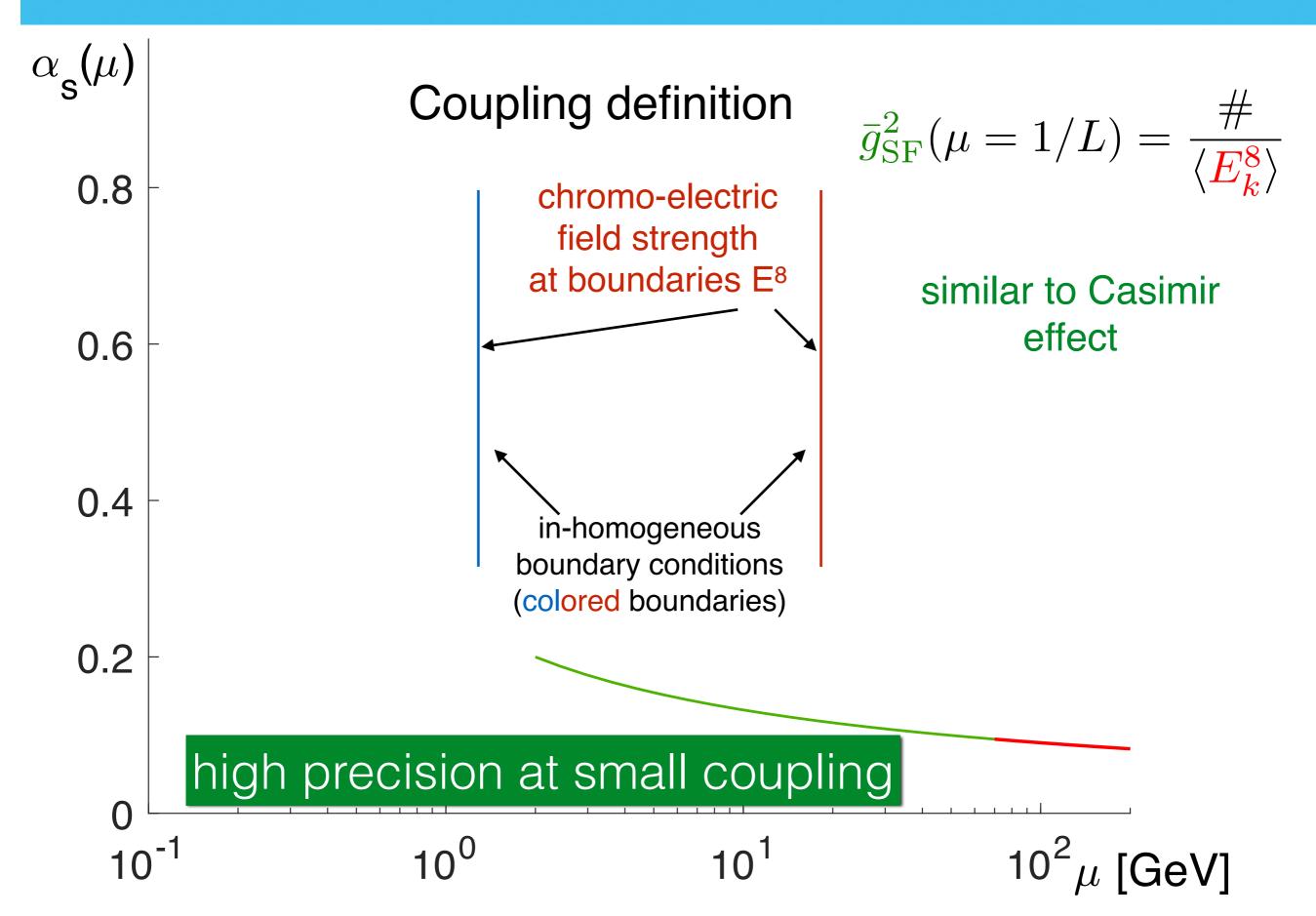
2. Running to intermediate energy



3. Running to large energy



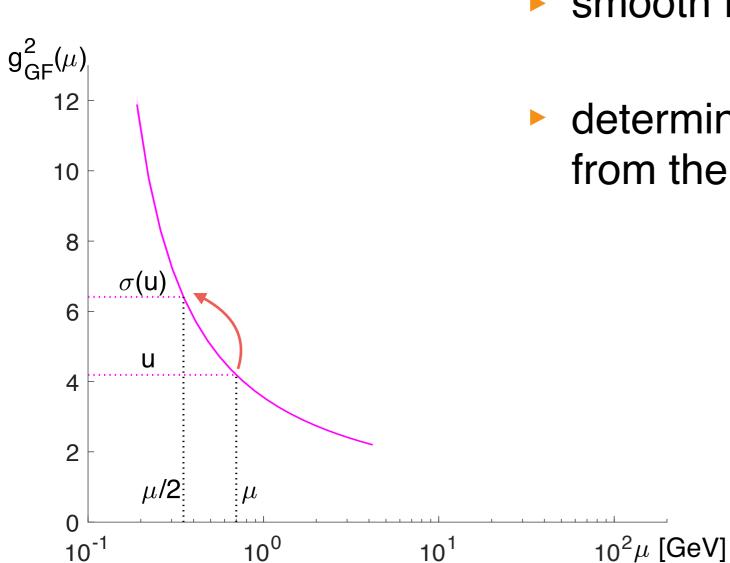
3. Running to large energy



The β -function from the step scaling function

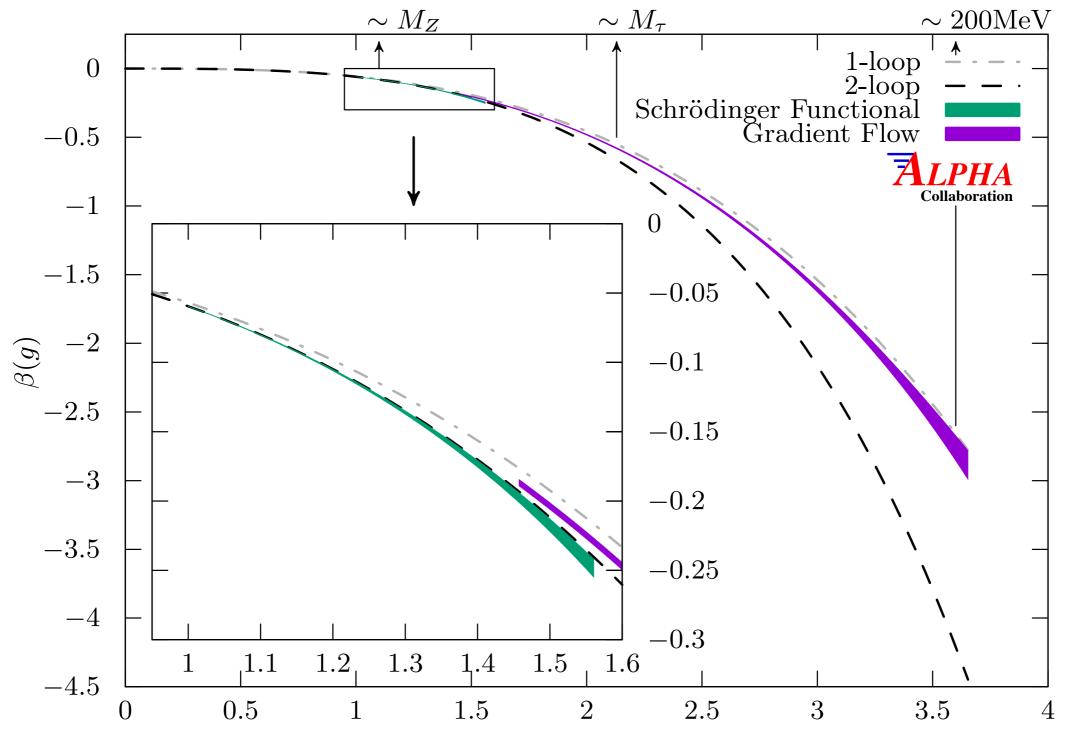
$$\int_{\sqrt{u}}^{\sqrt{\sigma(u)}} \frac{-1}{\beta(x)} = \log 2$$

- smooth fit function for $\beta(x)$
- determine parameters in fit fct from the data points σ(u)



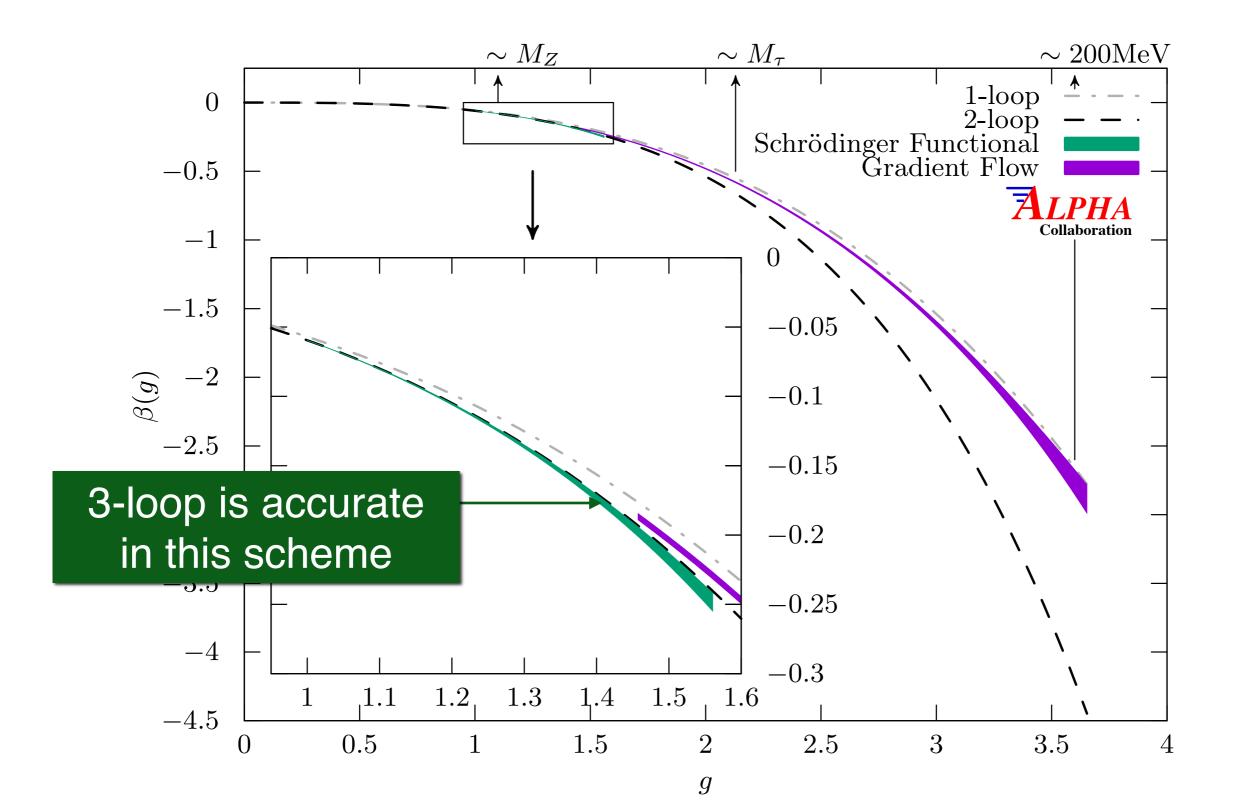
The non-perturbative β-functions

loop = order in g^2



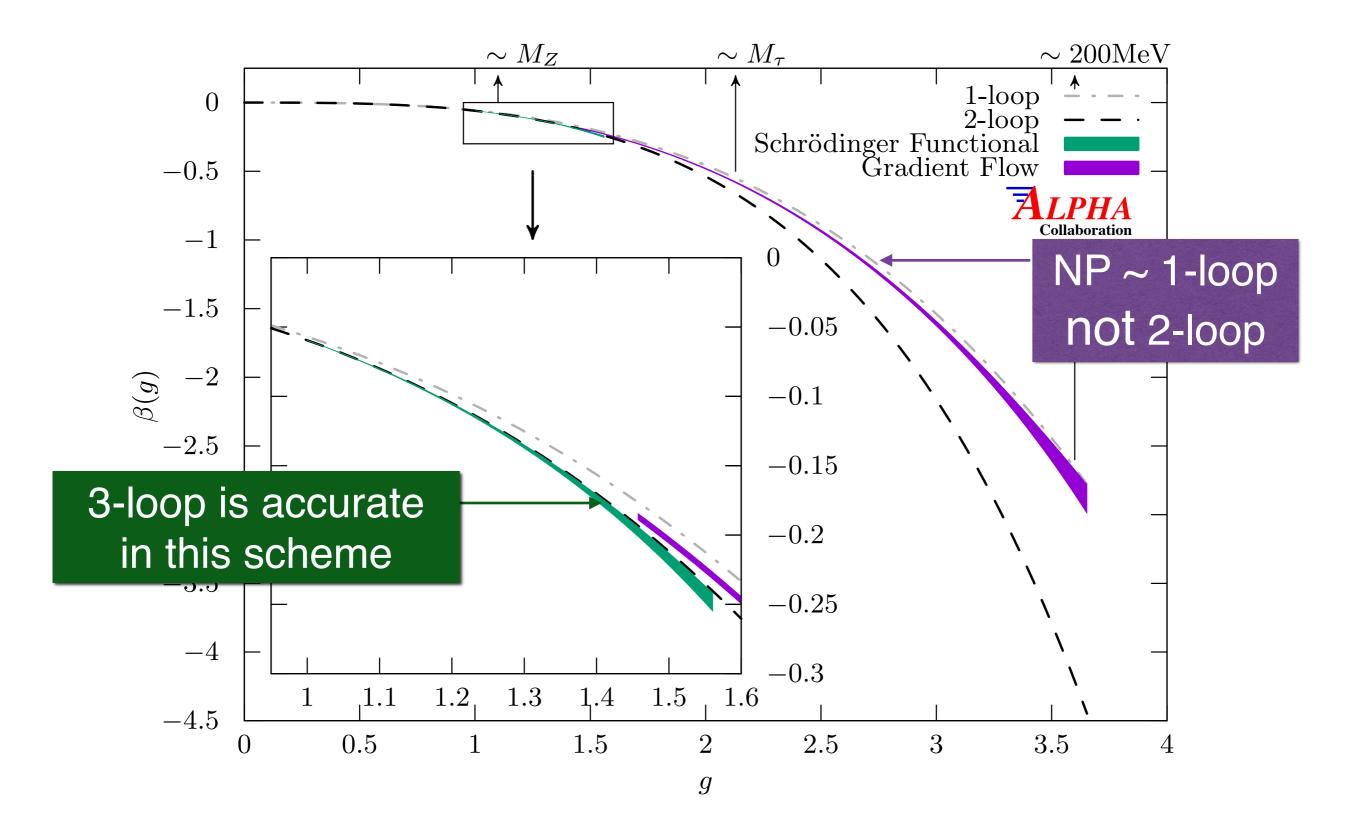
The non-perturbative β-functions

loop = order in g^2

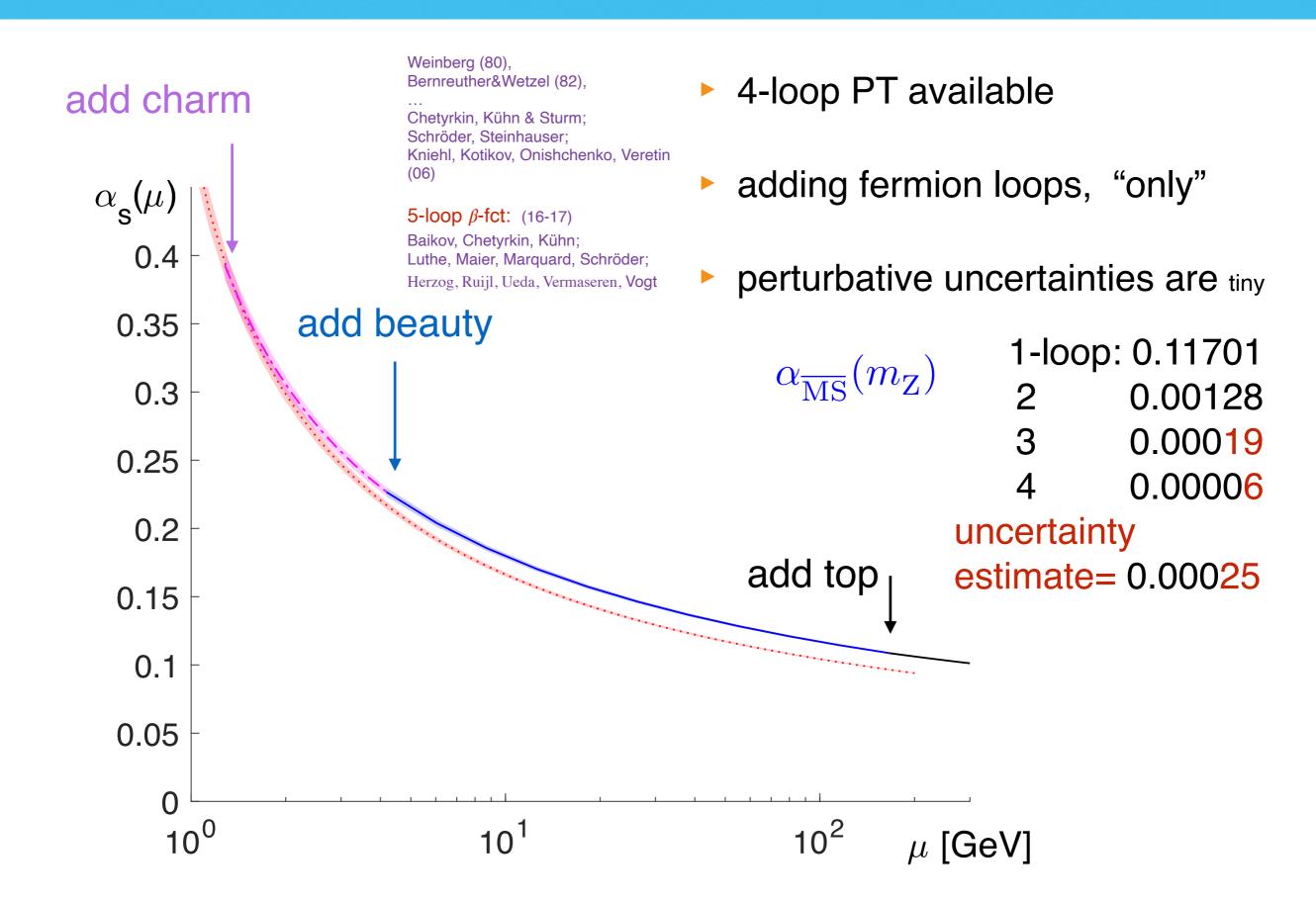


The non-perturbative β-functions

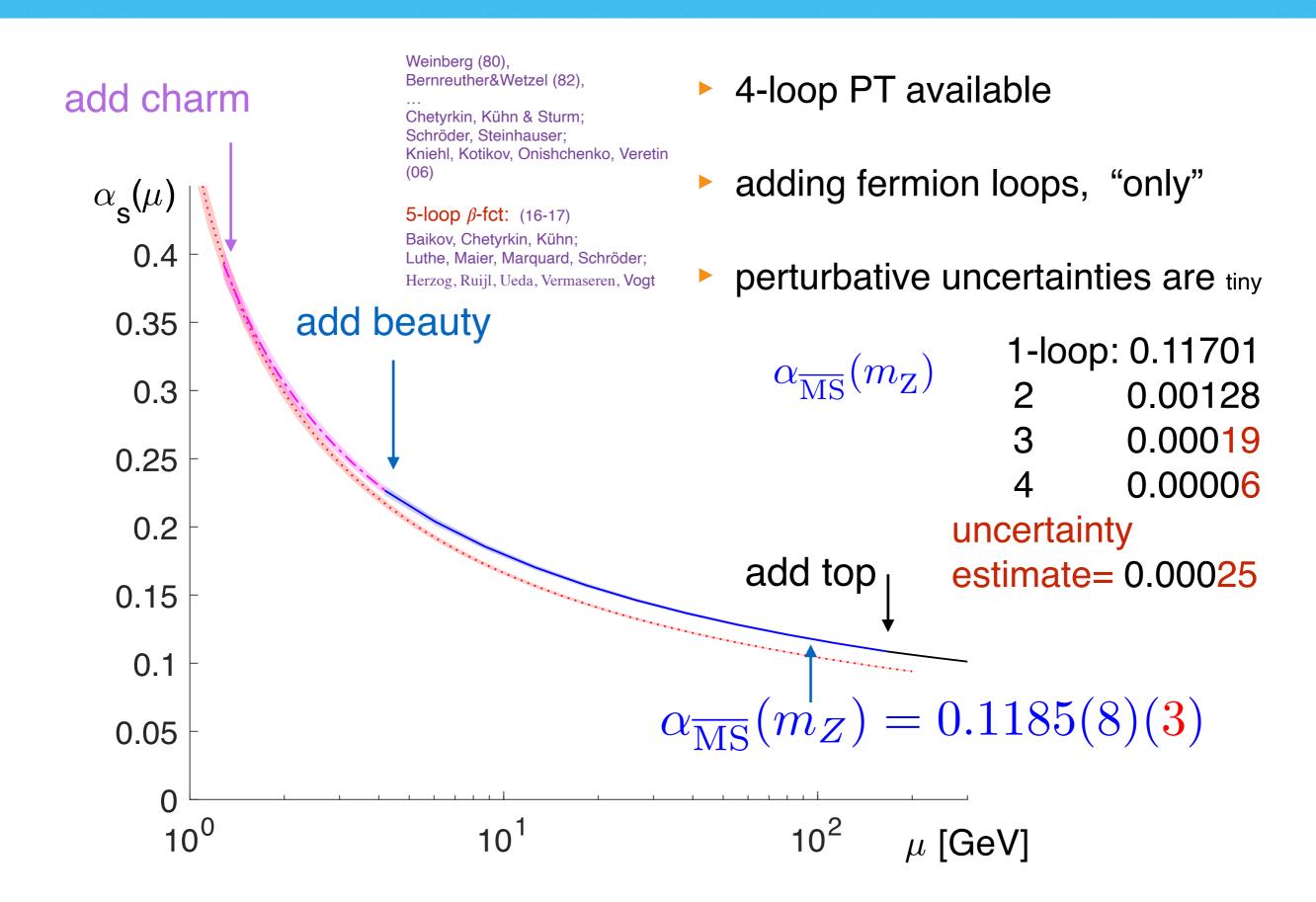
loop = order in g^2



Adding in c, b, t - quarks by perturbation theory



Adding in c, b, t - quarks by perturbation theory



Error budget

error budget of our computation (contribution to err²)

Scales	MeV	(contribution to err ²)						
		percent						
1/L∞	50	0	20	40	60			
fπ,fκ,mπ …√8t₀	150 -500	scale setting			_	Contri		
$\mu_{had} =$	200 4000	$L_{\rm had}/\sqrt{t_0}$				Contribution		
1/L _{had}		GF running				to		
$\mu_{ extsf{swi}}$		scheme switch				relative e	by non-perturbative	
μ рт	70000	SF running			_	error sq	running	•
		PT decoupling				squared		

The result in comparison

FLAG Review 2019

March 5, 2019

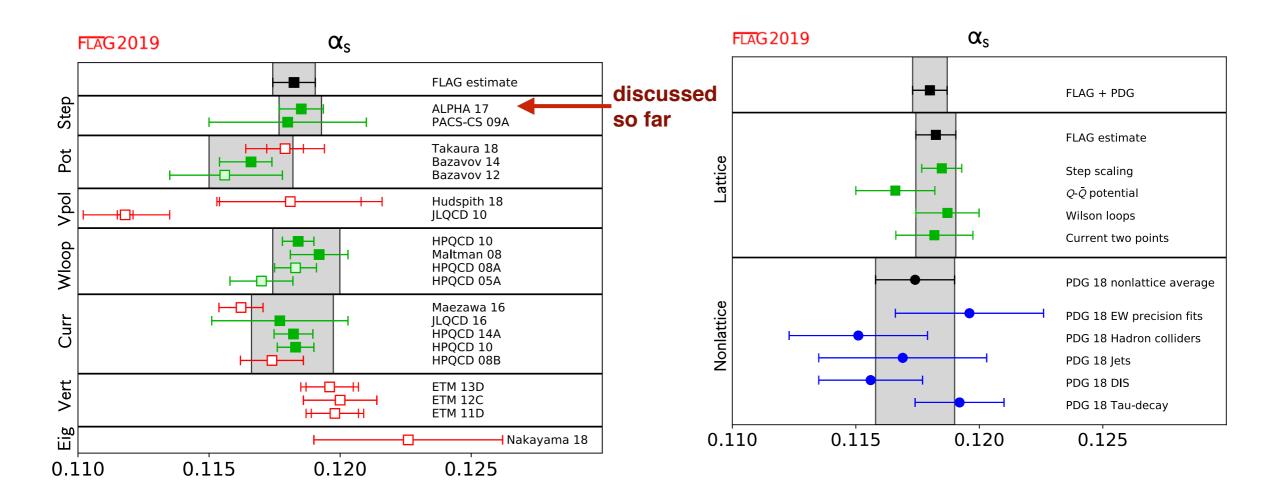
Flavour Lattice Averaging Group (FLAG)

S. Aoki,¹ Y. Aoki,^{2,3} * D. Bečirević,⁴ T. Blum,^{5,3} G. Colangelo,⁶ S. Collins,⁷ M. Della Morte,⁸
P. Dimopoulos,⁹ S. Dürr,¹⁰ H. Fukaya,¹¹ M. Golterman,¹² Steven Gottlieb,¹³ R. Gupta,¹⁴
S. Hashimoto,^{2,15} U. M. Heller,¹⁶ G. Herdoiza,¹⁷ R. Horsley,¹⁸ A. Jüttner,¹⁹ T. Kaneko,^{2,15}

C.-J. D. Lin,^{20,21} E. Lunghi,¹³ R. Mawhinney,²² A. Nicholson,²³ T. Onogi,¹¹ C. Pena,¹⁷ A. Portelli,¹⁸

A. Ramos,²⁴ S. R. Sharpe,²⁵ J. N. Simone,²⁶ S. Simula,²⁷ R. Sommer,^{28,29} R. Van De Water,²⁶

A. Vladikas,³⁰ U. Wenger,⁶ H. Wittig³¹



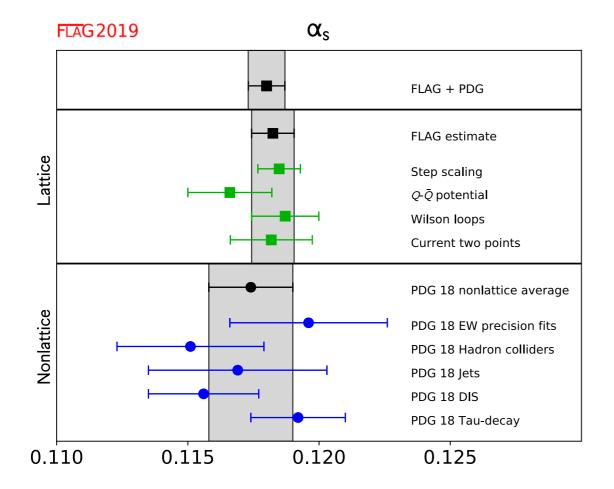
The result in comparison

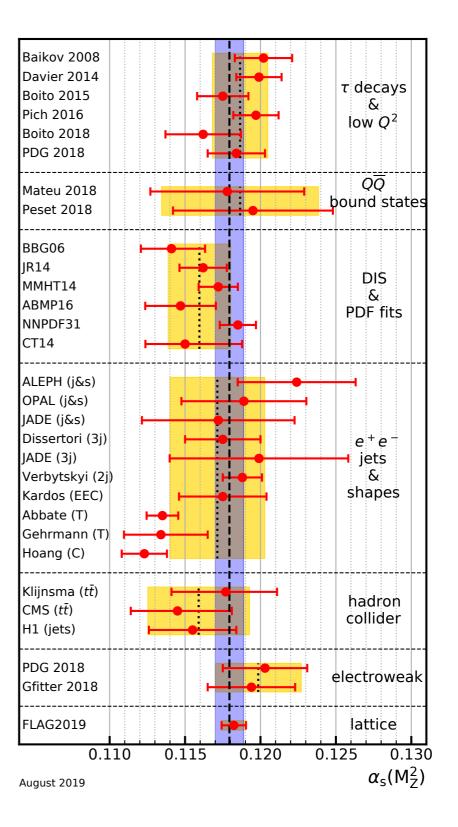
FLAG Review 2019

March 5, 2019

Flavour Lattice Averaging Group (FLAG)

S. Aoki,¹ Y. Aoki,^{2,3} * D. Bečirević,⁴ T. Blum,^{5,3} G. Colangelo,⁶ S. Collins,⁷ M. Della Morte,⁸
 P. Dimopoulos,⁹ S. Dürr,¹⁰ H. Fukaya,¹¹ M. Golterman,¹² Steven Gottlieh,¹³ R. Gupta,¹⁴
 S. Hashimoto,^{2,15} U. M. Heller,¹⁶ G. Herdoiza,¹⁷ R. Horsley,¹⁸ A. Jüttner,¹⁹ T. Kaneko,^{2,15}
 C.-J. D. Lin,^{20,21} E. Lunghi,¹³ R. Mawhinney,²² A. Nicholson,²³ T. Onog,¹¹ I. C. Pena,¹⁷ A. Portelli,¹⁸
 A. Ramos,²⁴ S. R. Sharpe,²⁵ J. N. Simone,²⁶ S. Simula,²⁷ R. Sommer,^{28,29} R. Van De Water,²⁶
 A. Vladikas,³⁰ U. Wenger,⁶ H. Wittig³¹





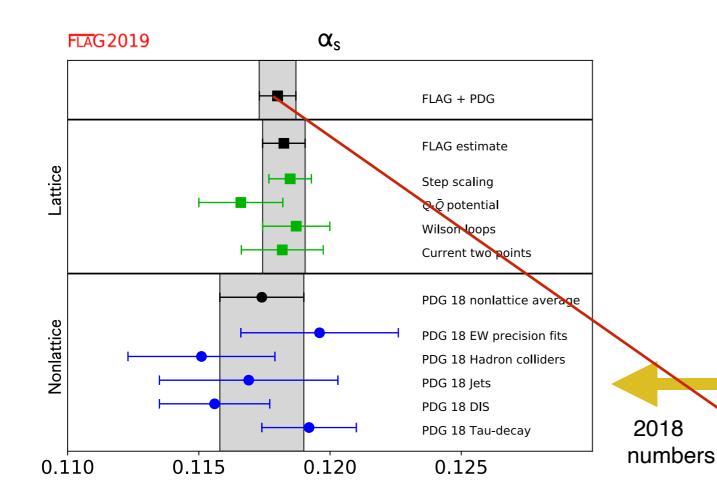
The result in comparison

FLAG Review 2019

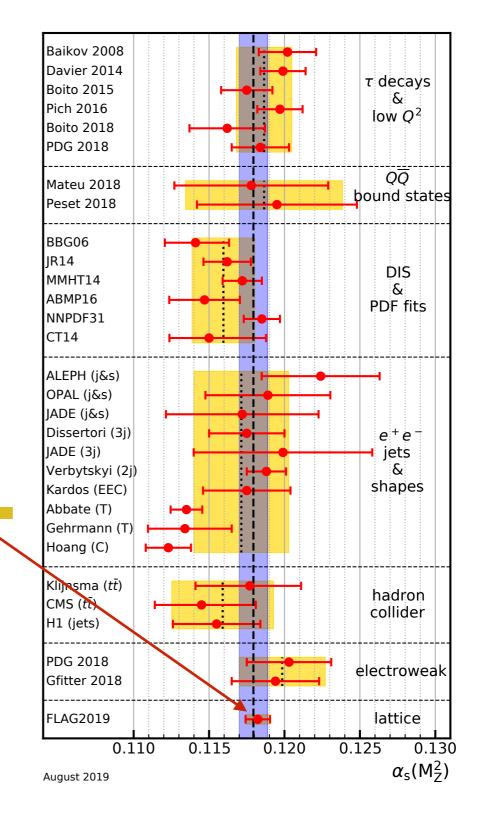
March 5, 2019

Flavour Lattice Averaging Group (FLAG)

S. Aoki,¹ Y. Aoki,^{2,3} * D. Bečirević,⁴ T. Blum,^{5,3} G. Colangelo,⁶ S. Collins,⁷ M. Della Morte,⁸
 P. Dimopoulos,⁹ S. Dürr,¹⁰ H. Fukaya,¹¹ M. Golterman,¹² Steven Gottlieh,¹³ R. Gupta,¹⁴
 S. Hashimoto,^{2,15} U. M. Heller,¹⁶ G. Herdoiza,¹⁷ R. Horsley,¹⁸ A. Jüttner,¹⁹ T. Kaneko,^{2,15}
 C.-J. D. Lin,^{20,21} E. Lunghi,¹³ R. Mawhinney,²² A. Nicholson,²³ T. Onogi,¹¹ C. Pena,¹⁷ A. Portelli,¹⁸
 A. Ramos,²⁴ S. R. Sharpe,²⁵ J. N. Simone,²⁶ S. Simula,²⁷ R. Sommer,^{28,29} R. Van De Water,²⁶
 A. Vladikas,³⁰ U. Wenger,⁶ H. Wittig³¹



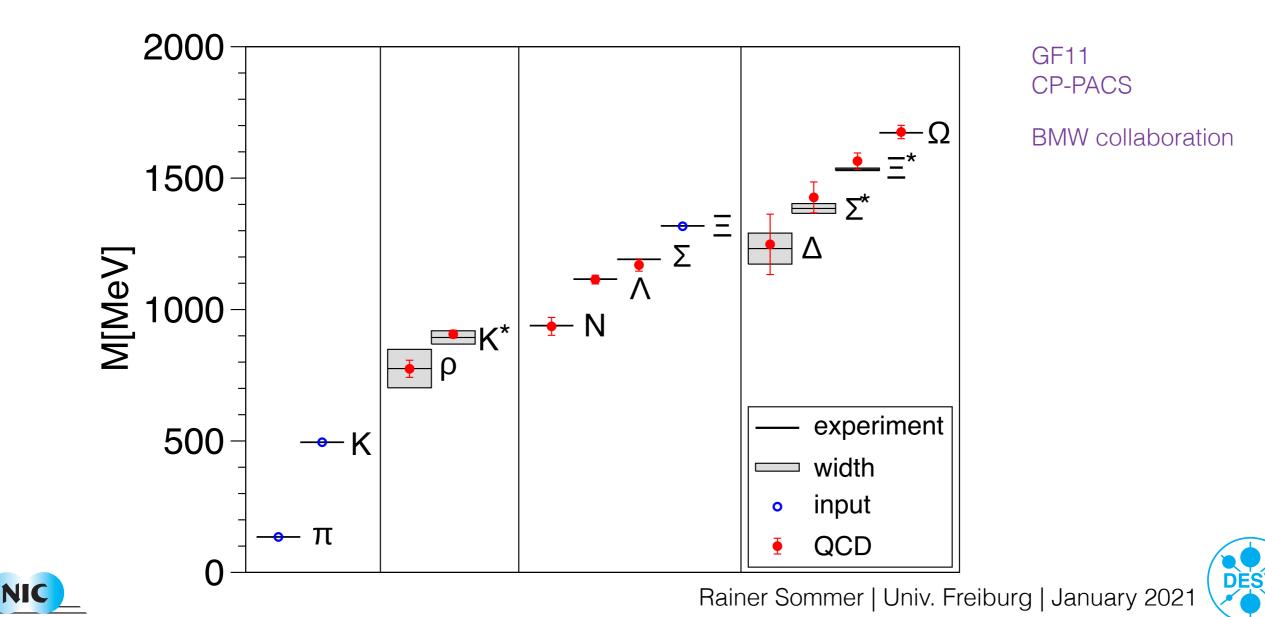
PDG December 2019



Conclusions

► Lattice QCD, finite size techniques & high order PT → Control over strong interactions from lowest to highest energies

• Agreement with experiment \rightarrow QCD valid at all energies



Conclusions

► Lattice QCD, finite size techniques & high order PT → Control over strong interactions from lowest to highest energies

• Agreement with experiment \rightarrow QCD valid at all energies

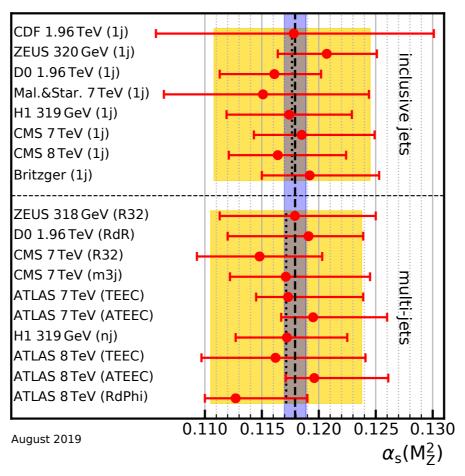


Figure 9.2: Summary of determinations of $\alpha_s(M_Z^2)$ at NLO from inclusive and multi-jet measurements at hadron colliders. The uncertainty is dominated by estimates of the impact of missing higher orders. The yellow (light shaded) bands and dotted lines indicate average values for the two sub-fields. The dashed line and blue (dark shaded) band represent the final world average value of $\alpha_s(M_Z^2)$.

Conclusions

- ► Lattice QCD, finite size techniques & high order PT → Control over strong interactions from lowest to highest energies
- Agreement with experiment \rightarrow QCD valid at all energies
- Below 1% accuracy for $\alpha(m_Z)$
 - \rightarrow precision input for LHC, vacuum stability, BSM searches
- at $\alpha = 0.1$: PT is accurate
- at $\alpha = 0.2$: examples where PT is not accurate (not discussed here)

• The Λ -parameter

$$\Lambda = \mu \times \left(b_0 \bar{g}^2(\mu) \right)^{-b_1/(2b_0^2)} e^{-1/(2b_0 \bar{g}^2(\mu))} \\ \times \exp\left\{ - \int_0^{\bar{g}(\mu)} dx \left[\frac{1}{\beta(x)} + \frac{1}{b_0 x^3} - \frac{b_1}{b_0^2 x} \right] \right\}$$

is a renormalization group invariant (constant)

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} \Lambda = 0$$

• With known, β -function, it is equivalent to $\alpha(\mu)$

New strategy based on decoupling of heavy quarks sketch of history

- Weinberg, …, Bernreuther+Wetzel, … Chetyrkin et al. N_f - dependent effective theory / effective coupling in mass-independent renormalization schemes 4-loop relations note:
 - $\Lambda_3 \ll M_{charm} \ll M_{bottom} \ll M_{top}$ ~ 0.3GeV 1 GeV 6 GeV 170 GeV
- Wuppertal+NIC group (2014 2019) charm-quark-mass dependence of low energy mass scales (e.g. nucleon mass can quantitatively be predicted by (above) pert. theory.
- now: turn the tables: predict Λ_3 from Λ_0 and low energy scale

Physics Letters B 807 (2020) 135571

Contents lists available at ScienceDirect

Physics Letters B

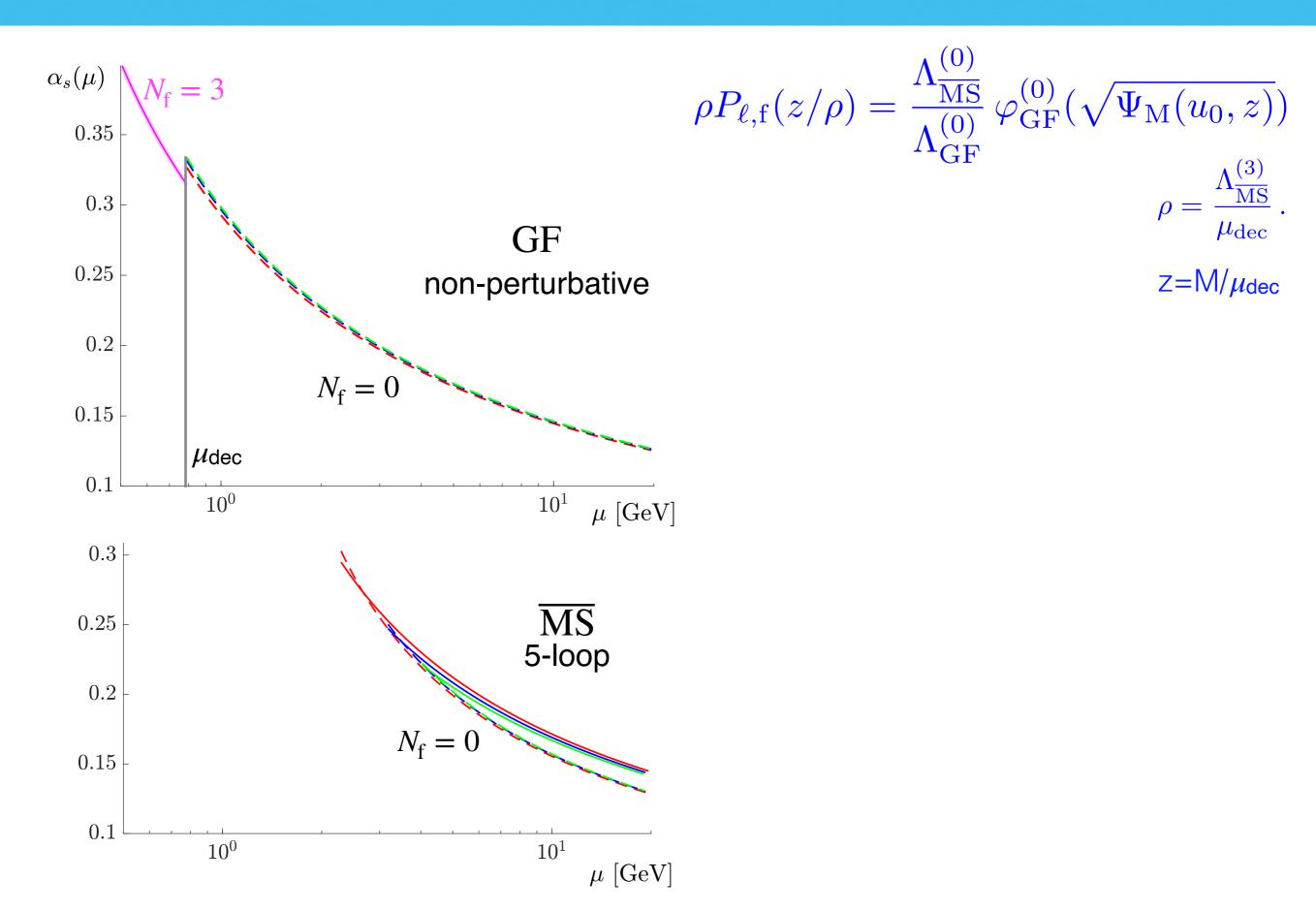
www.elsevier.com/locate/physletb

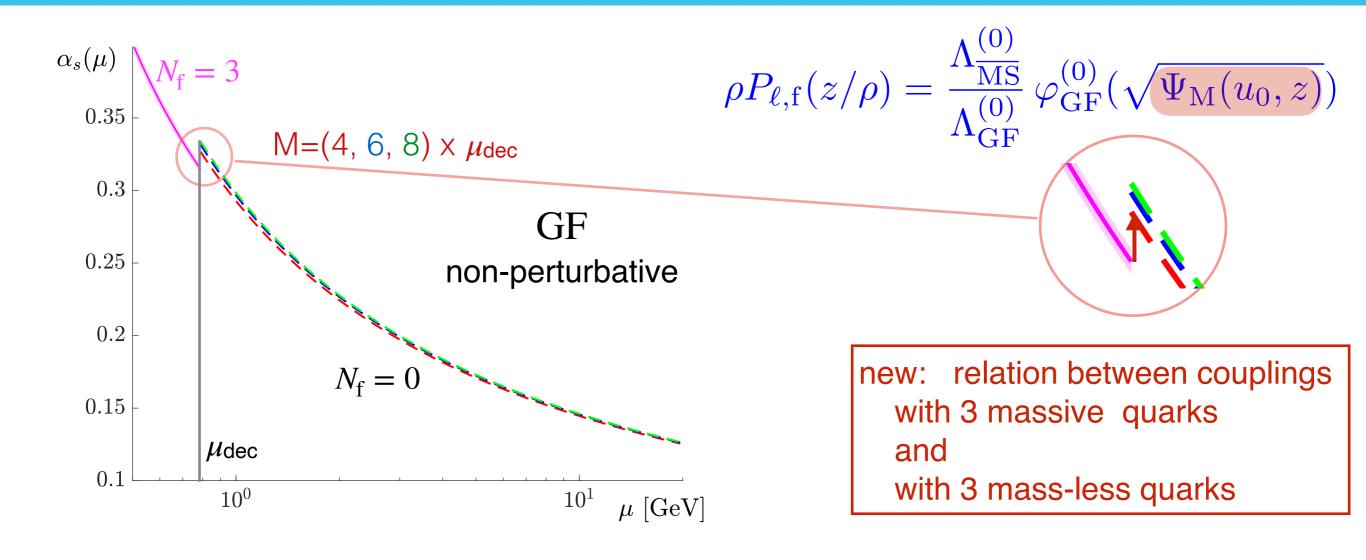
Non-perturbative renormalization by decoupling

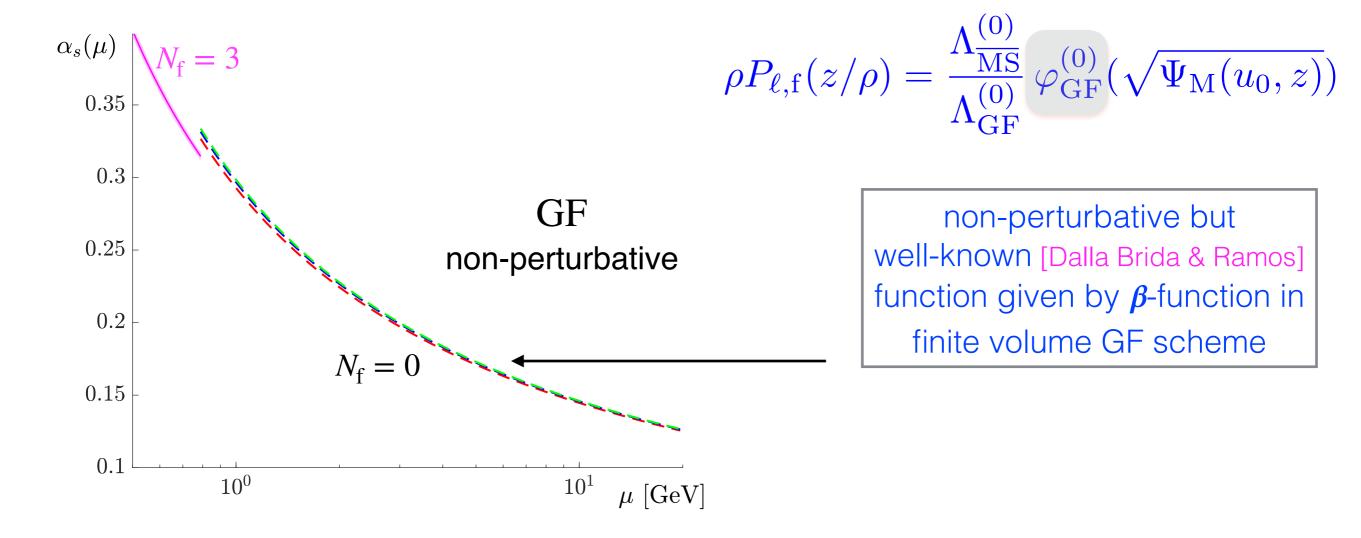
ALPHA Collaboration

Mattia Dalla Brida^a, Roman Höllwieser^b, Francesco Knechtli^b, Tomasz Korzec^b, Alberto Ramos^c, Rainer Sommer^{d,e,*}

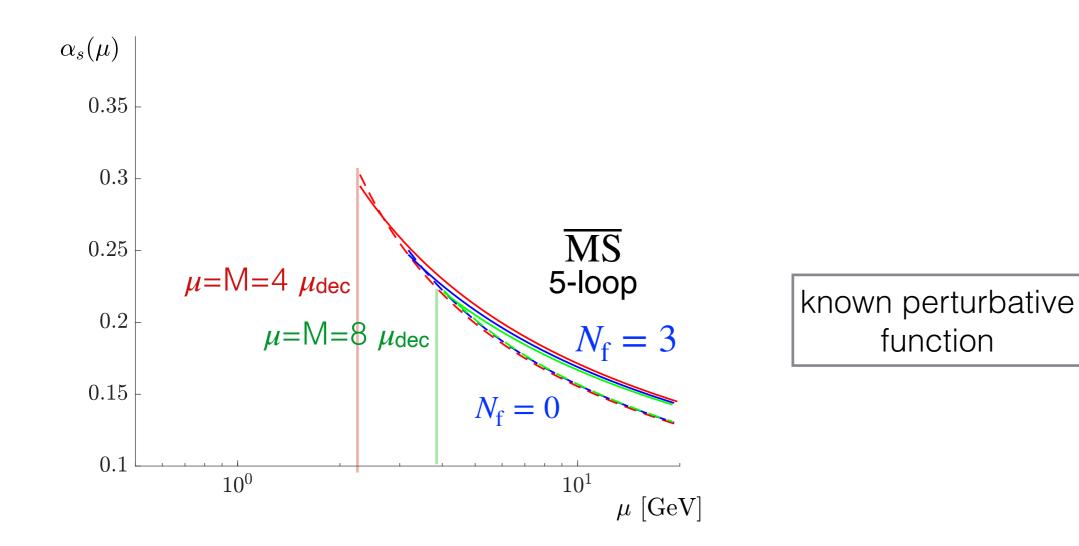
New strategy based on decoupling in a nut shell





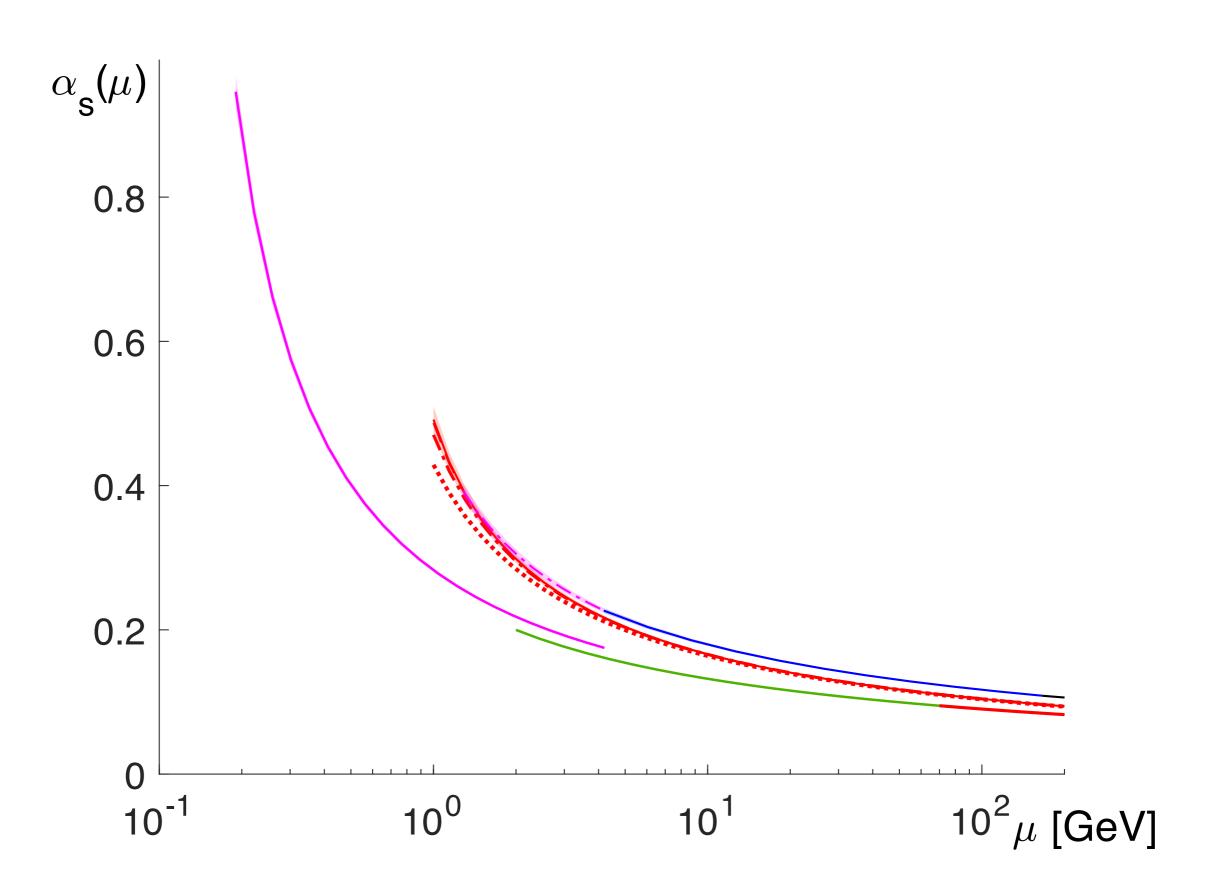


$$\rho P_{\ell,\mathrm{f}}(z/\rho) = \frac{\Lambda_{\overline{\mathrm{MS}}}^{(0)}}{\Lambda_{\mathrm{GF}}^{(0)}} \,\varphi_{\mathrm{GF}}^{(0)}(\sqrt{\Psi_{\mathrm{M}}(u_0,z)})$$



- very promising
- reduction of error by factor 0.5 seems reachable
- that will be good enough for a while to come (until there is a linear collider)

Thank you

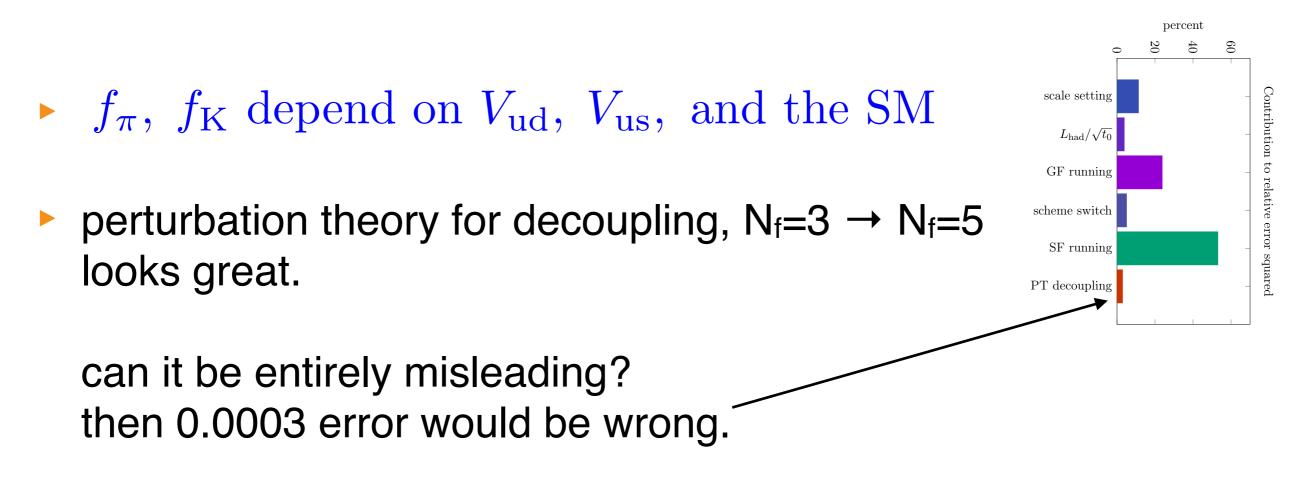


Additional

Rainer Sommer | Univ. Freiburg | January 2021

$N_f < 5$

- Only N_f=3 (or 4) are reached by direct computation
- Threshold matching QCD(N_f) and QCD(N_{f+1}) by perturbation theory
- Corrections are small in perturbation theory
- Exploratory NP investigation exists [M. Bruno, J. Finkenrath, F. Knechtli, B. Leder, R. S., 2015]



non-perturbative tests have confirmed perturbation theory for decoupling with precision

A small warning about PT

A small warning about PT

Test where Λ is constant