## Excess electronic recoil events in XENON1T



Michelle Galloway (Universität Zürich) for the XENON Collaboration with X. Mougeot (CEA Saclay)





Universität Zürich<sup>uz</sup>

Universität Freiburg Seminar | 4 November 2020

### The XENON Collaboration



> 170 scientists
 26 institutions
 11 countries

## The XENON Experiment



Laboratori Nazionali del Gran Sasso

### Dual-phase Time Projection Chamber



(liquid/gas xenon TPC)

## Interaction types



Currently most stringent result on WIMP Dark Matter down to 3 GeV/c<sup>2</sup> masses [PRL 121, 111302 + PRL 123, 251801]

Search for excess above known ER backgrounds.

## Search for new physics



#### **Solar axions:** Arise from Peccei-Quinn solution to strong-CP problem in QCD: pseudo-NG boson

**Enhancement of the neutrino magnetic moment:** Majorana or Dirac nature

#### Bosonic dark matter (axion-like particles, dark photons):

keV-scale dark matter, mediator of dark sector (dark photon)

### Excess found!



XENON Collaboration • E. Aprile (Columbia U.) Show All(139) Jun 17, 2020

26 pages Published in: *Phys.Rev.D* 102 (2020) 7, 072004 e-Print: 2006.09721 [hep-ex] DOI: 10.1103/PhysRevD.102.072004



#### Today's talk:

• Analysis methods



- Backgrounds
- Signal hypotheses
- Next steps: XENONnT



# Data Analysis

## Data selection



Science Run 1 (SR1) 226.9 days 0.65 tonne-yr exposure



Fiducial volume 1042 kg

- S1: 3-fold PMT coincidence; S2 500 pe threshold
- single-scatter events
- standard data quality cuts
- 1 keV threshold at 10% efficiency
- uncertainty on efficiency added as nuisance parameter



Analysis energy range: 1 - 210 keV<sub>ee</sub>

### Event quality and backgrounds



Event classification and waveform inspection: all ok.



#### **Instrumental backgrounds**

No accidental coincidences (AC) or surface backgrounds reconstructed in ROI falls within ER band (physical events)

#### Valid events

### Event location and classification





Events are uniformly distributed within fiducial volume



Consistent with constant time, but with very low statistics!

(dedicated annual modulation analysis in progress)

Spatio-temporal uniformity expected from a signal

## Energy Reconstruction



 $E = (N_{ph} + N_e) \cdot W$ 

with W = 13.7 eV/quanta for xenon

 $g_1$  and  $g_2$ : detector-specific gain constants; extract  $g_1/g_2$  from calibration data





$$\frac{S2}{E}=-\frac{g_2}{g_1}\frac{S1}{E}+\frac{g_2}{W}$$

g1 and g2 are used to reconstruct energy of each event

$$E = \left(\frac{S1}{g1} + \frac{S2}{g2}\right) \cdot W$$

## Energy Reconstruction

cS1 [PE]



Energy [keV]

## Energy reconstruction and resolution



<sup>37</sup>Ar 2.8 keV reconstructed peak

#### Mean energy

Observed: 2.827 keV

Model: 2.834 keV



#### **Energy Resolution**

<sup>37</sup>Ar Resolution

Observed: 18.12%

Model: 18.88%

Validates energy reconstruction and

resolution down to 2.8 keV

### Efficiency and Reconstruction



All signal and background models are convolved with efficiency and resolution

Fit to <sup>220</sup>Rn (<sup>212</sup>Pb) calibration data using same analysis framework

p-value of 0.50

<sup>220</sup>Rn calibration reconstructs as expected



#### Validates efficiency and energy reconstruction down to threshold

# Background model and likelihood fit

## Background model (B<sub>o</sub>)



Predicted energy spectra based on detailed modeling of each background component. Rates constrained by measurements and/or time dependence, except <sup>214</sup>Pb and <sup>124</sup>Xe.

## <sup>214</sup>Pb *β*-decay spectral model



## Background model





#### **Background model B**<sub>o</sub> Partitioned into two datasets and fit simultaneously

SR1<sub>a</sub>: activated backgrounds, peaks SR1<sub>b</sub>: allows to constrain <sup>214</sup>Pb background

## Statistical Method

#### Unbinned profile likelihood analysis

- Profile over the nuisance parameters (background components, efficiency) expected total expected total i - over all observed events, background events signal events N = 42251 $\mathcal{L}(\mu_s, \boldsymbol{\mu_b}, \boldsymbol{\theta}) = \text{Poiss}(N|\mu_{tot})$ background PDF signal PDF  $= \operatorname{Poiss}(N|\mu_{tot}) \times \prod_{i}^{N} \left( \sum_{j} \frac{\mu_{b_{j}}}{\mu_{tot}} f_{b_{j}}(E_{i}, \boldsymbol{\theta}) + \frac{\mu_{s}}{\mu_{tot}} f_{s}(E_{i}, \boldsymbol{\theta}) \right)$  $\mu_{\rm b}, \theta$  : nuisance parameters  $\times \prod C_{\mu_m}(\mu_{b_m}) \times \prod C_{\theta_n}(\theta_n),$  $\theta$  = includes shape  $\mu_{\text{tot}} \equiv \sum_{j}^{m} \mu_{b_j} + \mu_s$  constraints on the expected nr of background (m) events and parameters for the eff. spectral uncertainty & peak location uncertainty shape parameters (n=6)
  - Combine likelihoods of the 2 partitions

$$\mathcal{L} = \mathcal{L}_{\mathrm{a}} imes \mathcal{L}_{\mathrm{b}}$$

• Test statistic q for inference

$$q(\mu_s) = -2\ln \frac{\mathcal{L}(\mu_s, \hat{\hat{\mu}}_b, \hat{\hat{\theta}})}{\mathcal{L}(\hat{\mu}_s, \hat{\mu}_b, \hat{\theta})} \xrightarrow{\mathbf{max. L with specified signal parameter } \mu_s} \mathbf{max. L with specified signal parameter } \mu_s$$

## Background fit



Would be a  $3.3\sigma$  fluctuation (naive estimate — we use likelihood ratio tests for main analysis)

## Is it a new background?



#### Suppose it is in the xenon from the beginning:

- < 5 ppm Ar in xenon bottles (measured)  $^{37}$ Ar :  $^{nat}$ Ar ~ 10<sup>-20</sup> mol/mol (nat. abundance)
- 35 day half-life plus removal through cryogenic distillation

Negligible by the start of XENON1T

#### What if it leaks in?

- Air leak from < 0.9 liter/yr <sup>85</sup>Kr measurements in SR1
- $^{37}$ Ar abundance: < 3.2 mBq/m<sup>3</sup> Measurements at LNGS (July 2020)

#### < 5.2 events/tonne/yr

(~65 events/tonne/y needed for excess at 2.8 keV)



#### <sup>37</sup>Ar energy deposition (EC)



#### Online krypton DST 10<sup>3</sup> RGMS 10<sup>0</sup> 10-5 Oct 2016 NOV 2016 Dec 2016 Sep 2016 Jan 2017 Feb 2017

Krypton residual gas measurements

#### We conclude that <sup>37</sup>Ar cannot explain the excess.

## Tritium hypothesis







### Tritium: activation



From purification and handling, this component seems unlikely.

### Tritium: emanation

Tritium is naturally abundant in water (HTO) and hydrogen (HT) - emanation from materials  ${}^{3}$ H:H in H<sub>2</sub>O is **5 - 10 x 10<sup>-18</sup> mol/mol** \*

Best-fit tritium (~ 6 x 10<sup>-25</sup> mol/mol) requires > 30 ppb of ( $H_2O + H_2$ ) impurities



Our light yield implies O(1) ppb H<sub>2</sub>O

#### HT

- No direct measure of H<sub>2</sub> abundance or impurity concentration
- For O<sub>2</sub>-equivalent impurities, electron lifetime indicates O(0.1) ppb
- x 100 higher H<sub>2</sub> concentration than O<sub>2</sub>eq. molecules - possible?



HTO, HT emanation unlikely based on LXe purity.

## Tritium hypothesis

#### caveats:

#### Many unknowns about tritium in a cryogenic LXe environment

- Radiochemistry, particularly isotopic exchange (formation of other molecules?)
- Diffusion properties of tritiated molecules
- Desorption and emanation from materials
- For HT uncertainties in concentration.

#### We can neither confirm nor exclude the presence of tritium.

- We don't include it in the background model.
- Report additional σ results (but not constraints on signal parameters) with tritium included as a background component.



# Searches for new physics





## Solar axions





#### Solar axions - emerge with keV-scale energies (not dark matter)

Three production mechanisms in the Sun

QCD axion specifically:

$$m_{\rm a} \simeq rac{6 imes 10^6 \ {
m GeV}}{f_{\rm a}} \ {
m eV/c^2}$$

## Solar axion



**Production** 

Detection



## Solar axion results





Axion favored over background-only at  $3.4\sigma$ 

Axion + <sup>3</sup>H favored over <sup>3</sup>H hypothesis at  $2.0\sigma$ 

With both axion and tritium in the fit **best-fit tritium is zero in favor of axions.** 

## Statistical inference



3D confidence volume (90% C.L.) Projected onto 2D regions



32

## Statistical inference



#### 3D confidence volume (90% C.L.)



Strong tension with astrophysical constraints from stellar cooling (arXiv:2003.01100)

### Enhanced neutrino magnetic moment





solar neutrino (pp) - electron scattering

$$\frac{d\sigma_{\mu}}{dE_{r}} = \mu_{\nu}^{2} \alpha \left(\frac{1}{E_{r}} - \frac{1}{E_{\nu}}\right)$$

Minimally-extended Standard Model:

$$\mu_{\nu} = \frac{3eG_F m_{\nu}}{8\pi^2 \sqrt{2}} = 3 \times 10^{-19} \mu_B \times \left(\frac{m_{\nu}}{1 \,\mathrm{eV}}\right)$$



A larger magnetic moment would imply new physics, and possibly solve Dirac vs Majorana.

#### Enhancement:

$$\left( \gtrsim 10^{-15} \mu_{\rm B} \right) \longrightarrow Majorana fermion$$

## Neutrino magnetic moment

. . .

•••



Neutrino magnetic moment favored over background-only at  $3.2\sigma$ 

reduces to 0.9σ with a tritium component

 $\begin{pmatrix} \mu_{\nu} \in (1.4, \ 2.9) \times 10^{-11} \ \mu_{B} \\ (90\% \, \text{C.L.}) \end{pmatrix}$ 

Compatible with other experiments In tension with astrophysical constraints

### Bosonic dark matter

pseudoscalar



#### Detection via axioelectric effect

$$\sigma_{\rm ae} = \sigma_{\rm pe} \frac{g_{\rm ae}^2}{\beta} \frac{3E_{\rm a}^2}{16\pi\alpha m_{\rm e}^2} \left(1 - \frac{\beta^{2/3}}{3}\right)$$



#### Kinetic mixing with SM photons

$$\sigma_{
m V}\simeq rac{\sigma_{
m pe}}{eta}\kappa^2$$

## Bosonic dark matter



90% CL upper limits and sensitivities

### Fitting a mono-energetic peak to the excess: 2.3 +/- 0.2 keV



# Further investigations

