Additional checks

Time dependence

Threshold effects

Additional data

S2-only analysis

S2-only analysis

limit-setting only

allows for a lower energy threshold

Putting it all together.

Multiple hypotheses

Our results are... inconclusive.

(what's next?)

XENONnT

PMT array (494 PMTs in total, in 2 arrays)

TPC (5.9 t LXe, 4 t fiducial)

Neutron veto (120 PMTs, Gd-doped water)

LXe purification system (faster purification)

Rn distillation column reduce ²²²Rn (²¹⁴Pb)

XENONnT

XENONnT

Conclusions

X E N O N Derk Matter Project

- Solar axions favoured over background at 3.4σ, *but*
- it is in strong tension with stellar constraints, and
- a tritium background at 3.2σ can neither be confirmed nor excluded.
- an ³⁷Ar-37 background is strongly constrained and not likely to explain the excess
- An enhanced neutrino magnetic moment favoured over background at 3.2 σ (0.9 σ w/ $^{3}H)$
- Bosonic dark matter peak at 2.3 +/- 0.2 keV has 4.0σ local significance, but note 3.0σ global.

It is too soon to draw any conclusions; however

XENONnT is coming soon!

Inverse Primakoff Effect

J.B. Dent, et al. arXiv:2006.15118

Minimising the tension with stellar constraints

QCD axion models

$$m_{
m a} \simeq rac{6 imes 10^6 \ {
m GeV}}{f_{
m a}} \ {
m eV/c^2}$$

DFSZ: two Higgs doublets model couplings to leptons at tree level

Dine-Fischler-Srednicki-Zhitnitsky (DFSZ)

KSVZ: heavy quark model couplings to leptons only at loop level

Kim-Shifman-Vainshtein- Zhakharov (KSVZ)

axion-photon coupling same for both models

- relative contributions from each component can allow to distinguish between models (Primakoff dominates in KSVZ models); can also constrain β_{DFSZ}
- nuclear transition contribution always relatively small

Fluctuations and correlations

Note: we use an unbinned profile likelihood analysis

Calibration data

²²⁰Rn rebinned

SR2

Data taken after SR1 through end of 2018

Require strict data selection due to changing detector conditions

24.4 live-days in total used for cross-check

Background Fit

Component		Expected Events	Fitted Events	Constant in time? (shared across partitions)
²¹⁴ Pb		(3450, 8530)	7480 +/- 160	YES
⁸⁵ Kr		890 +/- 50	773 +/- 80	NO
¹³⁶ Хе		2120 +/- 210	2150 +/- 120	YES
¹³³ Xe		3900 +/- 410	4009 +/- 85	NO
¹³¹ Xe		23760 +/- 640	24270 +/- 150	NO
^{83m} Kr		2500 +/- 250	2671 +/- 53	NO
Materials		323 (fixed)	323 (fixed)	YES
Solar neutrino		220.7 +/- 6.6	220.8 +/- 4.7	YES
¹²⁴ Хе	кк	125 +/- 50	113 +/- 24	YES
	KL	38 +/- 15	34.0 +/- 7.3	YES
	LL	2.8 +/- 1.1	2.56 +/- 0.55	YES
125]	к	79 +/- 33	67 +/- 12	NO
	L	15.3 +/- 6.5	13.1 +/- 2.3	NO
	М	3.4 +/- 1.5	2.94 +/- 0.50	NO

-

unconstrained in the fit

Efficiency

Efficiency validated with both waveform simulations and data-driven method using Rn220

Calibration

Solar axions

Production Solar physics

Detection: Axioelectric effect

 σ for detection, analogous to photoelectric effect

$$\sigma_{ae} = \sigma_{pe} \frac{g_{ae}^2}{\beta} \frac{3E_a^2}{16\pi\alpha m_e^2} \left(1 - \frac{\beta^{2/3}}{3}\right)$$

Neutrino magnetic moment

*Jihn E. Kim, 1911.06883, 2019, Bell et al., PLB 642, 2006

The XENON Collaboration

