1. **Direct production of a new scalar**

The production cross section $s = production_{SM Higgs} * sin^2(\theta_S)$ Same production modes as for the SM Higgs CMS

19.7 fb⁻¹ (8 TeV

S.Gori

The extraction of info on the Higgs width is hard and has typically some model dependence at the LHC (hadron colliders)

The extraction of info on the Higgs width is hard and has typically some model dependence at the LHC (hadron colliders)

The extraction of info on the Higgs width is hard and has typically some model dependence at the LHC (hadron colliders)

Beyond Higgs coupling measurements, there are other complementary ways to access the Higgs width:

- * Off-shell measurements Caola, Melnikov, in gg \rightarrow h* \rightarrow ZZ 1307.4935
- ★ interference betweenDixon, Li,gg → γγ and gg → h → γγ1305.3854

It is very hard to achieve O(1) measurements!

The extraction of info on the Higgs width is hard and has typically some model dependence at the LHC (hadron colliders)

Beyond Higgs coupling measurements, there are other complementary ways to access the Higgs width:

- * Off-shell measurements Caola, Melnikov, in gg \rightarrow h* \rightarrow ZZ 1307.4935
- ★ interference betweenDixon, Li,gg → γγ and gg → h → γγ1305.3854

It is very hard to achieve O(1) measurements!

The Higgs can have some "extra width". Said in other words: the Higgs can have some exotic decays to New Physics particles

Higgs invisible decays... and beyond

One classic example is the Higgs decaying invisibly

This is realized in e.g. DM theories where the DM particle couples to the Higgs and is light

Higgs invisible decays... and beyond

One classic example is the Higgs decaying invisibly

This is realized in e.g. DM theories where the DM particle couples to the Higgs and is light

Several searches for Higgs decaying invisibly:

Bounds are more stringent than the indirect bound from Higgs coupling measurements (34%)

Higgs invisible decays... and beyond

One classic example is the Higgs decaying invisibly

This is realized in e.g. DM theories where the DM particle couples to the Higgs and is light

Several searches for Higgs decaying invisibly:

Bounds are more stringent than the indirect bound from Higgs coupling measurements (34%)

But what about the "extra width" arising from different decay modes that are (at least partially) visible? We have to look for them directly!

(3.) A program for searches for $h \rightarrow ss$

The scalar can decay thanks to

its mixing with the Higgs $S \to H = \int_{a}^{b} \frac{f}{h} \frac{Nc}{h}$

Note: the BR(h) does not depend on the mixing! We are probing a different parameter, if compared to $pp \rightarrow s$

3. A program for searches for $h \rightarrow ss$

The scalar can decay thanks to its mixing with the Higgs

Note: the BR(h) does not depend on the mixing! We are probing a different parameter, if compared to $pp \rightarrow s$

- If θ_s=0, s is stable
 Higgs invisible decay
- If $\theta_s \neq 0$, s will decay to SM particles $\Gamma(s \rightarrow f\bar{f}) = \sin^2 \theta_s \frac{N_c}{8\pi} \frac{m_s m_f^2}{v^2} \beta_f^3$ Main BRs: bb, TT, cc, ...

(3.) A program for searches for $h \rightarrow ss$

If θ_s=0, s is stable
 Higgs invisible decay

• If $\theta_s \neq 0$, s will decay to SM particles $\Gamma(s \rightarrow f\bar{f}) = \sin^2 \theta_s \frac{N_c}{8\pi} \frac{m_s m_f^2}{v^2} \beta_f^3$

Main BRs: bb, TT, cc, ...

In this minimal model:

Many possible signatures to look for

 $gg \rightarrow h \rightarrow ss \rightarrow 4b$ $gg \rightarrow h \rightarrow ss \rightarrow 2b 2tau$ $gg \rightarrow h \rightarrow ss \rightarrow 2b 2\mu$ $gg \rightarrow h \rightarrow ss \rightarrow 4tau$ $gg \rightarrow h \rightarrow ss \rightarrow 4\mu$ $gg \rightarrow h \rightarrow ss \rightarrow 2tau 2\mu$

both prompt & displaced

 sub-leading production modes of the Higgs boson

e.g. $qq \rightarrow Zh \rightarrow Z(ss) \rightarrow Z(4b)$

48

(3. A program for searches for $h \rightarrow ss$

The challenge: soft objects

To be sensitive to Higgs exotic decays, dedicated studies of trigger strategies are needed

The challenge: soft objects

To be sensitive to Higgs exotic decays, dedicated studies of trigger strategies are needed

Let us take, for example, the challenging decay mode $h \rightarrow 4b$

From the LHC Higgs cross section working group, Yellow report 4, 1610.07922

Risk of loosing the signal already at the trigger level

Toward a broader program for H exotic decays

From the signature point of view:

easy		difficult
4+ leptons	b-jets? γ's? τ's?	light jets

Some of these decays can also be displaced

Plenty of signatures have not been explored so far! Open territory

Toward a broader program for H exotic decays

From the signature point of view:

easy		difficult
4+ leptons	b-jets? γ's? τ's?	light jets

Statistics limited Great for the HL-LHC!

Some of these decays can also be displaced

Plenty of signatures have not been explored so far! Open territory

Toward a broader program for H exotic decays

From the signature point of view:

easy		difficult
4+ leptons	b-jets? γ's? τ's?	light jets

Statistics limited Great for the HL-LHC!

Background limited

It helps having extra handles: New production modes for the Higgs (tth, Zh, Wh, ...).

Some of these decays can also be displaced

Plenty of signatures have not been explored so far! Open territory

Chapter 4

From Higgs exotic decays to dark sector models

from symmetry magazine

Thermal dark matter

Thermal dark matter

DM

Dark sectors

Further motivations beyond DM?

- Several anomalies in data can be addressed by dark sectors (eg. (g-2)_μ, B-physics anomalies, Dark Matter anomalies (galactic center excess), ...);

- Neutrino mass model building

Dark sectors

Further motivations beyond DM?

- Several anomalies in data can be addressed by dark sectors (eg. (g-2)_μ, B-physics anomalies, Dark Matter anomalies (galactic center excess), ...);

- Neutrino mass model building

Dark sectors

Further motivations beyond DM?

Several anomalies in data can be addressed by dark sectors
 (eg. (g-2)_μ, B-physics anomalies, Dark Matter anomalies (galactic center excess), ...);

- Neutrino mass model building

The dark photon

Nature seems well described by a SU(3) x SU(2)_L x U(1)_{em} gauge theory. We need to check this assumption!

Additional gauge symmetries in nature? U(1)'?

Holdom, '86

$${\cal L} \subset \epsilon Z^{\mu
u} A'_{\mu
u} + m^2_{A'} A'^{\mu}_{\mu} A'^{\mu}$$
 + couplings within the dark sector

Mixing with the SM hyper-charge gauge boson arising from

* dark Higgs mechanism or

* Stueckelberg mechanism

The dark photon

Nature seems well described by a SU(3) x SU(2)_L x U(1)_{em} gauge theory. We need to check this assumption!

Additional gauge symmetries in nature? U(1)'?

Holdom, '86

$$\mathcal{L}\subset \epsilon Z^{\mu
u}A'_{\mu
u}+m^2_{A'}A'_{\mu}A'^{\mu}$$
 + couplings within the dark sector

Mixing with the SM hyper-charge gauge boson arising from

* dark Higgs mechanism or

* Stueckelberg mechanism

➡ Massive photon

The SM Z boson is affected

Mass of the Z boson: $m_Z^2 \sim m_{Z0}^2 (1 + \epsilon^2 \sin^2 heta)$

Couplings of the Z boson with fermions: $(Zf\bar{f}) (1 + \epsilon^2 \sin^2 \theta F(T_3, Q))$ The SM Higgs boson is affected

Minimal dark photon signatures (secluded*)

*DM is heavier

Lifetime and decay mode dictates search strategy

Only relevant free parameters of the minimal model: ϵ , $m_{A'}$ The dark photon can only decay to SM particles (visible decays)

Minimal dark photon signatures (secluded*)

*DM is heavier

Lifetime and decay mode dictates search strategy

Only relevant free parameters of the minimal model: ϵ , $m_{A'}$ The dark photon can only decay to SM particles (visible decays)

Higgs decays to dark photons

ATLAS-CONF-2017-042

Higgs decays to dark photons

ATLAS-CONF-2017-042

Dark photons can be produced at a plethora of lower energy collider experiments.

Examples are:

- * e+e- machines like Babar and Belle (II)
- electron fixed target
 experiments (HPS, ...)
- * proton fixed target beam dump experiments (SeaQuest, SHiP)

Dark photons can be produced at a plethora of lower energy collider experiments.

Examples are:

- * e+e- machines like Babar and Belle (II)
- * electron fixed target

experiments (HPS, ...)

 proton fixed target beam dump experiments (SeaQuest, SHiP)

Dark photons can be produced at a plethora of lower energy collider experiments.

Examples are:

- * e⁺e⁻ machines like Babar and Belle (II)
- * electron fixed target

experiments (HPS, ...)

 proton fixed target beam dump experiments (SeaQuest, SHiP)