

T Reconstruction of Tau Leptons and Applications in the ATLAS Experiment

Peter Wagner Uni Bonn

universität**bonn**

03

BMBF-Forschungsschwerpunkt ATLAS-EXPERIMENT

Physik bei höchsten Energien mit dem ATLAS-Experiment am LHC

Overview

- The tau lepton, LHC and ATLAS
- Higgs analysis with taus
- New: Particle Flow
- What do we gain from it?

The Tau Lepton

LHC – Our Source of τ Leptons

- LHC collides protons
- "Run 1" completed in Feb 2013: collision energy of 7 and 8 TeV
- "Run 2" started 2015: 13 TeV collision energy, more integrated luminosity

21.12.2016

ATLAS Detector

- Multi-purpose detector for various physics signatures with leptons, jets, photons
- Momentum range ~1-1000 GeV (typically 10-100 GeV from EW processes)

ATLAS Detector

Detection:

- Charged particles: Tracking detectors, $\sigma/p_T \sim 0.05 \% \cdot p_T$ [GeV] resolution
- e, γ : EM calorimeters: $\sigma/E \sim 10\%/\sqrt{E[GeV]}$
- Hadronic calorimeter: $\sigma/E\sim50\%/\sqrt{E[GeV]}$
- Muon spectrometer: $\sigma/p < 10\%$

Run 1 Higgs Discovery

"Higgs boson" discovery in 2012 from combined analysis of multiple decay channels: $\gamma\gamma$, ZZ, WW

 $H \! \rightarrow \! \tau \tau$: 4.5 cxcess observed

- SM Higgs-to-lepton coupling largest for $\tau \rightarrow$ only accessible fermionic decay channel so far
- Evidence for Yukawa couplings of Higgs
- Strong constraints on VBF production cross section

PW, Grad.kolleg Freiburg

Higgs analysis with τ 's – Requirements

Real τ 's major background to $H \rightarrow \tau \tau$ signal: Broad ditau mass peak due to invisible v's, difficult to reconstruct

 \Rightarrow

- Need good kinematic discrimination
- Good 4-momentum resolution of visible τ helps here!

Taus in the ATLAS Calorimeter

Taus in the ATLAS Calorimeter

PW, Grad.kolleg Freiburg

Run 1 Energy Measurement

Run 1: visible τ energy measured entirely in the calorimeter:

Run 1 Energy Measurement

Run 1: visible τ energy measured entirely in the calorimeter:

However poor calorimeter resolution of π^{\pm} limits energy resolution, e.g. HCAL:

$$\frac{\sigma(E)}{E} \approx \frac{50\%}{\sqrt{E}} \oplus 3\%$$

Run 1 Energy Measurement

entirely in the calorimeter: However poor calorimeter resolution of π^{\pm} limits energy Hcal3 resolution, e.g. HCAL: Hcal₂ Hcal1 $\frac{\sigma(E)}{E} \approx \frac{50\%}{\sqrt{E}} \oplus 3\%$ Ecal3 $= E(\tau)$ Ecal2 Strip-Layerノ $\overleftarrow{\Delta \eta = 0.1}$ 1.1 π^{0} π 35 Energy Resolution [%] Calorimeter 30 Energy resolution of π^{\pm} is superior in the Tracker 25 tracker below $p_{\tau} \sim 120 \text{ GeV}$ 20 15 \rightarrow Can do better than Run 1 method! 10 5 50 300 350 400 450 500

Run 1: visible τ energy measured

Transverse Momentum p _ [GeV]

21.12.2016

PW, Grad.k

13

New for Run 2 @ ATLAS: Particle Flow

Alternative: "Particle Flow" approach

"Exploit full detector information to resolve, identify and measure each single particle!"

- No strict definition move away from pure calorimetry for 4-momentum measurements
- Measure 4-momentum with tracking detector instead of calorimeter \rightarrow improve resolution!
- For both isolated and non-isolated particles! e.g. inside jet or hadronically decaying tau

PW, Grad.kolleg Freiburg

New for Run 2 @ ATLAS: Particle Flow

Alternative: "Particle Flow" approach

"Exploit full detector information to resolve, identify and measure each single particle!"

New for Run 2 @ ATLAS: Particle Flow

Alternative: "Particle Flow" approach

"Exploit full detector information to resolve, identify and measure each single particle!"

- Employed in various experiments to different extent e.g. all Tevatron and LEP expmts.
- $\boldsymbol{\cdot} \dots$ and future: ILC detectors designed for Particle flow
- ... and a contemporary: CMS full event reconstruction with Particle Flow

EM Clusters

Tracks

Reconstruction Algorithm

- ~99% of τ decays contain no neutral hadrons!
- Assign all HCAL energy $\rightarrow \ \pi^{\pm}$
- redo clustering in EMCAL only

If no cluster found within 0.04 then assume π^{\pm} did not leave a cluster \rightarrow no subtraction

Estimate π^{\pm} energy to be subtracted

- Overlap of π^0 and π^{\pm} only in ECAL
- Compute π^{\pm} energy in ECAL simply as: E_{exp}(π^{\pm}) = p(track) – E(Hcal)

Instead of simply "throwing away" π^{\pm} remnant cluster \rightarrow significant performance gain by exploiting

- Cluster properties
- τ kinematics

Also: Important to pick the right π^0 cluster for analysis!

21.12.2016

Suppress π^{\pm} remnants using BDT based on

Hcal3

Hcal2

Hcal1 Ecal3

Ecal2

Strip-Layer

- Cluster moments
- Number of photons

Suppress π^{\pm} remnants using BDT based on

- Cluster moments
- Number of photons

Suppress π^{\pm} remnants using BDT based on

- Cluster moments
- Number of photons

→ This in combination with a cut on E_{τ} (neutral) > ~2 GeV gives the gain in particle flow τ resolution! PW, Grad.kolleg Freiburg

Hcal3

Hcal2

Hcal1 Ecal3

Ecal2

 $\overleftarrow{\Delta \eta = 0.1}$

Strip-Layer

- π^0 ID information
- Number of photons

Decay mode 1 efficiency

Classify decay mode using

- Decay kinematics
- π^0 ID information
- Number of photons

21.12.2016

21.12.2016

21.12.2016

21.12.2016

Particle flow performance – What do we gain?
Better 4-momentum resolution than calorimeter-only in Run 1:

• Angular resolution: >5 times improved

CERN-PH-EP-2015-294

Better 4-momentum resolution than calorimeter-only in Run 1:

- Angular resolution: >5 times improved
- Energy resolution: ~2 times improved at low E_{T}

PW, Grad.kolleg Freiburg

CERN-PH-EP-2015-294

Features of resolution distribution:

- Best resolution for modes without $\pi^{\scriptscriptstyle\pm}$ and correctly reconstructed decays
- Misestimation of $\pi^0 \rightarrow$ bias of ~25%
- Large low-energy bias from decays with neutral Kaons (not fully reconstructed)

Better 4-momentum resolution than calorimeter-only in Run 1:

- Angular resolution: >5 times improved
- Energy resolution: ~2 times improved at low E_{T}
- Performance quite insensitive to busy-ness of collision environment

CERN-PH-EP-2015-294

("Offset" correction of ~100-400 MeV applied to Run 1 here)

Better 4-momentum resolution than calorimeter-only in Run 1:

- Angular resolution: >5 times improved
- Energy resolution: ~2 times improved at low E_{T}
- Performance quite insensitive to busy-ness of collision environment
- Performance also well modeled in data!

41

Particle Flow – What does it give us beyond a better 4-momentum measurement?

 $Z \rightarrow \tau \tau$ major background in $H \rightarrow \tau \tau$ analysis

Yet unexploited: Discriminate Z (vector) from H (scalar) using longitudinal τ polarization

Prospects for Higgs CP Measurement

 $H \rightarrow \tau \tau$ important:

• Pseudoscalar Higgs in major models does not couple at tree level to WW and ZZ \rightarrow need fermionic final states!

• Tau is only lepton that gives access to polarization through kinematics of its decay products → need Particle Flow!

 \rightarrow Higgs CP measurement in its decay by correlating **transverse** τ polarizations

Prospects for Higgs CP Measurement

Higgs CP measurement by correlating **transverse** τ polarizations:

47

Prospects for Higgs CP Measurement

Higgs CP measurement by correlating **transverse** τ polarizations:

21.12.2016

Particle Flow Performance for CP Meas.

Five-way decay mode classification: 74.7% efficiency

Can resolve single π^0 : Energy core resolution 16%

→ This makes CP state measurement in $H \rightarrow \tau \tau$ possible!

CERN-PH-EP-2015-294

Particle Flow Performance for CP Meas.

Five-way decay mode classification: 74.7% efficiency

 \rightarrow This makes CP state measurement in H $\rightarrow \tau \tau$ possible!

Conclusions

- Particle flow reconstruction for tau leptons is being prepared for ATLAS analysis
- Tau reconstruction benefits significantly from Particle flow
- 5-way decay-mode classification \rightarrow Higgs CP
- ${\sf E}_{_{\rm T}}$ core resolution of $\tau_{_{\! vis}}$ improved by factor ~2 at low ${\sf E}_{_{\rm T}}$
- Angular resolution improved by factor \sim 5

Backup

Important Physics Results with τ 's

Jets fake τ 's

- \rightarrow Fake τ 's are major background!
- 1) Huge QCD production cross section

Jets fake τ 's

- → Fake τ's are major background!
 1) Huge QCD production cross section
 2) QCD jets look similar
 - · Jets hadronize mostly into
 - π^{\pm} (~60% of jet energy)
 - γ (~30%, from π⁰)
 - Neutral hadrons (~10%)

- Hadronically decaying taus (τ) decay almost exclusively into
 - π^{\pm} (~100% of decays)
 - π^0 (~2/3 of decays)

Higgs analysis with τ 's – Requirements

Fake τ 's are major background:

- Large QCD cross section
- Jets "look similar" \rightarrow hadronize into majorly pions
- \Rightarrow Need good discrimination against jets

Jet rejection factor ~100 achieved with excellent Run 1 tau identification:

Tau Reco and ID efficiencies

Decay mode	$\mathcal{B}\left[\% ight]$	$\mathcal{A} \cdot \varepsilon_{\mathrm{reco}} [\%]$	ε _{ID} [%]
h^{\pm}	11.5	32	75
$h^{\pm} \pi^0$	30.0	33	55
$h^{\pm} \ge 2\pi^0$	10.6	43	40
$3h^{\pm}$	9.5	38	70
$3h^{\pm} \ge 1\pi^0$	5.1	38	46

Table 2: Five dominant $\tau_{had-vis}$ decay modes [59]. Tau neutrinos are omitted from the table. The symbol h^{\pm} stands for π^{\pm} or K^{\pm} . Decays involving K^{\pm} contribute ~3% to the total hadronic branching fraction. Decays involving neutral kaons are excluded. The branching fraction (\mathcal{B}), the fraction of generated $\tau_{had-vis}$'s in simulated $Z \rightarrow \tau \tau$ events that are reconstructed and pass the $\tau_{had-vis}$ selection described in Section 2.2 without the jet and electron discrimination ($\mathcal{A} \cdot \varepsilon_{reco}$) and the fraction of those $\tau_{had-vis}$ candidates that also pass the jet and electron discrimination (ε_{ID}) for each decay mode are given.

Tau Identification

- Reconstructed from energy deposits in calorimeter initial steps identical to jet reconstruction
- Associate tracks reconstructed in the tracking detectors
- Identification using calorimeter cell and track variables: exploit that taus are on average more narrow than jets – excellent rejection of jets reaching factors of ~100!

→ Tells us if a cluster contains more than 1 π^0 Counts energy deposits with $E_{\tau} > 300-430$ MeV associated to cluster, count twice if $E_{\tau} > 10$ GeV – improves

- Purity of decays with 1 $\pi^{\scriptscriptstyle 0}$
- Efficiency of decays with 2 $\pi^{\scriptscriptstyle 0}$

 \rightarrow Tells us if a cluster contains more than 1 π^0 Counts energy deposits with $E_{\tau} > 300-430$ MeV associated to cluster, count twice if $E_{\tau} > 10 \text{ GeV} - \text{improves}$

Probability

- Purity of decays with 1 π^0
- Efficiency of decays with 2 π^0

τ Performance: π^0 4-vector resolution

Angular core resolution: (0.0056, 0.012) in (η,ϕ)

Relative energy core resolution: 16%

Pileup has very little impact without pileup correction!

- E_{τ} increases by ~15 MeV per vertex
- E_{τ} resolution degrades by 0.5% per vertex

τ Performance: Decay mode classification

Overall classification efficiency: 74.4%

- High efficiencies in important modes 1p0n, 1p1n and 3p0n
- High purity these modes (cf. Run 1 track-based classification: 27%, 52%, 69%)

Efficiency:

Purity:

Little impact from pileup: efficiency degrades by ~0.04% per vertex

21.12.2016

τ Performance: $\tau_{_{vis}}$ 4-vector resolution

$\mathsf{E}_{_{\!\mathsf{T}}}$ response:

- Calculate resolution-weighted sum of "constituent-based" and calorimeter-only (= Run 1) $E_{\tau} \rightarrow \text{smooth transition at high } E_{\tau}$ where calorimeter measurement gets better
- To suppress E_{τ} resolution tails \rightarrow use Run 1 E_{τ} if the two E_{τ} disagree by >5 σ
- → Rel. E_{τ} core resolution ~8% at 20 GeV (Factor ~2 better than Run 1)

PW, Grad.kolleg Freiburg

τ Performance: $\tau_{_{vis}}$ 4-vector resolution

E_{τ} response:

- Calculate resolution-weighted sum of "constituent-based" and calorimeter-only (= Run 1) $E_{\tau} \rightarrow \text{smooth transition at high } E_{\tau}$ where calorimeter measurement gets better
- To suppress E_{τ} resolution tails \rightarrow use Run 1 E_{τ} if the two E_{τ} disagree by >5 σ
- → Rel. E_{τ} core resolution ~8% at 20 GeV (Factor ~2 better than Run 1)

Little impact from pileup without pileup correction:

- E_{τ} increases by ~4 MeV per vertex
- Resolution degrades by ~0.5%

67

τ Performance: π^0 ID

Cluster pseudorapidity, |n^{clus}| Magnitude of the energy-weighted η position of the cluster Cluster width, $\langle r^2 \rangle^{clus}$ Second moment in distance to the shower axis Cluster η width in EM1, $\langle \eta^2_{\text{EM1}} \rangle^{\text{clus}}$ Second moment in η in EM1 Cluster η width in EM2, $\langle \eta^2_{\rm EM2} \rangle^{\rm clus}$ Second moment in η in EM2 Cluster depth, *λ*^{clus}_{centre} Distance of the shower centre from the calorimeter front face measured along the shower axis Cluster PS energy fraction, f_{PS}^{clus} Fraction of energy in the PS Cluster core energy fraction, $f_{\rm core}^{\rm clus}$ Sum of the highest cell energy in PS, EM1 and EM2 divided by the total energy Cluster logarithm of energy variance, $\log(\rho^2)^{clus}$ Logarithm of the second moment in energy density Cluster EM1 core energy fraction, f^{clus}_{core,EM1} Energy in the three innermost EM1 cells divided by the total energy in EM1 Cluster asymmetry with respect to track, $\mathcal{A}_{track}^{clus}$ Asymmetry in η - ϕ space of the energy distribution in EM1 with respect to the extrapolated track position Cluster EM1 cells, N^{clus} EM1 Number of cells in EM1 with positive energy

Cluster EM2 cells, N^{clus}_{EM2} Number of cells in EM2 with positive energy

τ Performance: $π^0$ ID

Figure 1: (a) Distribution of the logarithm of the second moment in energy density of π_{cand}^0 clusters that do (signal) or do not (background) originate from π^0 's, as used in the π^0 identification. (b) 1 – efficiency for background π_{cand}^0 's vs. the efficiency for signal π_{cand}^0 's to pass thresholds on the π^0 identification score. The π_{cand}^0 's in both figures are associated with $\tau_{had-vis}$'s selected from simulated $Z \rightarrow \tau\tau$ events.

21.12.2016

τ Performance: ECAL1 deposits

Figure 4: Efficiency for a photon to create a maximum in the first layer of the EM calorimeter in simulated $\pi^0 \rightarrow \gamma \gamma$ events and the corresponding probability to create a maximum that is shared with the other photon. The photons are required to not interact with the material in the tracking system.

21.12.2016

τ Performance: Kinematic decay mode

classification

 π^0 identification score of the first π^0_{cand} , S^{BDT}_1

 π^0 identification score of the π^0_{cand} with the highest π^0 identification score

 $E_{\rm T}$ fraction of the first $\pi_{\rm cand}^0, f_{\pi^0,1}$

 $E_{\rm T}$ of the $\pi_{\rm cand}^0$ with the highest π^0 identification score, divided by the $E_{\rm T}$ -sum of all $\pi_{\rm cand}^0$'s and h^{\pm} 's

Hadron separation, $\Delta R(h^{\pm}, \pi^{0})$ ΔR between the h^{\pm} and the π^{0}_{cand} with the highest π^{0} identification score

 h^{\pm} distance, $D_{h^{\pm}}$

 $E_{\rm T}$ -weighted ΔR between the h^{\pm} and the $\tau_{\rm had-vis}$ axis, which is calculated by summing the four-vectors of all h^{\pm} 's and $\pi_{\rm cand}^0$'s

Number of photons, N_{γ}

Total number of photons in the $\tau_{had-vis}$, as reconstructed in Section 3.3

 π^{0} identification score of second π^{0}_{cand} , S^{BDT}_{2} π^{0} identification score of the π^{0}_{cand} with the second-highest π^{0} identification score $\pi^{0}_{cand} E_{T}$ fraction, $f_{\pi^{0}}$ E_{T} -sum of π^{0}_{cand} 's, divided by the E_{T} -sum of π^{0}_{cand} 's and h^{\pm} 's π^{0}_{cand} mass, $m_{\pi^{0}}$ Invariant mass calculated from the sum of π^{0}_{cand} four-vectors Number of π^{0}_{cand} , $N_{\pi^{0}}$ Standard deviation of the $h^{\pm} p_{T}$, $\sigma_{E_{T},h^{\pm}}$ Standard deviation, calculated from the p_{T} values of the h^{\pm} 's for $\tau_{had-vis}$ with three associated tracks h^{\pm} mass, $m_{h^{\pm}}$

Invariant mass calculated from the sum of h^{\pm} four-vectors

21.12.2016

τ Performance: Kinematic decay mode classification

Decay mode test	$N(\pi_{\text{cand}}^0)$	$N(\pi_{\rm ID}^0)$	Variables
$h^{\pm}\{0,1\}\pi^0$	≥ 1 1	0 1	$S_1^{\text{BDT}}, f_{\pi^0,1}, \Delta R(h^{\pm}, \pi^0), D_{h^{\pm}}, N_{\gamma}$
$h^{\pm}\{1,\geq 2\}\pi^0$	≥ 2 ≥ 2	1 ≥ 2	$S_2^{\text{BDT}}, f_{\pi^0}, m_{\pi^0}, N_{\pi^0}, N_{\gamma}$
$3h^{\pm}\left\{0,\geq1\right\}\pi^{0}$	≥ 1 ≥ 1	0 ≥ 1	$S_1^{\text{BDT}}, f_{\pi^0}, \sigma_{E_{\text{T}},h^{\pm}}, m_{h^{\pm}}, N_{\gamma}$

Table 5: Details regarding the decay mode classification of the Tau Particle Flow. BDTs are trained to distinguish decay modes in three decay mode tests. The $\tau_{had-vis}$'s entering each test are further categorised based on the number of reconstructed, $N(\pi_{cand}^0)$, and identified, $N(\pi_{ID}^0)$ neutral pions. The variables used in the BDTs for each test are listed.

τ Performance: Kinematic decay mode classification

Figure 5: Decay mode classification efficiency for the $h^{\pm} \{0, 1\}\pi^0$, $h^{\pm} \{1, \ge 2\}\pi^0$, and $3h^{\pm} \{0, \ge 1\}\pi^0$ tests. For each test, "decay mode 1" corresponds to the mode with fewer π^0 's. Working points corresponding to the optimal thresholds on the BDT score for each test are marked.

21.12.2016

Longitudinal τ polarization

Discrimination through correlation of π – π ⁰ energy asymmetry

Prerequisites:

- Need to reconstruct π^0 energy
- High purity decay mode classification

→ Now available with new reconstruction

ATLAS Run 1 Tau Reconstruction

- τ_{h} appears as narrow, isolated jet from neutral (e.g. π^{0}) and charged particles (e.g. π^{\pm})
- Calorimeter seed: anti-kT jet with R=0.4, $p_{_{\rm T}}$ > 10 GeV, $|\eta|{<}2.5$
- Classify in number of tracks ("prongs") in $\Delta R=0.2$ of jet seed

PW,

• τ_h energy = energy of topological clusters within ΔR =0.2

ECAL: $X_0 \sim 2.1$ cm, Molière radius ~ 4.4 cm HCAL: 0.1x0.1 in η/ϕ , 7.4 λ long, 3 layers

Figure 13: Distribution of the reconstructed mass of the $\tau_{had-vis}$ when using the Tau Particle Flow $\tau_{had-vis}$ fourmomentum reconstruction in the $Z \rightarrow \tau \tau$ tag-and-probe analysis. The estimated background contribution, dominated by multijet and $W(\rightarrow \mu\nu)$ +jets production, has been subtracted from the data. The simulated $Z \rightarrow \tau \tau$ sample is normalised to the background subtracted data. The contributions from $\tau_{had-vis}$ with generated h^{\pm} , $h^{\pm} \pi^{0}$ and $3h^{\pm}$ modes are overlaid. The hatched band represents the statistical uncertainty on the prediction.

21.12.2016

21.12.2016

0.2

0.4

0.6

Cluster asymmetry w.r.t. track

0.8

PW, Grad.kolleg Freiburg

100

150

Cluster EM1 cells

200

20

40

60

80

Cluster EM2 cells

100

50

Figure 11: Tau m_{vis} distribution of the Tau Particle Flow reconstruction of fake tau candidates from jets in a $Z(\rightarrow \mu\mu)$ +jets event selection, for data and simulation. The simulated $Z(\rightarrow \mu\mu)$ +jets events are reweighted so that the Z boson p_T distribution and the overall normalisation match that in the data. The hatched band represents the statistical uncertainty on the prediction.

21.12.2016

