Stress testing the Standard Model via vector-boson scattering at the LHC

Mathieu PELLEN

University of Freiburg

GRK seminar

Freiburg, Germany

 $21^{\rm st}$ of April 2021

 \rightarrow Illustration of Giordano Bruno's philosophical ideas $_{\rm (XVI^{th}century)}$

Mathieu PELLEN

Stress testing the Standard Model via vector-boson scattering at the LHC

<u>LHC</u>: Great tool to probe fundamental interactions at high energies \rightarrow Cross talk between **experiment** and **theory**

Mathieu PELLEN

VBS: smallest cross sections at the LHC!

Mathieu PELLEN

Vector-Boson Scattering (VBS) at the LHC

 \rightarrow Scattering of vector bosons!

Vector-Boson Scattering (VBS) at the LHC

 \rightarrow Scattering of vector bosons!

Leptonic signature: $2j + 4\ell$

- pp $\rightarrow \ell^{\pm} \nu_{\ell} \ell'^{\pm} \nu_{\ell'}$ jj (ss-WW)
- pp $\rightarrow \ell^{\pm} \nu_{\ell} \ell'^{+} \ell'^{-} jj$ (WZ)
- pp $\rightarrow \ell^+ \ell^- \ell'^+ \ell'^- jj$ (ZZ)
- pp $\rightarrow \ell^{\pm} \nu_{\ell} \ell'^{\mp} \nu_{\ell'}$ jj (os-WW)

Semi-leptonic signature: $4j + 2\ell$

• pp
$$\rightarrow \ell^{\pm} \nu_{\ell} 4j$$
 (ss-WW, os-WW, WZ)

• pp $\rightarrow \ell^+ \ell^- 4j$ (WZ, ZZ)

Fully hadronic signature: 6j

• pp
$$\rightarrow$$
 6j (ss-WW, os-WW, WZ, ZZ)

Why this is interesting

[Denner, Hahn, 1997]

Electroweak symmetry breaking

- Unitarisation due to Higgs boson
- Polarisation measurements
- Measurements of SM parameters
 → Higgs width
- Triple/quartic gauge coupling → EFT

https://indico.cern.ch/event/777988/contributions/3410603

Underlying idea

Delicate structure in the Standard Model:

 \rightarrow Is it modified/disturbed by new phenomena?

Underlying idea

<u>Delicate structure in the Standard Model:</u> \rightarrow Is it modified/disturbed by new phenomena?

 \rightarrow To help in this quest: HL-HE LHC programme

 \rightarrow Great jump in precision

Precision physics for VBS

Assume scaling of uncertainties with 1/√L

dedicated studies with detector simulation for example in <u>CMS-PAS-SMP-14-008</u>

Integrated Luminosity	36 fb	150 fb	300 fb	3000 fb-
Year	2016	2019	2022	2038
EW(VBS) W±W±	20%	10%	7%	2%
EW (VBS) ZZ	35%	18%	13%	6%
EW (VBS) WZ	35%	18%	13%	6%

source: Jakob Salfeld-Nebgen, https://indico.cern.ch/event/711256

Precision physics for VBS

Assume scaling of uncertainties with 1/√L

dedicated studies with detector simulation for example in <u>CMS-PAS-SMP-14-008</u>

Integrated Luminosity	36 fb	150 fb	300 fb	3000 fb-
Year	2016	2019	2022	2038
EW(VBS) W±W±	20%	10%	7%	2%
EW (VBS) ZZ	35%	18%	13%	6%
EW (VBS) WZ	35% personally anticipated	18%	13%	6%

source: Jakob Salfeld-Nebgen, https://indico.cern.ch/event/711256

This talk

- → Focused on Standard Model physics
 - How to get to per-cent uncertainties from the theory side
 - Importance of interplay between experiment and theory

Outline:

- Vector-boson scattering at the LHC
 → Theory definition and how to measure it
- The devil is in the detail
 → Kinematics and theory approximations
- Going beyond current work \rightarrow Few directions

Example: pp
$$\rightarrow \mu^+ \nu_\mu e^+ \nu_e jj$$
 (aka same-sign WW VBS)

VBS diagrams

Example: pp
$$\rightarrow \mu^+ \nu_\mu e^+ \nu_e jj$$
 (aka same-sign WW VBS)

VBS diagrams

More diagrams contribute ...

▲ Gauge invariance: diagrams cannot be cherry picked!

VBS signatures possess more than VBS contributions: \rightarrow All contributions are experimentally measured

(VBS, tri-boson, decay chains, etc.)

Even more (QCD) diagrams ...

Even more (**QCD**) diagrams ...

With 2 different amplitudes \rightarrow 3 different contributions:

- $\mathcal{O}(\alpha^6)$: EW contribution/signal
- $\mathcal{O}(\alpha_{s}\alpha^{5})$: interference
- $\mathcal{O}\left(\alpha_{s}^{2}\alpha^{4}\right)$: QCD contribution/background

 \rightarrow How to measure the EW component (including VBS) then?

Mathieu PELLEN

Stress testing the Standard Model via vector-boson scattering at the LHC

[Ballestrero, MP et al.; 1803.07943]

- The contributions have different kinematic
- Use of exclusive cuts to enhance the EW contribution

 \rightarrow typical cuts are $\mathit{m}_{\rm jj} > 500\,{\rm GeV}$ and $|\Delta y_{\rm jj}| > 2.5$

 \rightarrow typical kinematic:

back-to-back jets at large rapidities + central gauge bosons

[Ballestrero, MP et al.; 1803.07943]

- The contributions have different kinematic
- Use of exclusive cuts to enhance the EW contribution

 \rightarrow typical cuts are $\mathit{m}_{\rm jj} > 500\,{\rm GeV}$ and $|\Delta y_{\rm jj}| > 2.5$

 \rightarrow typical kinematic:

back-to-back jets at large rapidities + central gauge bosons

 \rightarrow <u>Solution</u>: Exclusive phase-space with irreducible background (interference+QCD) subtracted

[Ballestrero, MP et al.; 1803.07943]

- The contributions have different kinematic
- Use of exclusive cuts to enhance the EW contribution
 - \rightarrow typical cuts are $\mathit{m}_{\rm jj} > 500\,{\rm GeV}$ and $|\Delta y_{\rm jj}| > 2.5$
 - \rightarrow typical kinematic:

back-to-back jets at large rapidities + central gauge bosons

 \rightarrow <u>Solution</u>: Exclusive phase-space with ... irreducible background (interference+QCD) subtracted

 $\underline{\land}$ VBS contributions appear also in the interference $\underline{\land}$ Theory dependent measurement

LO cross sections in fiducial volume

[Andersen, MP et al.; 1803.07977 LH proceedings]

- \rightarrow The relative size of the EW contribution is process dependent
- \rightarrow Background can be overwhelming
- \rightarrow Interference usually small but not negligible

▲ Background is as important as the signal!

13 / 41

Moving on to NLO

 \rightarrow Order $\mathcal{O}\left(\alpha_{s}\alpha^{6}\right)$ and $\mathcal{O}\left(\alpha_{s}^{2}\alpha^{5}\right)$: QCD and EW corrections mix

At NLO

Meaningless distinction between EW and QCD component

Moving on to NLO

 \rightarrow Order $\mathcal{O}\left(\alpha_{s}\alpha^{6}\right)$ and $\mathcal{O}\left(\alpha_{s}^{2}\alpha^{5}\right)$: QCD and EW corrections mix

At NLO

Meaningless distinction between EW and QCD component

<u>Solution</u>: Combined measurement of all the contributions \rightarrow clear physical interpretation

$pp \rightarrow W^{\pm}W^{\pm}jj$ **(**full NLO)

[Biedermann, Denner, MP; 1708.00268]

- Different LO and NLO behaviours
 - $\underline{\wedge}$ Large EW corrections: intrinsic feature of VBS at the LHC
 - \rightarrow Now available in POWHEG [Chiesa, Denner, Lang, MP; 1906.01863]

Mathieu PELLEN

Comparison with data

\rightarrow Recent ss-WW and WZ analysis of CMS with 137 fb⁻¹ [2005.01173]

Process	$\sigma \mathcal{B}$ (fb)	Th. pred.	Th. pred.
		LO (fb)	NLO (fb)
EW WW	3.98 ± 0.45	$\textbf{3.93} \pm \textbf{0.57}$	3.31 ± 0.47
	$0.37 \text{ stat} \pm 0.25 \text{ syst}$		
EW+QCD WW	4.42 ± 0.47	4.34 ± 0.69	3.72 ± 0.59
	$0.39 \text{ stat} \pm 0.25 \text{ syst}$		
EW WZ	1.81 ± 0.41	1.41 ± 0.21	1.24 ± 0.18
	$0.39 \text{ stat} \pm 0.14 \text{ syst}$		
EW+QCD WZ	4.97 ± 0.46	4.54 ± 0.90	4.36 ± 0.88
	$0.40 \text{ stat} \pm 0.23 \text{ syst}$		
QCD WZ	3.15 ± 0.49 \degree	3.12 ± 0.70	3.12 ± 0.70
	$0.45~{\rm stat}\pm0.18~{\rm syst}$		

\rightarrow LO: MadGraph5_AMC@NLO+PYTHIA

→ NLO: MADGRAPH5_AMC@NLO+PYTHIA + NLO corr. from [Biedermann, Denner, MP; 1708.00268] or [Denner, Dittmaier, Maierhöfer, MP, Schwan; 1904.00882] but only to EW signal

NB: Uncertainty for the NLO numbers are from the LO 7-scales variation.

\rightarrow Set basis of future precision measurements

• The devil is in the detail

 \rightarrow Kinematics and theory approximations

Kinematics and approximations

- Typically cuts $m_{\rm jj} > 500 \, {\rm GeV}$
 - \rightarrow Relaxed for rarest processes
 - $ightarrow m_{
 m jj} > 100\,{
 m GeV}~({
 m ZZ}~{
 m analysis}~{
 m of}~{
 m [arXiv:1708.02812]})$

▲ EW component possesses VBS+tri-boson+other contributions → Naively, 100 GeV cut should do the job. Is it really the case?

Mathieu PELLEN

Neglecting *s*-channel contributions and t/u interferences

 \rightarrow Implemented in POWHEG and VBFNLO (possibly including s-channel)

Source: Giovanni Pelliccioli

 \rightarrow Comparison of approximations against full computations at NLO [Ballestrero, MP et al.; 1803.07943]

Quality of the VBS approximation (LO)

[Ballestrero, MP et al.; 1803.07943]

- For low m_{jj} and low Δy_{jj}, significant s-channel contributions
 → tri-boson contributions with resonant W-boson
- Good approximation in fiducial regions!

Quality of the VBS approximation (NLO)

[Ballestrero, MP et al.; 1803.07943]

- Approximations are worse at NLO
- Approximation can fail by up to 20% even in fiducial regions

Quality of the VBS approximation $_{(\mbox{neglecting tri-boson contributions)}}$

[Ballestrero, MP et al.; 1803.07943]

- Approximations are worse at NLO
- Approximation can fail by up to 20% even in fiducial regions

Mathieu PELLEN

Quality of the VBS approximation (NLO)

Why are NLO approximations worth than LO ones?

 \rightarrow Typical *s*-channel contribution:

\rightarrow Less suppressed at NLO due to extra jet in the real

Similar effect for tt production at NLO QCD in lepton+jet channel [Denner, MP; 1711.10359]

LO cuts are not safe at NLO and beyond

Mathieu PELLEN

Stress testing the Standard Model via vector-boson scattering at the LHC

Example of ZZ VBS at NLO

[Denner, Franken, MP, Schmidt; 2009.00411]

 \rightarrow Effects of tri-boson (at NLO) even when using $m_{\rm ii}$ > 100 GeV

Mathieu PELLEN

Lessons learnt

∧ Strong correlations between:

theory approximations and experimental event selection

 \rightarrow Theory approximations valid only for certain fiducial region

Lessons learnt

 $\underline{\land} Strong correlations between: \\ theory approximations and experimental event selection \\ \rightarrow Theory approximations valid only for certain fiducial region \\$

- For inclusive phase spaces, use full computations (including tri-bosons contributions)
- For exclusive phase spaces, approximate computations OK (with current experimental precisions)
 - \rightarrow Not at high-luminosity LHC
- Subtracting tri-boson in measurements is dangerous
- $\underline{\wedge}$ Cross talks between theory and experiment are crucial

 \rightarrow How to ensure that all effects are under control?

\rightarrow How to ensure that all effects are under control?

	Particle type	Selection	
		ZZjj inclusive	
Solution:	Leptons	$p_{T}(\ell_{1}) > 20 \text{ GeV}$ $p_{T}(\ell_{2}) > 10 \text{ GeV}$ $p_{T}(\ell) > 5 \text{ GeV}$	
• Different phase spaces	Z and ZZ	$ \eta(\ell) < 2.5$ $60 < m(\ell\ell) < 120 \text{GeV}$ $m(4\ell) > 180 \text{GeV}$	
ightarrow Sensitive to different effects	Jets	at least 2	
\rightarrow Great for exp./th. comparisons		$p_{\rm T}({\rm j}) > 30{ m GeV}$ $ \eta({\rm j}) < 4.7$	
 CMS ZZ measurement with 		$m_{ m jj} > 100 { m GeV}$ $\Delta R(\ell, { m j}) > 0.4 { m for each} \ell, { m j}$	
137 fb^{-1} [2008.07013]	VBS	6-enriched (loose)	
ightarrow Disentangles all physical effects	Jets	$\begin{aligned} &ZZjj \text{ inclusive } + \\ & \Delta\eta_{\rm jj} > 2.4 \\ &m_{\rm jj} > 400 {\rm GeV} \end{aligned}$	
	VB	5-enriched (tight)	
		ZZjj inclusive +	

Jets

$$\begin{split} |\Delta \eta_{\rm jj}| &> 2.4 \\ m_{\rm jj} &> 1\,{\rm TeV} \end{split}$$

Going beyond current work → Few directions

Going beyond current work (I) → Full use of NLO+PS simulations (example ss-WW)

- $\mathcal{O}\left(\alpha^{7}\right)$ [Biedermann, Denner, MP; 1611.02951, 1708.00268] \rightarrow +PS: [Chiesa, Denner, Lang, MP; 1906.01863]
- O (α_sα⁶) [Biedermann, Denner, MP; 1708.00268] [Jäger, Oleari, Zeppenfeld; 0907.0580]* [Denner, Hošeková, Kallweit; 1209.2389]* → +PS: [Jäger, Zanderighi; 1108.0864]*
- $\mathcal{O}\left(\alpha_{s}^{2}\alpha^{5}\right)$ [Biedermann, Denner, MP; 1708.00268]
- $\mathcal{O}\left(\alpha_{s}^{3}\alpha^{4}\right)$ [Biedermann, Denner, MP; 1708.00268] [Melia et al.; 1007.5313, 1104.2327], [Campanario et al.; 1311.6738] \rightarrow +PS: [Melia et al.; 1102.4846], [Melia et al.; 1102.4846]
- (*) Computations in the VBS-approximation i.e. t-u interferences and tri-boson contributions neglected

Soon similar accuracy for other channels

Going beyond current work (I) → Full use of NLO+PS simulations (example ss-WW)

Theory challenge

 Why O (α_sα⁶) and O (α_s²α⁵) not NLO+PS yet?
 → These are mixed QCD/EW corrections: real QCD and photon radiation at NLO at the same order
 → No consistent matching to parton/photon shower yet

Phenomenology

• NLO+PS accuracy not yet fully used in experimental analyses (difficult but necessary step)

 \rightarrow Precise comparisons between theory and experiment

→ Precise probe of EW sector

 \rightarrow Large EW corrections: intrinsic feature of VBS at the LHC

Large EW corrections: $\sim 16\%$ at the level of the cross section

 \rightarrow Large EW corrections: intrinsic feature of VBS at the LHC

Large EW corrections: $\sim 16\%$ at the level of the cross section

$$\sigma_{\rm LL} = \sigma_{\rm LO} \left[1 - \frac{\alpha}{4\pi} 4 C_{\rm W}^{\rm ew} \log^2 \left(\frac{Q^2}{M_{\rm W}^2} \right) + \frac{\alpha}{4\pi} 2 b_{\rm W}^{\rm ew} \log \left(\frac{Q^2}{M_{\rm W}^2} \right) \right]$$

• For $Q = \langle m_{4\ell} \rangle \sim 390 \,\text{GeV}$
 $\delta_{\rm EW}^{\rm LL} \simeq \delta_{\rm EW}^{\rm NLO} \ (!)$

 \rightarrow Large EW corrections: intrinsic feature of VBS at the LHC

Large EW corrections: $\sim 16\%$ at the level of the cross section

$$\sigma_{\rm LL} = \sigma_{\rm LO} \left[1 - \frac{\alpha}{4\pi} 4 C_{\rm W}^{\rm ew} \log^2 \left(\frac{Q^2}{M_{\rm W}^2} \right) + \frac{\alpha}{4\pi} 2 b_{\rm W}^{\rm ew} \log \left(\frac{Q^2}{M_{\rm W}^2} \right) \right]$$

• For
$$\mathit{Q}=\langle \mathit{m}_{4\ell}
angle\sim$$
 390 GeV

$$\delta_{\rm EW}^{\rm LL} \simeq \delta_{\rm EW}^{\rm NLO}$$
 (!)

- ightarrow Corrections 3-4 times larger than for $q ar q
 ightarrow {\sf W}^+ {\sf W}^-$
 - C^{ew} larger for bosons than fermions
 - $\langle m_{4\ell} \rangle$ larger for VBS (massive *t*-channel [Denner, Hahn; hep-ph/9711302]) NB: $\langle m_{4\ell} \rangle \sim 250 \text{ GeV}$ for $q\bar{q} \rightarrow W^+W^-$

 \rightarrow Large EW corrections: intrinsic feature of VBS at the LHC

Large EW corrections: $\sim 16\%$ at the level of the cross section

$$\sigma_{\rm LL} = \sigma_{\rm LO} \left[1 - \frac{\alpha}{4\pi} 4 C_{\rm W}^{\rm ew} \log^2 \left(\frac{Q^2}{M_{\rm W}^2} \right) + \frac{\alpha}{4\pi} 2 b_{\rm W}^{\rm ew} \log \left(\frac{Q^2}{M_{\rm W}^2} \right) \right]$$

• For
$$\mathit{Q}=\langle \mathit{m}_{4\ell}
angle\sim$$
 390 GeV

$$\delta_{\rm EW}^{\rm LL} \simeq \delta_{\rm EW}^{\rm NLO}$$
 (!)

- ightarrow Corrections 3-4 times larger than for $q ar q
 ightarrow {\sf W}^+ {\sf W}^-$
 - C^{ew} larger for bosons than fermions
 - $\langle m_{4\ell} \rangle$ larger for VBS (massive *t*-channel [Denner, Hahn; hep-ph/9711302]) NB: $\langle m_{4\ell} \rangle \sim 250 \text{ GeV}$ for $q\bar{q} \rightarrow W^+W^-$

Large NLO EW corrections: intrinsic feature of VBS at the LHC

[Biedermann, Denner, MP; 1611.02951]

 \rightarrow Large EW corrections: intrinsic feature of VBS at the LHC

Sensitive to EW corrections at High-Luminosity LHC \rightarrow Homework for theorists: compute them in new-physics models

Mathieu PELLEN

\rightarrow Effects from Higgs sector

[Dittmaier, Maierhöfer, Schwan, Siegert, In: PoS RADCOR2017]

 \rightarrow low p_{T} region sensitive to modified Higgs sector \rightarrow large p_{T} is unaffected

Test our SM understanding of VBS at the LHC \rightarrow EW sector

Mathieu PELLEN

Stress testing the Standard Model via vector-boson scattering at the LHC

▲ Typical kinematic:

back-to-back jets at large rapidities + central gauge bosons

- \rightarrow Low hadronic activity in central region
- \rightarrow Higher-order and PS corrections crucial

[Ballestrero, MP et al.; 1803.07943]

 \rightarrow Reasonable agreement at both LO (left) and NLO (right) for observables defined at LO

 \rightarrow <u>NB</u>: input parameters (masses, widths, PDF, scales)

all set to common values

Mathieu PELLEN

Stress testing the Standard Model via vector-boson scattering at the LHC

Large differences for third-jet observables $\rightarrow z_{j_3} = (j_3 - (j_1 + j_2)/2)/|\Delta y_{jj}|$ (how central is the third jet)

 $\label{eq:prevented} \begin{array}{l} \rightarrow \mbox{ Prevented experimental analyses to use jet veto} \\ \rightarrow \mbox{ Understood now (recoil scheme)} \ {}_{[J{\mbox{ args}, Karlberg, Pl{\mbox{ args}, Scheller, Zaro; 2003.12435]}} \end{array}$

Mathieu PELLEN

→ Allows for the use of jet veto in experimental analyses → Homework for theorists: compute VBS+1j at NLO QCD [Jäger, Karlberg, Plätzer, Scheller, Zaro; 2003.12435] for VBF Higgs → Further studies of PS with similar processes

VBF-Z production [CMS; 1712.09814] (*i.e.* $pp \rightarrow jjZ$)

Going beyond current work (IV) → Semi-leptonic signatures

Next step after leptonic measurements of VBS: \rightarrow measuring the EW production of $\ell \nu_{\ell} + 4i$ and $\ell^+ \ell^- + 4i$

- Large cross sections (W/Z hadronic branching ratio)
- Great potential for new physics studies
- Huge and complicated backgrounds
- \rightarrow Challenge for both theory and experiment!
 - Limit of current (LO/NLO) predictions (very CPU intensive)
 - Difficult experimental analyses

Going beyond current work (IV) → Semi-leptonic signatures

Theory challenges

- Large number of partonic channels:
 - $\ell \nu_{\ell} + 4j$: $W^{\pm}(W^{\pm} \rightarrow jj) + W^{\pm}(W^{\mp} \rightarrow jj) + W^{\pm}(Z \rightarrow jj)$
 - $\ell^+\ell^- + 4j$: $Z(Z \rightarrow jj) + Z(W^{\pm} \rightarrow jj)$
- Complicated final state with 4 QCD particles:
 - \rightarrow Only available computations at NLO QCD:
 - ${\sf pp} o \ell
 u_\ell {\sf jjbb}$ [Denner, MP; 1711.10359] [Anger, Febres Cordero, Ita, Sotnikov; 1712.05721]
- Huge CPU cost
 - → Experimental analysis limited size of sample
 - \rightarrow New computing methods welcome

• Conclusion

Summary

Vector-boson scattering at the LHC

Physical definition

• Comparisons between theory and experiment

- Full measurement vs. full predictions
- Subtracted measurements vs. approximate predictions
- Use of different phase-space regions

 \rightarrow Best way to get most of VBS physics in a transparent way

- Possible directions to go beyond current work
 - \rightarrow Precision programme at the LHC
- Potential for exciting studies in Standard Model and beyond
 → Polarisation, concrete new-physics models, EFT, ...

∧ Cross talk between theory and experiment is crucial

Review

Vector-Boson Scattering at the LHC: unravelling the Electroweak sector

[arXiv:2102.10991]

Roberto Covarelli, MP, Marco Zaro

Thank you

Mathieu PELLEN

Stress testing the Standard Model via vector-boson scattering at the LHC 41 / 41

BACK-UP

Mathieu PELLEN